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Abstract: Anti-de Sitter  (AdS) black holes with lattices are essential  for optical  conductivity studies in the holo-
graphic approach. We investigate the instability of these black holes that can result in the holographic description of
charge density waves. In the presence of homogeneous axion fields, we show that the instability of AdS-Reissner-
Nordström (AdS-RN) black holes is always suppressed. However, in the presence of Q-lattices, we find that the un-
stable region becomes the smallest in the vicinity of the critical region for the metal/insulator phase transition. This
novel  phenomenon is  reminiscent  of  the  behavior  of  the  holographic  entanglement  entropy during  quantum phase
transitions.
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I.  INTRODUCTION

U(1)

Tc

Tc

In  recent  years,  the  gauge/gravity  duality  has  been
successfully used  with  strongly  coupled  systems  in  con-
densed  matter  physics,  yielding  an  important  branch  of
the  holographic  approach,  which  is  now  known  as
AdS/CMT duality [1]. It  is  well  known that  the instabil-
ity  of  AdS  black  holes  is  essential  for  explaining  the
abundant phase structure of condensed matter systems at
boundary.  Especially,  spontaneous  breaking  of 
gauge  symmetry  in  the  bulk  region  yields  novel  black
holes with scalar hair, which provides a novel picture for
the  condensation  of  superconductivity  [2-4].  In  contrast,
spontaneous  breaking  of  translational  invariance  yields
spatially modulated modes for black holes, which is holo-
graphically dual to the formation of charge density waves
(CDWs)  [5-16].  For  high  superconductors,  the  CDW
phase is also known as the pseudo-gap phase and is critic-
al for understanding high  superconductivity [17].

BF

Typically,  a  holographic  CDW  is  formed  over  an
AdS-RN  background  with  translational  symmetry.  The
basic idea is to add unstable terms to the action, such that
the  bound of AdS black holes is violated below some
value of the Hawking temperature. As a result, the ordin-
ary AdS-RN background becomes unstable and flows to a
new  configuration,  which  exhibits  a  periodic  structure

along  a  spatial  direction,  yielding  CDWs.  In  this  paper,
we  investigate  the  instability  of  AdS-RN  black  holes
without translational invariance. In the AdS/CMT duality,
a  bulk  geometry  without  translational  invariance  should
be  constructed  for  obtaining  finite  direct  current  (DC)
conductivity for the dual system. If the translational sym-
metry is  preserved,  the  momentum  is  conserved,  allow-
ing  the  DC  to  flow  without  relaxation,  yielding  infinite
conductivity. This does not happen in practical situations.
In  the  holographic  framework,  there  are  two  ways  to
break the translational symmetry by hand (for a brief re-
view,  see  [18]).  One  approach  is  to  construct  a  lattice
manifestly by introducing spatially modulated sources in
the bulk region [19-23]. However, in this framework, it is
very challenging to explore low temperature effects, ow-
ing  to  the  numerical  difficulties  associated  with  solving
partial  differential  equations  (PDEs)  [24].  An alternative
approach  is  to  introduce  the  momentum  dissipation  by
linear  axion  fields,  helical  lattices,  or  Q-lattices,  which
may  be  called  "homogeneous  lattices"  [25-37].  In  these
models, although the translation symmetry is broken, the
equations of  motion  are  still  ordinary  differential  equa-
tions (ODEs) and can be numerically  solved even in  the
zero temperature limit. Remarkably, in this framework, a
novel  metal/insulator  transition  has  been  observed  [25],
which  makes  it  plausible  for  studying  quantum  critical
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phenomena in the holographic setup with lattices [31].
Therefore, it is very desirable to construct holograph-

ic  CDWs  over  a  lattice  background  rather  than  over  a
background with  translational  symmetry.  This  observa-
tion provided the main motivation for this work. First, we
investigate the instability of AdS black holes with homo-
geneous lattices, using the perturbation analysis tools. We
determine  the  unstable  region  in  the  configuration  space
in the presence of axion fields and Q-lattices. We demon-
strate  that  the  presence  of  the  linear  axion  field  always
suppresses  the  instability  of  AdS-RN  black  holes.
However, in the Q-lattice framework, we find that in the
low  temperature  limit,  the  unstable  region  becomes  the
smallest  near  the  critical  region  of  the  metal/insulator
transition.  This  novel  phenomenon  is  reminiscent  of  the
role of the holographic entanglement entropy, which sig-
nals the occurrence of a quantum phase transition.

