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Abstract: We probe the universality of acceleration scale  in Milgrom's modified Newtonian dynamics (MOND)
using the recently released rotation curve data from SPARC galaxies. We divide the SPARC data into different sub-
samples according to the morphological types of galaxies, and fit the rotation curve data of each subsample with the
theoretical prediction of MOND. MOND involves an arbitrary interpolation function which connects the Newtonian
region and the MOND region. Here we consider five different interpolation functions that are widely discussed in the
literature. It is shown that the best-fitting  significantly depends on the interpolation functions. For a specific inter-
polation function,  also depends on the morphological types of galaxies, implying that  may be not a universal
constant. Introducing a dipole correction to  can significantly improve the fits. The dipole directions for four of the
five interpolation functions point towards an approximately consistent direction, but  still varies for different inter-
polation functions.
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I.  INTRODUCTION

In the 1930s, Zwicky [1] and Smith [2] found that the
velocity  dispersion of  galaxies  in  clusters  is  so high that
the galaxies cannot be bounded to the cluster just by the
gravitational  force  generated  by  visible  matter.  Hence  it
was concluded that there must be a large amount of invis-
ible  matter  in  cluster,  which  is  now  called  dark  matter
(DM).  Decades  later,  Rubin  and  his  collaborators  [3-5]
found strong evidence for  the existence of  DM from the
observations of  galaxy  rotation  curves.  Other  observa-
tional  evidence  for  the  existence  of  DM  includes  the
strong  and  weak  gravitational  lensing  of  Bullet  Cluster
1E  0657-558  [6],  the  observation  of  cosmic  microwave
background radiation from the Planck satellite [7], the ex-
cess of positron abundance in cosmic rays [8], and so on.
In recent decades, extensive searches have been made for
DM particles, but have not yet been successful [9]. Mean-
while,  various  alternative  models  have  been  proposed  to
explain  the  extra  gravitational  force  generated  by  DM,
such  as  the  modified  Newtonian  dynamics  (MOND)
model [10-12] and modified gravity models [13-15].

The MOND  theory  was  originally  proposed  to  ac-
count  for  the  rotation  curves  of  spiral  galaxies,  see  e.g.
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Refs. [16, 17] for a recent review. According to MOND,
Newton's second law loses its efficacy if the acceleration
is below a critical  value .  MOND theory has achieved
great  success  in  interpreting the  rotation curves  of  spiral
galaxies [18-26].  For a long time, MOND was a non-re-
lativistic theory,  until  Bekenstein [27] constructed its  re-
lativistic  form.  The  relativistic  form  of  MOND,  i.e.  the
tensor-vector-scalar  (TeVeS)  theory  [27, 28],  has  been
discussed in the weak field regime, and tested in the Sol-
ar  system [29, 30].  Moreover,  MOND is  consistent  with
the  baryonic  Tully-Fisher  relation  observed  in  spiral
galaxies [31]. MOND theory introduces a free parameter

, a characteristic acceleration scale below which New-
tonian dynamics breaks down. If MOND theory is a fun-
damental theory,  must be a universal constant.

To  study  the  characteristic  acceleration  of  MOND
theory,  we  need  to  match  the  theory  with  observations.
Recently,  the  Spitzer  Photometry  and  Accurate  Rotation
Curves  (SPARC)  database  [32]  has  been  released.  It  is
extensively used to investigate the radial acceleration re-
lation  [33-35].  Based  on  the  SPARC data,  some debates
on MOND as a fundamental theory have attracted extens-
ive attention [36-38].  Using Bayesian inference with flat
priors,  Rodrigues et  al.  [37]  concluded  that  MOND was
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10σexcluded as a fundamental theory at more than  based
on  193  high-quality  disk  galaxies  from  the  SPARC  and
The  HI  Nearby  Galaxy  Survey  (THINGS)  databases.
Later  on,  Chang et  al.  [38]  fitted  the  rotation  curves  of
175  SPARC  galaxies  using  a  similar  method  but  with
Gaussian  priors,  and came to  the  similar  conclusion that
MOND  theory  cannot  hold  as  a  fundamental  theory.  As
the representative and currently largest collection of rotat-
ing curved galaxies, SPARC data contains galaxies of dif-
ferent morphological types, luminosity and effective sur-
face brightness. In the previous works [33-38], the quali-
fied SPARC data was used as a whole. It is meaningful to
test  if  the  acceleration  scale  is  dependent  on  the  galaxy
morphological types or not. In our work, we will classify
the SPARC  dataset  depending  on  the  galaxy  morpholo-
gical  types,  and  test  the  possible  galaxy-dependence  of
the characteristic acceleration scale.

