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Abstract: The temperature dependence of the shell corrections to the energy , entropy , and free energy  is
studied  by  employing  the  covariant  density  functional  theory  for  closed-shell  nuclei.  Taking Sm as  an  example,  studies  have
shown that,  unlike the widely-used exponential  dependence ,  exhibits  a  non-monotonous behavior,  i.e.,  first
decreasing 20% approaching a temperature of  MeV, and then fading away exponentially. Shell corrections to both free energy

 and entropy  can be approximated well using the Bohr-Mottelson forms  and , re-
spectively,  in which .  Further studies on the shell  corrections in other closed-shell  nuclei, Sn and Pb,  are conducted,
and the same temperature dependencies are obtained.
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I.  INTRODUCTION

The  shell  correction  method  proposed  by  Strutinsky
[1, 2] is  widely  used  in  macroscopic-microscopic  ap-
proaches  for  calculating  the  properties  of  atomic  nuclei,
such as the potential energy surface, ground-state masses
and deformations, and fission barriers. At zero temperat-
ure, the ground-state masses can be calculated quickly in
terms  of  the  macroscopic-microscopic  framework  [3].
However, calculations of the temperature-dependent shell
corrections are quite time consuming [4] owing to a large
number of combinations with various shapes of the thou-
sands of potential nuclei.
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Consequently, some empirical or semi-empirical shell
correction formulas have been proposed [5-12]. Based on
Fermi-gas models  without  pairing  correlation,  an  expo-
nential  dependence  of  the  shell  correction  of  the  energy

 on  the  excitation  energy ,  i.e., 
 is proposed in Ref. [6] and has been

widely employed  in  many  different  models.  The  damp-
ing factor  varies substantially from  to  MeV [4,
13, 14]. Another functional form for a shell correction to
free energy  is suggested in Ref. [7] for closed shell
nuclei, where the ratio of temperature and hyperbolic sine
function ,  in  which ,  is  employed.  In  Ref.
[8], a  piecewise  temperature  dependent  factor  is  intro-
duced  to  a  shell  correction ,  where  it  stays  at  one
until reaching the excitation energy of  MeV and then
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decreases  exponentially.  It  was  recently  pointed  out  that
both  the  shell  corrections  to  energy  and free  en-
ergy  obtained  using  the  Woods-Saxon  potential
deviate from the exponential form  [12], and
the  shell  correction  at  a  temperature  of  MeV,
which corresponds to the excitation energy  MeV,
is as large as that at zero temperature.
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For  open  shell  nuclei,  the  pairing  correlation  cannot
be ignored, and a shell correction to the pairing energy at
finite  temperature  should  be  considered.  Consequently,
the  shell  corrections  to  the  energy ,  entropy

,  and  free  energy  are affected  by  the  par-
tial occupation of single particle levels [12].

A reliable  single-particle  (s.p.)  spectrum is  an  essen-
tial part of the Strutinsky shell correction method used for
quantifying the shell effects.  The covariant density func-
tional  theory (CDFT) [15-18] is  a  good candidate owing
to its success in describing the properties of both spheric-
al  and  deformed  nuclei  all  throughout  the  nuclear  chart,
including  superheavy  nuclei  [19-23], pseudospin  sym-
metry [24-26], single-particle resonances [27, 28], hyper-
nuclei [29-34], and shell correction [35-37].