The  remainder  of  this  paper  is  organized  as  follows.
In  Section  II,  we  introduce  the  holographic  model  for
CDWs  and  briefly  review  the  instability  of  AdS-RN
black  holes.  In  Section  III,  we  analyze  the  instability  of
black holes with momentum relaxation owing to the lin-
ear axion fields.  Then,  we focus on the instability of the
Q-lattice background in Section IV. Our results and con-
clusions are given in Section V.

II.  THE HOLOGRAPHIC SETUP

U(1)

In  this  section,  we  introduce  a  holographic  model
without a lattice structure in four dimensional spacetime,
in which the gravity is coupled to a dilaton field and two
massless  gauge  fields.  In  the  subsequent  secitons,
we impose a lattice structure based on this setup. The ac-
tion is given by

S =
1

2κ2

∫
d4x
√−g L1, (1)

where

L1 =R− 1
2

(∇Φ)2−V (Φ)

− 1
4

ZA(Φ)F2− 1
4

ZB(Φ)G2

− 1
2

ZAB(Φ)FG, (2)

F = dA G = dB
U(1)

Φ

V, ZA, ZB, ZAB

with  and . Two gauge fields A and B cor-
respond to two global  symmetries on the boundary.
We  will  treat  gauge  field B as  the  electromagnetic  field
and will consider its transport properties. The real dilaton
field  will be viewed as the order parameter of the trans-
lational  symmetry  breaking.  We  propose  that  functions

  should have the following forms:

V(Φ) =− 1
L2 +

1
2

m2
sΦ

2,

ZA(Φ) =1− β
2

L2Φ2,

ZB(Φ) =1,

ZAB(Φ) =
γ
√

2
LΦ. (3)

β

γ
kc = 0

In the  above  setup,  two  important  terms  are  intro-
duced. One is the -term, which is essential for inducing
the instability of AdS-RN black holes for forming CDWs.
The other -term is not essential and just drives the tip of
the unstable dome deviating from .

The equations of motion are given by

Rµν−TΦµν−T A
µν−T B

µν−T AB
µν =0,

∇2Φ− 1
4

Z′AF2− 1
4

Z′BG2−V ′ =0,

∇µ(ZAFµν+ZABGµν) =0,
∇µ(ZBGµν+ZABFµν) =0, (4)

where

TΦµν =
1
2
∇µΦ∇νΦ+

1
2

Vgµν,

T A
µν =

ZA

2

(
FµρFρ

ν −
1
4

gµνF2
)
,

T B
µν =

ZB

2

(
GµρG

ρ
ν −

1
4

gµνG2
)
,

T AB
µν =ZAB

(
G(µ|ρ|F

ρ
ν)−

1
4

gµνGF
)
. (5)

The  equations  of  motion  admit  a  planar  AdS-RN
black  hole  as  a  solution,  with  translational  symmetry
along both the x and y directions, which is given as

ds2 =
1
z2

[
−(1− z)p(z)dt2+

dz2

(1− z)p(z)
+dx2+dy2

]
,

At =µ(1− z), Φ = 0, B = 0, (6)

p(z) = 4
(
1+ z+ z2− µ

2z3

16

)
µ

z = 1
z = 0

T/µ = (48−µ2)/(16πµ)

l2 = 6L2 = 1/4
β = −94 γ = 16.4

where ,  and  is  the  chemical
potential  of  gauge field A.  In this  system of coordinates,
the  black  hole  horizon  is  located  at ,  and  the  AdS
boundary  is  at .  The  Hawking  temperature  of  the
black  hole  is  simply  given  by .
Throughout  this  paper,  we  set  the  AdS  radius  to

.  Without  loss  of  generality,  two  coupling
constants are  and .

AdS 2×R2

In the instability analysis of AdS black holes, the key
point is that, in the zero temperature limit, the near hori-
zon geometry of AdS-RN black holes will be .
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BF AdS 2Once the  bound of  is violated, the near horizon
geometry  becomes  unstable  and  flows to  a  new solution
as the infrared fixed point,  which is characterized by the
appearance of  spatially  modulated modes in  the  bulk re-
gion. Such  analogous  instability  remains  at  a  finite  tem-
perature for AdS-RN black holes (for details  we refer  to
[5]). Specifically,  we  consider  the  following  perturba-
tions for examining the instability of electrically charged
AdS-RN black holes:

δΦ =ϕ(z)cos(kx),
δB =bt(z)cos(kx). (7)