a0→ 0

a0

The original MOND theory [10-12] only requires two
limit  conditions.  One  is  the  Newtonian  region,  that  is,
Newton's  second law should  be  valid  while .  The
other is the deep MOND region, that is, Newton's second
law should  be  modified  to  satisfy  the  Tully-Fisher  rela-
tion [39]. To match the MOND theory with astronomical
observations,  an  interpolation  function  is  needed.  If
MOND  theory  is  a  fundamental  theory,  the  acceleration
scale  should not depend on the specific choice of inter-
polation  function.  In  this  paper,  we  will  consider  five
popular interpolation functions to match the SPARC data.

a0 ∼ 1.2×10−10 m/s2

cH0/2π
H0
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It  has  been  noted  that  the  best-fit  value
,  obtained  from  fitting  to  a  large

sample of spiral galaxies, is numerically close to 
[40],  where c is  the speed of  light  and  is  the Hubble
constant  [10].  It  is  unclear  if  this  correlation  has  some
physical  implications  or  is  just  a  coincidence.  If  the
former is true, then  must be correlated with the evolu-
tion history of the universe. Some astronomical and cos-
mological observations, such as the luminosity of type-Ia
supernovae  [41],  the  spatial  variation  of  the  fine-struc-
ture constant [42], the cosmic microwave background ra-
diation [43, 44], etc.,  show that  the universe may be an-
isotropic. Hence it is necessary to investigate if the accel-
eration scale  is directionally dependent or not. In fact,
Zhou et al.  [45] have already studied the possible aniso-
tropy of  using the SPARC data, and found that the dir-
ection of maximum anisotropy is close to the direction of
the  “Australia  dipole”  for  the  fine-structure  constant.  In
their  following  work,  Chang et  al.  [46]  studied  a  dipole
correction for , and found a similar dipole direction. In-
spired by  this,  here  we  continue  to  investigate  the  pos-
sible  anisotropy  of  the  acceleration  scale.  We will  focus
on  testing  if  different  interpolation  functions  have  some
influence on the anisotropy.

The rest of this paper is organized as follows. In Sec.
II, we  briefly  review the  MOND theory  and  some  com-
monly  discussed  interpolation  functions,  and  introduce

the SPARC data set used in our studies. In Sec. III, we fit
the SPARC  data  to  the  MOND  theory,  taking  into  ac-
count  five  different  interpolation  functions  and  different
galaxy types, as well as the sky direction of the galaxies.
Finally, a short summary is given in Sec. IV.

II.  MOND THEORY AND THE SPARC SAMPLE

a0

a0
µ(x)

The MOND theory [10, 11] was initially proposed by
Milgrom to account for the missing-mass problem in ro-
tationally supported  galaxies,  to  avoid  having  to  intro-
duce exotic dark matter. The main idea of MOND is that
there  is  a  critical  acceleration  below which  Newton's
second  laws  are  no  longer  valid  (the  MOND  region),
while above  Newton's second law still holds (the New-
tonian  region).  An  interpolation  function  is  used  to
join these  two  regions.  Phenomenologically,  the  dynam-
ics in MOND theory can be written as

µ

(
g
a0

)
g = gN, (1)

gN ≡GM/r2 a0

µ(x)

µ(x)
µ(x) ≈ x x→ 0
µ(x) x→∞

g≪ a0
g =
√

a0gN

where  is  the  Newtonian  acceleration,  is
the critical acceleration, and  is a smooth and mono-
tonically  increasing  function  of x.  To  be  in  accordance
with  the  asymptotically  flat  feature  of  the  observed
galaxy  rotation  curves,  must  satisfy  the  asymptotic
condition  when .  To  recover  Newtonian
dynamics,  should be equal to unity when . In
the  deep-MOND limit,  namely, , the  effective  ac-
celeration becomes .