The basic thermal theory was developed in a period as
early  as  the  1950s  [38].  Later,  the  finite  temperature
Hartree-Fock  approximation  [39-41] and  the  finite  tem-
perature  Hartree-Fock-Bogoliubov  theory  [42] were  de-
veloped.  In  2000,  B.  K.  Agrawal et  al. investigated  the
temperature  dependence  of  shapes  and  pairing  gaps  for
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Er  and  rare-earth  nuclei  using  the  relativistic
Hartree-BCS  theory  [43, 44].  In  recent  years,  the  finite
temperature  relativistic  Hartree-Bogoliubov  theory  [45]
and  relativistic  Hartree-Fock-Bogoliubov  theory  [46]  for
spherical nuclei were developed and employed in studies
in which the relations between the critical temperature for
the pairing transition and pairing gap at zero temperature
are explored. Following the BCS limit of the HFB theory
[42], in  2017,  we  developed  a  finite-temperature  covari-
ant density functional theory for an axial-deformed space
and studied the shape evolution of Kr [47]. The shape
evolutions  of  the  octupole  deformed  nuclei Ra  and
even-even Ba  isotopes  are  studied.  Such  nuclei
first  go  through  an  octupole  shape  transition  within  the
temperature range of  MeV, followed by anoth-
er quadrupole  shape  transition  from  a  quadrupole  de-
formed shape to a spherical shape within a higher temper-
ature range of  MeV [48]. Moreover, it should be
noted that the transition temperatures are roughly propor-
tional  to  the  corresponding  deformations  at  the  ground
states [49].

In this paper, shell corrections to both the internal en-
ergy and the free energy are discussed based on the single-
particle  spectrum extracted  from the  axial  CDFT model.
This paper  is  organized  as  follows.  In  Section  II,  the  fi-
nite temperature  CDFT  model  along  with  the  shell  cor-
rection method are briefly introduced. In Section III, nu-
merical  details  and  checks  are  presented.  In  Section  IV,
the results and discussions regarding the shell corrections
to  the  energy,  free  energy,  and  entropy,  as  well  as  their
dependence on the temperature and axial deformation, are
explored.  Finally,  a  brief  summary  and  some  interesting
perspectives are provided in Section V.

II.  THEORETICAL FRAMEWORK

A.    Finite-temperature CDFT+BCS model
In  the  nuclear  covariant  energy  density  functional

with a point-coupling interaction, the starting point is the
following effective Lagrangian density [50],

L =ψ̄(iγµ∂µ−m)ψ− 1
2
αS(ψ̄ψ)(ψ̄ψ)

− 1
2
αV(ψ̄γµψ)(ψ̄γµψ)− 1

2
αTV(ψ̄τ⃗γµψ) · (ψ̄τ⃗γµψ)

− 1
3
βS(ψ̄ψ)3− 1

4
γS(ψ̄ψ)4− 1

4
γV[(ψ̄γµψ)(ψ̄γµψ)]2

− 1
2
δS∂ν(ψ̄ψ)∂ν(ψ̄ψ)− 1

2
δV∂ν(ψ̄γµψ)∂ν(ψ̄γµψ)

− 1
2
δTV∂ν(ψ̄τ⃗γµψ) ·∂ν(ψ̄τ⃗γµψ)

− 1
4

FµνFµν− eψ̄γµ
1−τ3

2
ψAµ, (1)

which is  composed of  a  free  nucleon term,  four-fermion
point-coupling  terms,  higher-order  terms  introduced  for
the effects of medium dependence, gradient terms to sim-
ulate the effects of a finite range, and electromagnetic in-
teraction terms.

L ψ

Aµ Fµν

τ⃗ τ3

α β γ δ

For  the  Lagrangian  density ,  is  the  Dirac  spinor
field of the nucleon with mass m,  and  are respect-
ively the four-vector potential and field strength tensor of
the electromagnetic field, e is the charge unit for protons,
and  is an isospin vector with  being its third compon-
ent. The subscripts S, V, and T in the coupling constants

, , ,  and  indicate  the  scalar,  vector,  and  isovector
couplings, respectively.  The  isovector-scalar  (TS)  chan-
nel is neglected owing to its small contributions to the de-
scription  of  nuclear  ground  state  properties.  In  the  full
text,  as  a  convention,  we  mark  the  isospin  vectors  with
arrows and the space vectors in bold.