δΦ δB

ϕ(z) bt(z)
z = 1

z = 0 ϕ(z) bt(z)

The  instability  of  the  background  is  signaled  by  the
existence of non-trivial solutions to the perturbation equa-
tions of  and , which spontaneously break the trans-
lational symmetry along the x direction. Taking the AdS-
RN as the background and substituting (7) into the equa-
tions of motion (4),  we obtain two coupled linear differ-
ential equations for  and . We impose the regular
boundary  condition  at  the  horizon, .  While  near  the
AdS boundary , we can expand  and  as

ϕ(z) ≈ϕsz3−∆ϕ +ϕoz∆ϕ + · · · ,
bt(z) ≈bsz2−∆B +boz∆B−1+ · · · , (8)

∆ϕ = 3/2+
√

9/4+m2
s l2 ∆B = 2

ϕs = bs = 0

m2
s = −2/l2 = −8

Tmax/µ ≈ 0.0068
kc/µ ≈ 0.6856

where  and . We turn off the
source  terms,  namely .  Whether  there  exist
non-trivial  solutions  to  these  equations  depends  on  the
wave number k as well as the Hawking temperature of the
black hole background. For illustration, we set the dilaton
mass . In Fig. 1, we plot the critical tem-
perature  as  a  function  of  the  wave  number.  Clearly,  the
curve  is  bell  shaped,  with  a  dome-like  unstable  region.
The  highest  critical  temperature  is ,  for
the  wave  number .  Within  the  dome,  the
AdS-RN  black  hole  becomes  unstable,  and  the  charge
density of gauge field B becomes spatially modulated.

III.  THE INSTABILITY OF BLACK HOLES
WITH AXION FIELDS

In  this  section,  we  consider  the  instability  of  black
holes  without  translational  invariance  by  adding  axion
fields into the above action, which becomes

S =
1

2κ2

∫
d4x
√−g (L1+Laxions), (9)

L1with  given by (2), and

Laxions = −
1
2

2∑
a=1

(∇χa)2, (10)

χawhere  are two real, massless scalar fields. This model
allows a  very simple  but  exact  solution with  momentum
relaxation, which is given as

ds2 =
1
z2

[
−(1− z)U(z)dt2+

dz2

(1− z)U(z)
+dx2+dy2

]
,

At =µ(1− z), χ1 = αx, χ2 = αy, Φ = 0, B = 0, (11)

U(z) = 4+4z− 1
2 (α2−8)z2− 1

4µ
2z3

T/µ =
(48−µ2−2α2)/(16πµ)

δΦ δB

k/µ
α/µ
α/µ

where .  The  Hawking
temperature  of  the  black  hole  is  given  by 

. The  axion  fields  introduce  mo-
mentum relaxation in both the x and y directions, leading
to a finite DC conductivity [27]. Here, we are concerned
with  its  impact  on  the  instability  of  the  background.
Without loss of generality, we turn to the same perturba-
tions as in (7). To find the critical temperature, we do not
need to solve the perturbation equations directly. Instead,
we extract  the  mass  terms  from  the  perturbation  equa-
tions of  and , which form a matrix. The matrix ele-
ments are functions of the wave number k as well as the
temperature T. Above the critical  temperature,  all  the ei-
genvalues of this matrix are always positive for arbitrary
k, implying the system is stable with respect to perturba-
tions. As the temperature decreases, the critical temperat-
ure is signaled by one of the eigenvalues of the matrix be-
coming zero for  some special k.  This  corresponds to  the
critical temperature, because the mass terms become neg-
ative and violate the BF bound of black holes as the tem-
perature further decreases, indicating the system instabil-
ity,  such  that  non-trivial  solutions  to  the  perturbation
equations  exist.  Such  an  eigenvalue  problem  of  mass
terms has been studied in detail previously [21, 28]. The
left  panel in Fig.  2 shows the critical  temperature versus
the  wave  number  and  the  amplitude  of  axion  fields

.  It  is  obvious  that,  with  increase  in  the  amplitude
, the unstable region becomes smaller, indicating that

the instability of the black hole is suppressed by the pres-
ence  of  the  axion  field.  We also  plot  the  highest  critical

 

kc ≈ 0.6856

Fig.  1.    (color  online)  Critical  temperature  as  a  function  of
the wave number. Below the curve is a dome-like unstable re-
gion.  The  dashed  line  marks  the  location  of  the  dome's  tip,
with .
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Tmax/µ

kc/µ α/µ

kc/µ

α/µ Tmax/µ

α/µ

temperature  and the  corresponding wave number
 as a function of , as illustrated by the middle and

right panels of Fig. 2. We notice that  grows linearly
with  large ,  while  drops  down  quickly  with

.  This  phenomenon  is  similar  to  what  was  observed
for other holographic models [38].