gN

Given the matter distribution in a galaxy, it is easy to
calculate  the  Newtonian  acceleration  by  solving  the
Poisson equation, and then the MOND acceleration g can
be solved from Eq. (1). It is convenient to rewrite Eq. (1)
in the following form:

ν

(
gN

a0

)
gN = g. (2)

yν(y) xµ(x)
ν(y) ≈ 1 y→∞ ν(y) ≈ y−1/2 y→ 0

µ(x)
ν(y)

µ

ν µ

ν

Note  that  is  the  inverse  of ,  and  it  satisfies
 when , and  when . To fit

the observations to the theoretical predictions, it is neces-
sary  to  clarify  the  form of  interpolation  function  or

. However, the MOND theory does not give any hints
on  the  concrete  form  of  the  interpolation  function.  Any
smooth  and  monotonic  function  satisfying  the  above
asymptotic  conditions  could  be  chosen.  In  general,  there
are two families of interpolation functions, namely, the -
function  family  and  the -function  family.  Any -func-
tion  has  a  corresponding -function,  although  in  some
cases it  is  not  easy to find an analytical  expression.  Dif-
ferent forms  of  interpolation  functions  have  been  dis-
cussed in Ref. [16]. In our work, five common interpola-
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tion functions are considered,  including four -functions
and one -function.

The first interpolation function is the so-called “stand-
ard” function initially proposed by Milgrom [11],  which
takes the form:

µsta(x) =
x

√
1+ x2

. (3)

This function was widely used to analyse the galaxy rota-
tion  curves  at  the  beginning  of  MOND  theory  [18, 19].
However,  Famaey et  al.  [20]  found  that  the  “simple ”
function,  another  widely  used  interpolation  function,
gives  a  better  fit  to  the  terminal  velocity  curve  of  the
Milky  Way  than  the  “standard ”  function.  The  "simple"
function is:

µsim(x) =
x

1+ x
. (4)

Some studies  show that  this  “simple” function performs
better than the “standard” function in some cases [22, 47].

The initial  MOND is a phenomenological model and
is  non-relativistic.  Bekenstein  [27] constructed  a  relativ-
istic form, namely, the TeVeS theory. There is still a free-
dom in choosing the specific form of the scalar field ac-
tion in TeVeS theory. The scalar action proposed in Ref.
[27] gives rise to the following “toy” interpolation func-
tion,

µtoy(x) =

√
1+4x−1
√

1+4x+1
. (5)

This interpolation  function  gives  a  much  slower  trans-
ition  from  the  MOND  region  to  the  Newtonian  region
than the “standard” and “simple” functions. The Finsleri-
an model proposed in Ref. [48] also leads to the “toy” in-
terpolation function.

The  fourth  interpolation  function  we  consider  is  the
so-called “exponential” function [11], which reads:

µexp(x) = 1− e−x. (6)

This  interpolation  function  behaves  similarly  to  the
“standard” function.

νFinally,  we  also  consider  a -function, which  is  in-
spired  by  the  radial  acceleration  relation  (RAR)  found
from the SPARC data by Ref. [33]. It takes the form:

νrar(y) =
1

1− e−
√

y
. (7)

νIt has been shown that this -function can give a good fit
to  the  rotation  curves  of  the  Milky  Way  [24].  Recently,
this function has been used by McGaugh to fit the radial

µ

ν

µ

acceleration relation observed from a large sample of ro-
tationally supported galaxies [33]. The -function corres-
ponding  to  this -function  can  be  obtained  numerically,
and is plotted, together with the other four -functions, in
Fig. 1. The “standard” and “exponential” functions show
a  sharp  jump  from  the  MOND  region  to  the  Newtonian
region, while the “toy” function changes slowly, and the
“simple” and “RAR” functions fall in between.