In  the  framework  of  finite-temperature  CDFT  [48],
the Dirac equation for a single nucleon reads

[γµ(i∂µ−Vµ(r))− (m+S (r))]ψk(r) = 0, (2)

ψkwhere  is the Dirac spinor, and

S (r) = ΣS, (3)

Vµ(r) = Σµ+ τ⃗ · Σ⃗µTV, (4)

ΣS Σµ

Σ⃗
µ
TV

are  respectively  the  scalar  and vector  potentials  in  terms
of  the  isoscalar-scalar ,  isoscalar-vector , and  isov-
ector-vector  self-energies,

ΣS = αSρS+βSρ
3
S+δS∆ρS, (5)

Σµ = αV jµV+γV ( jµV)3+δV∆ jµV + eAµ, (6)

Σ⃗
µ
TV = αTV J⃗ µ

V +δTV∆J⃗ µ
V . (7)

ρS jµV
j⃗ µTV

The  isoscalar  density ,  isoscalar  current ,  and
isovector current  are represented as follows:

ρS(r) =
∑

k

ψ̄k(r)ψk(r)
[
v2

k(1−2 fk)+ fk
]
, (8)

jµV(r) =
∑

k

ψ̄k(r)γµψk(r)
[
v2

k(1−2 fk)+ fk
]
, (9)

j⃗µTV(r) =
∑

k

ψ̄k(r)τ⃗γµψk(r)
[
v2

k(1−2 fk)+ fk
]
, (10)
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ν2
k µ2

k = 1− ν2
kwhere  ( ) is the BCS occupancy probability,

ν2
k =

1
2

(
1− εk −λ

Ek

)
, (11)

µ2
k =

1
2

(
1+

εk −λ
Ek

)
, (12)

λ Ekwith  being  the  Fermi  surface  and  being the  quasi-
particle energy.

ν2
k

fk

At  finite  temperature,  the  occupation  probability 
will  be  altered  by  the  thermal  occupation  probability  of
quasiparticle states , which is determined by temperat-
ure T as follows:

fk =
1

1+ eEk/kBT , (13)

kBwhere  is the Boltzmann constant.
EkIn the BCS approach, the quasiparticle energy  can

be calculated as

Ek =
√

(εk −λ)2+∆k, (14)

εk
λ

Nq

where  is the single-particle energy, and the Fermi sur-
face (chemical potential)  is determined by meeting the
conservation condition for particle number ,

Nq = 2
∑
k>0

[
v2

k(1−2 fk)+ fk
]
, (15)

∆kand  is the pairing energy gap, which satisfies the gap
equation,

∆k = −
1
2

∑
k′>0

V pp
kk̄k′ k̄′
∆k′

Ek′
(1−2 fk′ ). (16)

30

At finite  temperature,  the  Dirac  equation,  mean-field
potential,  densities  and currents,  as  well  as  the BCS gap
equation in the CDFT, are solved iteratively on a harmon-
ic  oscillator  basis.  After  a  convergence  is  achieved,  a
single-particle spectrum up to  MeV is extracted as an
input to the following shell correction method.

B.    Shell corrections
The shell corrections to the energy of a nucleus with-

in the mean-field approximation is defined as

δEshell = ES− Ẽ, (17)

ES εk

gS(ε)

where  is  the  sum  of  the  single-particle  energy  of
the  occupied  states  calculated  with  the  exact  density  of
states  in an axially deformed space,

ES =
∑
occ.

2εk =

∫ λ

−∞
εgS(ε)dε, (18)

gS(ε) =
∑

k

2δ(ε−εk), (19)

Ẽ
g̃(ε)

and  is the average energy calculated with the averaged
density of states ,

Ẽ =
∫ λ̃

−∞
ε̃g(ε)dε, (20)

g̃(ε) =
1
γ

∫ +∞

−∞
f
(
ε′−ε
γ

)
gS(ε′)dε′, (21)

λ̃ γ

f (x)
where  is a smoothed Fermi surface,  is the smoothing
parameter, and  is the Strutinsky smoothing function,

f (x) =
1
√
π

e−x2

L1/2
M (x2), (22)