IV.  THE INSTABILITY OF BLACK HOLES
WITH THE Q-LATTICE

In  this  section,  we  consider  the  instability  of  black
holes with the Q-lattice [26]. Now, the action becomes

S =
1

2κ2

∫
d4x
√−g (L1+LQ), (12)

L1with  from (2) and

LQ = −(|∇Ψ|2+mq |Ψ|2), (13)

Ψwhere  is  a  complex  scalar  field.  Then,  the  Einstein
equations become

Rµν−TΦµν−T A
µν−T B

µν−T AB
µν −TΨµν = 0, (14)

TΦµν T A
µν T B

µν T AB
µνwith  , ,  from (4) and

TΨµν = ∇µΨ∇νΨ∗+
1
2

m2
q |Ψ|2 gµν. (15)

ΨIn addition, we have the equation of motion for :

(∇2−mq)Ψ = 0. (16)

We consider  the  following  ansatz  for  the  electrically
charged AdS-RN black hole on the Q-lattice:

ds2 =
1
z2

[
−(1− z)p(z)Udt2+

dz2

(1− z)p(z)U
+V1dx2+V2dy2

]
,

At =µ(1− z)a, Ψ = eikq xz3−∆qψ, Φ = 0, B = 0,
(17)

∆q = 3/2± (9/4+m2
ql2)

m2
q = −8 V1 V2 ψ

T/µ = (48−µ2)/(16πµ)
U = V1 = V2 = a = 1 ψ = 0

z = 0

with . We set the mass of the scal-
ar  field  to .  Note  that U, , , ,  and a are
functions  of  the  radial  coordinate z only.  The  Hawking
temperature  is .  If  one  sets

 and ,  we  return  to  the  standard
AdS-RN black hole. For the non-trivial Q-lattice solution,
the boundary conditions at  are given by

U = V1 = V2 = a = 1, ψ = λ, Φ = 0, B = 0, (18)

T/µ λ/µ kq/µ

and  we  consider  the  regular  boundary  condition  for  the
horizon. As a result, a typical black hole solution for the
Q-lattice is  characterized  by  three  scale  invariant  para-
meters, which are ,  , and .

λ/µ kq/µ

One remarkable  feature  of  these  Q-lattice  back-
grounds is that they exhibit a novel metal/insulator trans-
ition when the lattice parameters  and  are adjus-
ted in the low temperature limit [25]; the phase diagrams
for metal/insulator phases for Q-lattice backgrounds have
been  studied  in  Refs.  [28, 31].  For  a  given  background,
the DC conductivity can be expressed in terms of the ho-
rizon data as

σDC =

√V2

V1
+
µ2a2 √V1V2

k2
qψ2

 |z=1. (19)

T/µ = 0.001
∂TσDC = 0

Throughout this paper, we identify the metallic phase
and  the  insulating  phase  by  evaluating  Eq.  (19)  around

.  The  quantum  critical  line  is  given  by
.  In Fig.  3,  we demonstrate  the phase diagram

for the Q-lattice system.

λ/µ
kq/µ kq/µ = 0.8 kq/µ = 0.9

k/µ

Now, we focus on the instability of these black holes
with  lattices.  We  consider  the  same  perturbations  as  in
(7).  In Fig.  4, we  plot  the  unstable  region  of  the  back-
ground for different  values of ,  for  the wave number
of  the  Q-lattice  fixed  at  and .
The  region  below  each  curve  is  the  unstable  region,  in
which spatially modulated modes with the wave number

 may  emerge.  In  contrast  to  the  results  observed  for
the  axion  model  in  the  previous  section,  we  found  here
that  the  unstable  region  does  not  change  monotonously

k/µ α/µ

Tmax/µ α/µ kc

α/µ

Fig. 2.    (color online) Left: critical temperature versus the wave number  and the amplitude of the axion field . Middle: maxim-
al critical temperature  versus the amplitude of the axion field . Right: the wave number  versus the amplitude of the axion
field .
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λ/µ