gobs
gbar gN

i < 30◦

δVobs/Vobs

To  investigate  the  universality  of  the  acceleration
scale, we fit the above five functions with the recently re-
leased  SPARC  dataset  [32].  This  sample  contains  175
disk  galaxies  with  high  quality  observations  at  near-in-
frared (3.6  μm)  and  21  cm,  so  both  the  baryon  distribu-
tion  and  velocity  field  can  be  obtained.  This  dataset  has
already been used to study the radial acceleration relation
[33, 34], i.e.  the  relation between the  observed accelera-
tion  ( )  and  that  expected  from  the  baryonic  matter
( ,  which is equivalent to  in Eq. (1)) in the frame-
work of Newtonian dynamics. In our work, the same se-
lection  criteria  are  adopted  as  Refs.  [33, 34]: the  12  ob-
jects with asymmetric rotation curves which do not trace
the equilibrium gravitational potential (quality flag Q = 3)
and 10 face-on galaxies with  have been excluded,
which leaves a sample of 153 galaxies.  Furthermore, the
condition that the relative uncertainty of the observed ve-
locity ( ) should be less than 10% has been ap-
plied. Therefore, the final data set used in our work con-
tains 2693 data points in 147 galaxies.

χ2

To  fit  theoretical  predictions  with  the  observational
data,  the  orthogonal-distance-regression  algorithm  [49,
50] is  adopted,  which  considers  errors  on  both  the  hori-
zontal and  vertical  axes.  The  best-fit  parameters  are  ob-
tained by minimizing the following :

χ2 =

N∑
i=1

[gth(gbar,i+δi)−gobs,i]2

σ2
obs,i

+
δ2i

σ2
bar,i

, (8)

 

Fig. 1.    (color online) Plot of different interpolation
functions.
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a0

where  is the observed acceleration,  is the accel-
eration  contributed  by  the  baryonic  matter,  calculated  in
the framework of Newtonian dynamics,  is the theoret-
ical acceleration predicted by MOND, and  and 
are  the uncertainty of  and ,  respectively.  is  an
auxiliary parameter  for  determining  the  weighted  ortho-
gonal  (shortest)  distance  from  the  best-fit  curve,  which
can be obtained interactively in the fitting procedure. The
only free parameter is the acceleration scale .

III.  BEST-FIT RESULTS

A.    Results of galaxy-dependence

a0

The SPARC data  used  here  contains  147 galaxies  of
different  Hubble  types.  Most  of  them are  spiral  galaxies
from Sa  to  Sm.  It  also  includes  some lenticular  galaxies
(S0),  irregular  galaxies  (Im)  and  blue  compact  dwarf
galaxies (BCD). To study the possible dependence of 
on  the  galaxy  morphology,  we  classify  the  SPARC data
set  into  several  subsets  according  to  the  galaxy  Hubble
types. The Hubble types of the galaxies are labelled from
0 to 11: 0 = S0, 1 = Sa, 2 = Sab, 3 = Sb, 4 = Sbc, 5 = Sc,
6 = Scd, 7 = Sd, 8 = Sdm, 9 = Sm, 10 = Im, 11 = BCD.
The number of galaxies in each Hubble type is shown in
the histogram in Fig. 2. First, we divide the galaxies into
two  subsets:  the  spiral  galaxies  (from  1  to  9;  denoted
"Spiral"  below)  and  the  other  galaxies  (including  0,  10
and  11;  denoted  "Other"  below).  There  are  2433  data
points  in  118  Spiral  galaxies  and  260  data  points  in  29
Other  galaxies.  Due  to  the  significant  difference  in  the
number of data points between Spiral and Other galaxies,
we  further  divide  the  Spiral  galaxies  into  two  subsets,
with  an  approximately  equal  number  of  data  points  in
each subset:  Spiral-1 galaxies (from 1 to 4) and Spiral-2
galaxies  (from 5 to  9).  There  are  1201 data  points  in  41
Spiral-1  galaxies  and  1232  data  points  in  77  Spiral-2

galaxies.  The  details  of  the  galaxy  classification  are
shown in Table 1.

a0

gN

a0

χ2

a0

a0

First, we use the full dataset (denoted "Full") contain-
ing 2693 data points to fit the MOND theory with differ-
ent interpolation functions. The best-fit  values are lis-
ted  in Table  2,  and  the  corresponding  fitting  curves
between  the  Newtonian  acceleration  and  the  MOND
acceleration g are shown in Fig. 3(a). We can see that the
best-fit  varies between  different  interpolation  func-
tions. The “toy” function seems to have the smallest ,
but this function also leads to the smallest . This is be-
cause the “toy” function evolves much more slowly than
the  other  four  functions,  as  can  be  seen  in Fig.  1.  The
“standard ”  function  has  the  largest ,  but  also  has  the

Table 1.    Details of galaxy classification.