L1/2
M (x2)with  being  the M-order  generalized  Laguerre

polynomial.
At  finite  temperature T,  Eqs.  (17)-(21)  for  the  shell

corrections can be generalized in a  straightforward man-
ner, i.e., [12],

δEshell(T ) = E(T )− Ẽ(T ), (23)

E(T )where  for  the  energy  of  a  system  of  independent
particles at finite temperature,

E(T ) =
λ∑
εk

2εknT
k , (24)

nT
k =

1
1+ e(εk−λ)/T . (25)

Ẽ(T )For the average energy ,

Ẽ(T ) =
∫ λ̃

−∞
ε̃g(ε)nT

ε dε, (26)

nT
ε =

1

1+ e(εk−λ̃)/T
. (27)

λ λ̃The chemical potentials  and  are conserved by the
number of neutrons (protons),
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∑
k

2nT
k =

∫ λ̃

−∞
dε̃g(ε)nT

ε = Nq. (28)

The shell  corrections  to  entropy S and free  energy F
at finite temperature read

δS shell(T ) = S (T )− S̃ (T ), (29)

δFshell(T ) = F(T )− F̃(T ), (30)

and are related to each other as

δFshell(T ) = δEshell(T )−TδS shell(T ). (31)

S shell(T )For  the  entropy ,  the  standard  definition  for
the system of independent particles is adopted,

S (T ) = −kB

∑
k

2[nT
k lnnT

k + (1−nT
k ) ln(1−nT

k )]. (32)

S (T )The  average  part  of  is  defined  in  an  analogous
manner by replaying the sum in Eq. (32) by the integral,

S̃ (T ) = −kB

∫ +∞

−∞
g̃(ε)[nT

ε lnnT
ε + (1−nT

ε ) ln(1−nT
ε )]dε. (33)

III.  NUMERICAL DETAILS AND CHECKS
144

δ V(r) = Vqδ(r)
Vq −349.5

−330.0 · 3

Taking  the  nucleus Sm with  neutron  shell  closure
as  an  example,  the  single-particle  spectrum is  calculated
using  the  density  functional  PC-PK1  [50]. For  the  pair-
ing correlation, the  pairing force  is adop-
ted,  where  the  pairing  strengths  are  taken  as 
and  MeV fm  for neutrons  and  protons,  respect-
ively. A smooth energy-dependent cutoff weight is intro-
duced to simulate the effect of the finite range in the eval-
uation  of  the  local  pair  density.  Further  details  can  be
found in Ref. [48].

β2

At the mean-field level,  the internal binding energies
E at different axial-symmetric shapes can be obtained by
applying constraints with a quadrupole deformation ,

⟨H′⟩ = ⟨H⟩+ 1
2

C(⟨Q̂2⟩−µ2)2, (34)

µ2 =
3AR2

4π
β2

⟨Q̂2⟩
Q̂2 = 2r2P2(cosθ)

where C is  a  spring  constant,  is  the  given
quadrupole moment with nuclear mass number A and ra-
dius R,  and  is  the  expectation  value  of  quadrupole
moment operator .

F = E−TSThe free energy is evaluated by . For con-

kBT
S/kB

venience,  the  temperature  used  is  in  units  of  MeV,
and the entropy applied is , which is unitless.

N f

N f = 16
T = 0.0−2.0

First, a numerical check of the binding energy conver-
gence  based on size  is  conducted.  In Fig.  1,  the  average
binding energy as a function of the major shell number of
the  harmonic  oscillator  basis  is  plotted.  The  binding
energy is  stable  against  the  major  shell  number  begin-
ning from  and is thus fixed as a proper number.
Further checks at different temperatures  MeV
show that the temperature has a slight effect on the convergence.