Tmax/µ

kc/µ

Tmax/µ kc/µ

λ/µ

Tmax/µ

λ/µ

with  the  lattice  parameter  anymore.  To  our  surprise,  we
found  that  the  unstable  region  shrinks  with  increase  in

 at first but widens again later. To present these find-
ings  in  a  more  transparent  manner,  we  mark  the  highest
critical  temperature  with a red dot on each curve
and  denote  the  corresponding  wave  number  as .
Then, we plot  and  as functions of the lattice
amplitude , and the result is shown in Fig. 5. Clearly,

 reaches  a  minimum and then rises  up again with
increase in .  Going back to the phase diagram of the

kq/µ
λ/µ
Tmax/µ kc/µ

kq/µ
Tmax/µ

Tmax/µ

Q-lattice, we find that the turning points are quite close to
the  critical  line  for  the  metal/insulator  transition.  To
check this,  we also plot  the  unstable  region of  the  back-
ground for  different  values  of , while  fixing the  lat-
tice amplitude , and the result is shown in Fig. 6. Cor-
respondingly,  and  as  functions  of  the  wave
number  are plotted in Fig. 7. Again, we find that the
turning  points  of  are  quite  close  to  the  critical
line, as marked in Fig. 3. Since the curve with the minim-
al  value  of  encloses the  smallest  region  of  in-
stability,  as  illustrated  in Fig.  4,  we  conclude  that  the
black hole background in the vicinity of the metal/insulat-
or transition is the most stable solution under the perturb-
ations of spatially modulated modes given by (8).

Tmax/µ

λ/µ

First  of  all,  it  is  quite  interesting  to  compare  the
change in  for CDWs with that of superconductiv-
ity  with  the  change in  the  Q-lattice  parameters;  this  was
previously  addressed  in  [28].  We  find  that  the  critical
temperature of superconductivity is always suppressed by
the  presence  of  the  Q-lattice.  When  the  lattice  effect  is
sufficiently strong,  the  critical  temperature  of  supercon-
ductivity drops down to zero, such that the superconduct-
ing  phase  disappears.  However,  for  CDWs,  the  critical
temperature  increases  again  with  increases  in  the  values
of  the  lattice  parameters,  which  means  the  background
becomes  more  unstable  and  it  is  easier  to  form  a  new
background with  CDWs.  This  difference  may  be  under-
stood based  on  the  phase  diagram of  the  Q-lattice  back-
ground,  as  shown in Fig.  3.  For  large , the  dual  sys-

 

T/µ = 0.001
Tmax/µ

λ/µ kq/µ

Tmax/µ

kq/µ λ/µ

Fig.  3.    (color  online)  The  phase  diagram  for  the  Q-lattice
system at temperature . The red triangles stand for
the  valleys  of  the  highest  critical  temperatures  when
varying  at fixed . The green squares stand for the val-
leys of the highest critical temperatures  when varying

 at fixed .

λ/µ kq

kq/µ = 0.8 kq/µ = 0.9
kc/µ

Fig. 4.    (color online) The unstable region of the background for different values of  , for the wave number of the Q-lattice  fixed
at  (left) and  (right). The red dots mark the highest critical temperature for each curve, for the corresponding wave
number .

 

Tmax/µ kc/µ λ/µ

kq/µ = 0.8 kq/µ = 0.9
Fig. 5.    (color online) Maximal critical temperature  and wave number  versus the lattice amplitude  , for wave num-
bers  and .
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tem  falls  into  a  deep  insulating  phase.  Therefore,  it  is
more difficult to induce superconductivity over such insu-
lating phases. On the contrary, the CDW phase itself is an
insulating phase. Thus, such a background dual to a deep
insulating phase assists in the formation of CDWs.

Tmax/µ

Tmax/µ

This  phenomenon indicates  that  the  instability  of  the
background might be useful for characterizing the occur-
rence of quantum phase transitions. It is well known that,
in the absence of ordinary order parameters, it is very dif-
ficult  to  diagnose quantum phase transitions.  Previously,
a role  for  the  holographic  entanglement  entropy  in  dia-
gnosing quantum phase transitions has been suggested in
a series of papers [31, 33, 39]. The holographic entangle-
ment  entropy  or  its  derivative  with  respect  to  system
parameters  exhibits  a  peak  or  a  valley  in  the  vicinity  of
the critical region. Here, we found that  of CDWs
exhibits  a  similar  behavior  as  the  entanglement  entropy.
Physically,  it  implies  that  the  system  becomes  rather
stable  with  respect  to  the  perturbations  with  spatially
modulated  modes  near  the  critical  point  of  a  quantum
phase transition in the zero temperature limit. Intuitively,
this can  be  explained  as  follows.  The  formation  of  CD-
Ws over a fixed background results from a thermodynam-
ic  phase  transition.  Near  the  critical  point  of  a  quantum
phase transition,  the  system  becomes  long-range  correl-
ated,  such  that  the  effects  of  thermal  perturbations  are
suppressed,  yielding  a  more  stable  background  with  the
lowest .