Full Spiral Other Spiral-1 Spiral-2

Hubble type 0-11 1-9 0,10,11 1-4 5-9

Number of galaxies 147 118 29 41 77

Number of data points 2693 2433 260 1201 1232

a0 a0 10−10 −2Table 2.    Best-fit  values for five different interpolation functions and different datasets. The unit of  is  m s .

µsta(x) µsim(x) µtoy(x) µexp(x) νrar(y)

Full a0 1.39±0.02 1.00±0.01 0.69±0.01 1.24±0.02 1.02±0.02

χ2/do f 1.73 1.48 1.47 1.66 1.49

Spiral a0 1.50±0.02 1.07±0.02 0.73±0.01 1.34±0.04 1.09±0.02

χ2/do f 1.46 1.26 1.28 1.39 1.27

Other a0 0.86±0.04 0.70±0.04 0.55±0.04 0.79±0.04 0.71±0.04

χ2/do f 3.06 2.99 3.00 3.08 3.01

Spiral-1 a0 1.70±0.03 1.08±0.03 0.61±0.02 1.48±0.03 1.12±0.03

χ2/do f 1.14 0.986 1.04 1.10 0.99

Spiral-2 a0 1.43±0.02 1.06±0.02 0.78±0.02 1.28±0.02 1.08±0.02

χ2/do f 1.73 1.52 1.48 1.65 1.53

 

Fig. 2.    Number of galaxies in each Hubble type.
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χ2

a0

largest ,  since  this  function  shows  the  sharpest  jump
from the MOND region to the Newtonian region. The 
values from the “simple” and “RAR-inspired” functions
are close to each other, because of their similar evolution
behaviours.

χ2 a0

a0 = (1.07±0.02)×10−10 −2

a0 = (0.70±0.04)×10−10 −2

a0
a0

a0
a0

Then,  we  divide  the  Full  sample  into  the  Spiral  and
Other subsamples, and fit  each subsample to the MOND
theory.  The  best-fit  results  are  reported  in Table  2,  and
the  best-fit  curves  are  plotted  in Figs.  3(b) and 3(c), re-
spectively.  For  both  subsamples,  the  “simple ”  function
has  the  smallest ,  but  the  best-fit  differs signific-
antly, namely,  ms  for the Spir-
al sample and  ms  for the Oth-
er  sample.  For  a  fixed  interpolation  function,  the  Other
sample has a much smaller  than the Spiral sample, and

 of  the Full  sample falls  in  between.  This  implies  that
the Spiral galaxies and Other galaxies have very different

. For both the Spiral and Other subsamples, the best-fit-
ting  is  also  dependent  on  the  choice  of  interpolation
function.

a0 = (1.08±0.03)×10−10 −2

a0 = (0.78±0.02)×10−10 −2

a0

a0

1σ

Finally,  we  further  divide  the  Spiral  sample  into  the
two subsamples denoted by Spiral-1 and Spiral-2, and use
these  two  subsamples  to  fit  to  the  MOND  theory.  The
best-fit  parameters  are  presented  in  the  last  four  rows in
Table  2,  and  the  best-fit  curves  are  plotted  in Figs.  3(d)
and 3(e),  respectively.  The “simple” function is  the best
for  the  Spiral-1  subsample,  with  the  best-fit  value

 ms . For  the  Spiral-2  sub-
sample,  the  “toy ”  function  fits  the  data  best,  with  the
best-fit  value  ms .  Similarly,
for a fixed interpolation function, the Spiral-1 and Spiral-
2 subsamples may lead to different  values of ,  but  the
difference seems to be not as significant as that between
the  Spiral  and  Other  subsamples.  Especially,  for  the
“simple” and “RAR-inspired” functions, the values of 
for  the  Spiral-1  and  Spiral-2  subsamples  are  consistent
with each other within  uncertainty.