γ

Second, the mandatory plateau condition for the shell
correction method is checked. The shell correction energy
should  be  insensitive  to  the  smoothing  parameter  and
the order of the generalized Laguerre polynomial M, i.e.,

∂δEshell(T )
∂γ

= 0,
∂δEshell(T )

∂M
= 0. (35)

In Fig. 2, the shell correction energy as a function of

 

Eb/A

N f

Fig.  1.    (color  online)  Average  binding  energy  as  a
function of the major shell number of the harmonic oscillator
basis  obtained by  the  finite  temperature  CDFT+BCS cal-
culations using the PC-PK1 density functional at zero temper-
ature.

 

δEshell

γ
144

Fig. 2.    (color online) Neutron shell correction energy 
as  a  function  of  the  smoothing  parameter  and  the  order  of
the generalized Laguerre polynomial M for Sm obtained by
the finite temperature CDFT+BCS calculations using PC-PK1
density  functional  at  zero  temperature.  The  four  different
curves  correspond  to  the  orders M = 1,  2,  3,  and  4,  respect-
ively.
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γ 144

γ h̄ω0 = 41A−1/3(1±
1
3

N −Z
A

)

γ = 1.3 h̄ω0 M = 3

the above parameters  and M for Sm is  plotted.  The
unit  of  the  smoothing  range  is 

 MeV,  where  the  plus  (minus)  sign  holds  for
neutrons (protons). It can be seen from Fig. 2 that the op-
timal  values  are   and , which  are  con-
sistent with previous relativistic calculations [35, 36].

IV.  RESULTS AND DISCUSSION

144

144

N = 82

β2 = 0.7
β2 = −0.4

The  free  energy  curves  at  temperatures  0,  0.4,  0.8,
1.2, 1.6 and 2.0 MeV for Sm are plotted in Fig. 3. The
nucleus Sm has spherical minima for all temperatures,
which  are  consistent  with  the  shell  closure  at  neutron
number . The energy curve is hard against the de-
formation  near  the  spherical  region.  In  addition,  at  low
temperatures,  a  local  minimum  occurs  at  approximately

 and  a  flat  minimum  occurs  at  approximately
.  However,  it  is  shown  that  the  fine  details  on

the potential energy curves are washed out with increases
in temperatures above T = 1.2 MeV, whereas the relative
structures are maintained well at low temperatures.

β2
δEshell

T ⩽ 0.8

δEshell

TδS shell

δEshell δEshell TδS shell
δFshell

Furthermore, the  shell  corrections  to  the  energy,  en-
tropy, and free energy as functions of quadrupole deform-
ation  at  various  temperatures T are  shown  in Fig.  4.
The  shell  correction  to  the  energy  shows  a  deep
valley at the spherical region demonstrating a strong shell
effect. In addition, the valley becomes deeper for 
MeV  and  then  shallower  with  increasing  temperature,
whereas the two peaks decrease dramatically after T = 0.4
MeV. The peaks and valleys on the  curve are ba-
sically consistent with details of the free energy curve in
Fig.  3.  In Fig.  4(b),  the  entropy  shell  correction  curve

 changes  slightly.  The  corresponding  amplitudes
are  generally  much  smaller  compared  with  those  of

. As the difference between  and , the
curves of shell correction to the free energy  in Fig.

δEshell

δFshell

4(c) have  similar  shapes  as . By  contrast,  with  in-
creasing temperature, both the peaks and valleys of 
diminish gradually. Similar to the shell correction at zero
temperature, applying a shell  correction at  finite temper-
ature  is  a  good  way  to  quantify  the  shell  effects,  which
provide rich information.

144

δEshell TδS shell

For the minimum states of Sm corresponding to in-
creases in  temperatures  up  to  4  MeV,  the  shell  correc-
tions to the energy ,  entropy , and free en-

 

144 0 2
0.4

4 0.4

Fig.  3.    (color  online)  The  relative  free  energy  curves  for
Sm  at  different  temperatures  in  the  range  of  to  MeV

with  a  step  of  MeV  obtained  by  the  constrained
CDFT+BCS  calculations  using  the  PC-PK1  energy  density
functional. The ground state free energy at zero temperature is
set to zero and is shifted up by  MeV for every  MeV tem-
perature rise.