Finally,  we  comment  on  the  commensurability  of
these black  holes  with  lattices,  which  involves  compar-

kc/µ

kc/µ

λ/µ

kq/µ

kc/µ

λ/µ λ/µ

kq/µ

kq/µ

kc/µ = kq/µ

ing the wave number of the CDW, namely , with the
wave  number  of  the  corresponding  lattice.  We plot 
as a function of the lattice amplitude  in Fig. 5 and as
a  function  of  the  wave  number  of  the  Q-lattice  in
Fig.  7.  We  find  that  grows linearly  with  the  amp-
litude of the Q-lattice  for large . However, it de-
creases  with  the  wave  number  of  the  Q-lattice  for
large . No  manifest  effect  or  phenomenon  is  ob-
served  for . The  commensurability  seems  ab-
sent in this setup, similar to the result observed in [38].

V.  DISCUSSION

kc/µ

α/µ α/µ

Tmax/µ

In  this  paper,  we  have  investigated  the  instability  of
black  holes  with  momentum  relaxation.  We  found  that
the presence of linear axion fields suppresses the instabil-
ity  of  AdS-RN  black  holes.  The  wave  number  of
spatially modulated modes grows linearly with the axion
field  for  large .  More  importantly,  in  the  Q-lat-
tice  framework,  we  have  demonstrated  that,  in  the  zero
temperature limit,  the unstable dome is the smallest near
the  critical  region  of  the  metal/insulator  transition.  The
highest critical temperature  displays a valley near
the  critical  points  of  the  metal/insulator  transition.  This
novel  phenomenon  is  reminiscent  of  the  behavior  of  the
holographic entanglement entropy during quantum phase
transitions. We conjecture that any instability of the back-
ground  leading  to  a  thermodynamic  phase  transition
would  be  greatly  suppressed  in  the  critical  region  of  a
quantum phase transition, since in this region, the system

kq/µ λ/µ λ/µ = 1
λ/µ = 2 kc/µ

Fig. 6.    (color online) The unstable region of the background for different values of , for the lattice amplitude  fixed at 
(left) and  (right). The red dots mark the highest critical temperature for each curve, for the corresponding wave number .

 

Tmax/µ kc/µ kq/µ

λ/µ = 1 λ/µ = 2
Fig.  7.    (color  online)  Maximal  critical  temperature  and wave number  versus  the  lattice  wave number  , for  amp-
litudes  and .
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becomes long-range correlated. The commensurate effect
is absent in both models with homogeneous lattices, sim-
ilar to the results obtained in [39].

In this  paper,  we  have  only  presented  the  perturba-
tion analysis for a fixed background, for justifying the in-
stability of this background. To explicitly construct a new
background  with  both  lattices  and  CDWs,  one  needs  to
go  beyond  the  perturbation  analysis  and  solve  all  the
equations of  motion numerically,  which are  PDEs rather
than ODEs. It is completely plausible to obtain such solu-
tions  at  normal  temperatures,  as  suggested  by  [5, 6].
However,  as  we  mentioned  in  the  introduction,  finding
numerical  solutions  becomes  rather  difficult  in  the  zero
temperature limit. Our analysis of the instability of black
holes, presented in this paper, sheds light on the construc-
tion  of  CDW backgrounds  with  the  Q-lattice  in  the  zero
temperature  limit,  since  the  critical  temperature  and  the
unstable region  have  been  manifestly  disclosed  at  ex-

tremely low temperatures.
Tc

U(1)

The phase diagram for high  superconductivity ex-
hibits a very rich structure, with many universal features.
Currently,  it  is  still  challenging  to  exactly  duplicate  this
phase diagram in the holographic approach. Based on our
current work, one may further introduce a complex scal-
ar  field  as  the  order  parameter  of  superconductivity  and
consider  the condensation of  superconductivity owing to
the  gauge symmetry breaking. Then, it will be quite
interesting to investigate the relationship between CDWs
and superconductivity for such a lattice background.
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