a0
1σ

As a summary, we plot the best-fitting  values with
 error bars for different interpolation functions and dif-

ferent  data  samples  in Fig.  4.  From  this  figure,  we  can

Fig. 3.    (color online) Best-fit curves of the radial acceleration relation. The observational data points are shown by blue dots with er-
ror bars. The green solid line is the line of unity.
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a0
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draw the following conclusions. For a fixed interpolation
function,  the  best-fit  is  in  general  dependent  on  the
galaxy  type.  The  Other  subsample  always  has  a  much
smaller  than the Spiral subsample, regardless of which
interpolation function is chosen. Due to the similar beha-
viour of the “simple” and “RAR-inspired” functions, the
fitting  results  of  these  two  interpolation  functions  are
very  similar.  For  these  two  functions,  the  Spiral-1  and
Spiral-2 subsamples have consistent  values,  while for
the remaining three functions, the  values for the Spir-
al-1  and  Spiral-2  subsamples  differ  significantly.  For  a
fixed  data  sample,  the  best-fit  depends  on  the  choice
of interpolation functions. The “toy” function always res-
ults  in  a  much  smaller  than the  remaining  four  func-
tions  due  to  its  slow  change  from  the  MOND  region  to
the Newtonian region. On the other hand, the “standard”
function always results  in a  large  since it  has a  sharp
jump from the MOND region to the Newtonian region. In
conclusion,  the  best-fit  depends  on  both  the  galaxy
morphology and the interpolation function. For the spiral
galaxies,  may be a universal constant, but for the oth-
er types of galaxies there must be a different  value.

B.    Results of direction-dependence

a0 a0

a0

The  MOND  theory  assumes  that  the  acceleration
scale  is a universal constant. However, if  is correl-
ated  with  the  evolution  of  the  universe,  we  may  expect
that  depends  on  the  sky  position.  This  is  because,  as
was  mentioned  in  the  introduction,  some  observations
hint  that  the  universe  may be  anisotropic.  Therefore,  we
investigate whether it  is  necessary to make a dipole cor-
rection  to  the  acceleration  scale.  We write  the  direction-
dependent acceleration scale in the following form,

a = a0(1+Dn̂ · p̂), (9)

a0 n̂
p̂

where D is  the dipole amplitude,  is  a  constant,  and 
and  are unit vectors, pointing towards the dipole direc-
tion and galaxy position, respectively.

To investigate how much the dipole correction to the
acceleration scale  can  improve  the  fits,  the  Akaike  in-
formation criterion (AIC) [51] and Bayesian information

criterion (BIC) [52] are employed to make a model selec-
tion. The AIC and BIC of a model are defined by:

AIC = χ2
min+2k, (10)

BIC = χ2
min+ k ln N, (11)

χ2
min χ2where  is the minimum of , k is the number of free

parameters,  and N is  the  total  number  of  data  points.  A
model with a smaller IC (either AIC or BIC) is better than
one with a larger IC. In general,  one can choose a refer-
ence model  and  calculate  the  difference  of  IC  with  re-
spect to the reference model,

∆ICmodel = ICmodel− ICref.−model. (12)

∆ > 5 ∆ > 10
According  to  the  Jeffreys'  scale  [53, 54],  a  model  with

IC  or IC  means that there is “strong” or “de-
cisive ”  evidence  against  this  model  with  respect  to  the
reference  model  [46, 55].  Here,  MOND  without  dipole
correction is chosen as the reference model.

a0

emcee

a0,D, l,b
1σ

∆AIC ∆BIC

2σ
(l,b) = (165◦,−14◦)
χ2 ∆IC ∆BICtoy =

−4.30

MOND  with  a  dipole-corrected  acceleration  scale  is
used to fit the Full data sample. In this time, the accelera-
tion scale  in Eqs. (1) and (2) is replaced by the direc-
tion-dependent  acceleration a given by  Eq.  (9).  The  af-
fine-invariant Markov chain Monte Carlo sampler 
[56] is used to calculate the posterior probability density
distribution of free parameters ( ). The mean val-
ues  and  uncertainties  of  free  parameters  are  reported
in Table  3,  and  the  corresponding  error  contours  are
shown in Fig. 5. We also list the  and  values
in the last two columns in Table 3. It is seen that adding
the  dipole  correction  can  significantly  improve  the  fits,
regardless of which interpolation function is chosen. The
dipole directions of four interpolation functions (the “toy”
function  being  the  exception)  are  consistent  with  each
other  within  uncertainty,  with  an  average  direction
centering on .  The “toy” function has
the smallest , but the largest . Especially, 

, implying that the dipole correction is only moder-
ately favoured for the “toy” function.