δEshell TδS shell δFshell

β2
144 0 2 0.4

Fig. 4.    (color online) Neutron shell corrections to the energy , entropy , and free energy  as functions of quadru-
pole  deformation  for Sm  at  different  temperatures  from  to  MeV  with  steps  of  MeV  obtained  by  the  constrained
CDFT+BCS calculations using PC-PK1 energy density functional.
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δEshell
δEshell

δEshell

δEshell

ergy  are shown in Fig. 5. The non-monotonous be-
havior  of  with respect  to  temperature  is  signific-
antly  different  from  the  exponential  fading.  The 
first decreases  and  then  increases,  monotonously  ap-
proaching  zero  at  high  temperatures.  This  is  consistent
with  the  Woods-Saxon  potential  calculations  carried  out
in Ref. [12]. In Ref. [8], a piecewise temperature-depend-
ent factor is multiplied by the shell correction . The
factor remains one for low temperatures below 1.65 MeV
and then decreases exponentially. Here, the absolute amp-
litude first enlarges to approximately 120% at a temperat-
ure of 0.8 MeV and then bounces back to approximately
90%  above  1.65  MeV.  For  this  low  temperature  range,
such behavior is roughly consistent with that in Ref. [8].
The  exponential  fading  holds  true  for  high  temperatures
for the current case and in Refs. [8] and [12].

δEshell εk
λ λ̃

144

T < 0.8

λ
λ̃

εk λ λ̃

δEshell

Because  is related to single-particle energy ,
Fermi surface , smoothed Fermi surface , and temper-
ature T according  to  Eqs.  (23)-(27),  the  single  particle
levels near the neutron Fermi surface against the temper-
ature  for Sm is  plotted  in Fig.  6.  It  is  shown that  the
spectrum is  almost  constant  within the region of 
MeV  and  only  changes  slightly  at  high  temperature.
Meanwhile,  both  the  original  Fermi  surface  and  the
smoothed surface  decrease synchronically with increas-
ing temperatures.  Thus,  excluding , ,  and , the con-
tribution directly  from  the  temperature  may  play  an  im-
portant role  in  the behavior  of  the obtained shell  correc-
tion to energy , as plotted in Fig. 5.

δFshell

TδS shell
δEshell

δFshell TδS shell

The  shell  correction  to  the  free  energy  in-
creases monotonously  and  approaches  zero  at  high  tem-
peratures. The shell correction to the entropy  be-
haves  similar  to .  For  comparison,  the  fitted  shell
corrections  to  free  energy  and entropy  in
the  Bohr-Mottelson  form  [7]  are  also  plotted  as  dashed

δFshell

lines in Fig. 5. The Bohr-Mottelson [7] form for the shell
correction to the free energy  is expressed as

δFshell(T )/δFshell(0) = ΨBM(T ) =
τ

sinh(τ)
, (36)

τ = c0 ·2π2T/h̄ω0

c0 = 2.08 δFshell TδS shell

where  with  the  fitting  parameter
.  Similar  to ,  can also be approx-

imated as

TδS shell(T )/δFshell(0) =
TδS 0[τcoth(τ)−1]

sinh(τ)
, (37)

δS 0 = 2.15

δEshell δFshell TδS shell

when  introducing  the  additional  parameter .
With these two empirical formula, the shell corrections to
the energy  as  the sum of  and  take
the following form,

δEshell(T ) = δEshell(0)
τ+TδS 0[τcoth(τ)−1]

sinh(τ)
, (38)

δEshell(0) δFshell(0)

δFshell TδS shell

noting that  equals . From Fig. 5, it can
be clearly seen that  both the shell  corrections to the free
energy  and the entropy  can be approxim-
ated well using the Bohr-Mottelson forms.

δEshell

For more  evidence,  the  same  temperature  depend-
ence of  the  shell  correction,  for  both  neutrons  and  pro-
tons,  is  explored  in  other  closed-shell  nuclei.  In Fig.  7,
the  shell  corrections  to  the  energy ,  entropy
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Fig.  5.    (color  online)  The  temperature  dependence  of  the
shell  corrections  to  the  energy  (black  line),  entropy

 (red line), and free energy  (blue line) with cor-
responding fitted empirical Bohr-Mottelson forms [7] (dashed
lines)  for  the  states  with  minimum  free  energy  in Sm
shown  in Fig.  3 obtained  using  the  constrained  CDFT+BCS
calculations applying the PC-PK1 energy density functional.
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Fig.  6.    (color  online)  Neutron  single-particle  levels  as  a
function of temperature for Sm obtained by the constrained
CDFT+BCS calculations  using PC-PK1 energy density  func-
tional. The  blue  dashed  line  and  red  dash-dotted  line  repres-
ent the original and smoothed Fermi surfaces, respectively.
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,  and free  energy  in Sn and Pb with
the corresponding fitted empirical  Bohr-Mottelson forms
are plotted. In general, the curve shapes for all quantities
are extremely similar to those of Sm in Fig. 5, proving
the same temperature dependence. In addition, the fitting
parameters  for the  neutron  and  proton  shell  correc-
tions  to  the  free  energy  of Sn  and Pb  are
1.90,  2.08,  2.24,  and  2.28,  respectively,  which  are  close
to those of Sm 2.08.  For the neutron and proton shell
corrections to the entropy , the values of paramet-
er  are 1.78, 2.00, 2.23, and 2.16, respectively, which
are close to those of Sm 2.15. It was demonstrated that
the Bohr-Mottelson forms describe well the shell correc-
tions for closed-shell nuclei.

V.  SUMMARY AND PERSPECTIVES

δEshell TδS shell
δEshell

144

N f = 16
γ = 1.3 h̄ω0 M = 3

The  temperature  dependence  of  the  shell  corrections
to  the  energy ,  entropy ,  and  free  energy

 was  studied  by  employing  the  covariant  density
functional theory with the PC-PK1 density functional for
a closed shell nucleus Sm. For numerical checks of the
harmonic oscillator  basis  size,  the major  shell  number is
set  to .  The  plateau  condition  is  satisfied  by

  and .
The fine details of the potential energy curves of free

energy F are  washed  out  with  increases  in  temperatures
above T =  1.2  MeV,  whereas  the  relative  structures  are
maintained  well  at  low  temperatures.  Unlike  the  widely

δEshell

δFshell
τ/sinh(τ)

[τcoth(τ)−1]/sinh(τ) τ ∝ T
100

208

used  exponential  dependence,  exhibits  a  non-
monotonous behavior.  First,  it  decreases  to  a  certain  de-
gree, approaching 0.8 MeV, and then dissipates exponen-
tially, where the direct contribution from the temperature
may  play  an  important  role.  Such  a  result  is  consistent
with  the  Woods-Saxon  potential  calculations  carried  out
in Ref. [12]. In addition, the shell corrections to both free
energy  and entropy can be approximated well  us-
ing  the  Bohr-Mottelson  form  and

,  where .  Further  studies  on
shell  corrections  in  other  closed-shell  nuclei, Sn  and

Pb, were conducted, and the same temperature depend-
encies were obtained.

δ

It  was demonstrated that the shell  correction at  finite
temperatures is  a  good  tool  for  quantifying  the  shell  ef-
fects and provides rich information. Thus, in future, open
shell nuclei will also be explored, in which the shell cor-
rection  to  the  pairing  energy  in  the  BCS  framework
should  be  explicitly  considered.  This  is  implemented  in
Ref.  [12]  with  constant  pairing  strength G.  For  the -
force BCS  pairing,  the  development  of  the  shell  correc-
tion method is under way.
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