IV.  SUMMARY

a0

a0

a0

In  this  paper,  we have probed the  universality  of  the
acceleration scale  in MOND theory using the recently
released  SPARC  rotation  curve  data,  which  contains  in
total 175 galaxies of different Hubble types. To study the
possible  galaxy-dependence  of ,  we  divided  the  full
SPARC  dataset  into  several  subsets  depending  on  the
galaxy  Hubble  types.  To  test  the  effect  of  interpolation
function on , we considered five different interpolation
functions  that  are  commonly  discussed  in  the  literature.
The subsamples were used to fit the MOND theory by us-

 

a0Fig.  4.    (color  online)  Best-fit  values for  different  inter-
polation functions and different data samples.
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10−10 −2

Table 3.    Best-fit values for five different interpolation functions with the dipole correction and the Full SPARC data. The unit of 
is  ms .

a0 D l b χ2 ∆AIC ∆BIC

µsta 1.29±0.02 0.32±0.03 155.97◦ ±5.58◦ −12.65◦ ±3.27◦ 4541.87 −116.10 −98.41

µsim 0.96±0.02 0.26±0.04 172.53◦ ±7.38◦ −15.76◦ ±4.92◦ 3926.12 −46.99 −29.30

µtoy 0.69±0.02 0.22±0.05 198.83◦ ±10.22◦ −19.46◦ ±7.21◦ 3916.84 −21.99 −4.30

µexp 1.16±0.02 0.31±0.04 160.90◦ ±5.70◦ −13.13◦ ±3.52◦ 4359.68 −94.44 −76.71

νrar 0.98±0.02 0.27±0.04 171.42◦ ±7.21◦ −15.44◦ ±4.62◦ 3962.02 −52.39 −34.70

(a0,D, l,b)
Fig.  5.    Marginalized  posterior  probability  density  function  and  2-dimensional  marginalized  contours  for  the  parameter  space

 for different interpolation functions.
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a0

a0
a0

a0

a0
a0

a0

ing  different  interpolation  functions.  The  results  show
that  the  acceleration  scale  not  only  depends  on  the
galaxy Hubble type, but also depends on the choice of in-
terpolation  function.  This  implies  that  may  be  not  a
universal  constant.  To  test  if  is  universal  in  spiral
galaxies,  we  further  divided  the  spiral  galaxies  into  two
subsets  with  an  approximately  equal  number  of  data
points in each subset. It is found that, for these two sub-
sets  of  spiral  galaxies,  is  consistent  for  the  “simple ”
and  “toy ”  functions.  For  the  other  three  interpolation
functions,  however,  still  varies.  We  also  checked  the
possible direction-dependence of . We find that the di-
pole  correction  of  can  significantly  improve  the  fits,
and the dipole directions are consistent for four of the in-
terpolation functions, all except the “toy” function.

Our results  show that,  although MOND theory could
quantitatively account for the SPARC rotation curve data,

µsim(x)
νrar(y)

a0

it  cannot  be  a  fundamental  theory.  If  our  universe  does
admit  a  fundamental  theory  other  than  dark  matter,  it
means  that  MOND  theory  may  be  an  approximation  of
the fundamental theory which could account for the astro-
nomical  observations  of  dark  matter  effects.  The  better
performance  of  the  interpolation  functions  and

 may give  a  clue  to  the  construction  of  the  funda-
mental theory. The dependence of galaxy types hints that
the alternative effective theory of MOND theory may not
be a spherical symmetric solution of the fundamental the-
ory. Furthermore, the result of the dipole correction of 
means that  the possible anisotropy effect  of  the universe
should be considered in  dealing with  rotation curve data
before matching  the  fundamental  theory  with  the  astro-
nomical  observations,  since  the  rotation  curve  data  are
obtained using the standard cosmological model.
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