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Abstract: Neutrinos  stand  out  among  the  elementary  particles  because  of  their  unusually  small  masses.  Various
seesaw mechanisms attempt to explain this fact. In this work, applying insights from matrix theory, we are in a posi-
tion to treat variants of seesaw mechanisms in a general manner. Specifically, using Weyl's inequalities, we discuss
and rigorously prove under which conditions the seesaw framework leads to a mass spectrum with exactly three light
neutrinos. We find an estimate of the mass of heavy neutrinos to be the mass obtained by neglecting light neutrinos,
shifted at most by the maximal strength of the coupling to the light neutrino sector. We provide analytical conditions
allowing one  to  prescribe  that  precisely  two out  of  five  neutrinos  are  heavy.  For  higher-dimensional  cases  the  in-
verse eigenvalue methods are used. In particular, for the CP-invariant scenarios we show that if the neutrino sector
has a valid mass matrix after neglecting the light ones, i.e. if the respective mass submatrix is positive definite, then
large masses are provided by matrices with large elements accumulated on the diagonal.  Finally,  the Davis-Kahan
theorem is used to show how masses affect the rotation of light neutrino eigenvectors from the standard Euclidean
basis. This general observation concerning neutrino mixing, together with results on the mass spectrum properties,
opens directions for further neutrino physics studies using matrix analysis.
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I.  INTRODUCTION

S U(2)L ×U(1)Y

The Standard  Model  (SM)  of  electroweak  interac-
tions  is  based  on  the  gauge  group  [1-3],
which  determines  the  set  of  the  gauge  boson  fields.
However, the gauge group alone does not imply uniquely
what  kind and range of  elementary particles  can exist  in
nature [4]. The set of matter fields presently considered to
be the elementary particles is based on a great number of
experimental insights which are the results of long-stand-
ing research programs. It  should hence be noted that  ex-
perimental observations are the deciding factor in choos-
ing the  matter  content  that  makes  up  the  theory  of  ele-
mentary particles. Any hypothetical signals that could not
be  explained  by  the  SM,  like  lepton  violating  processes,
would need modification of the matter content and inter-
actions. That choice must be based on experimental evid-
ence.

As far as neutrinos are concerned, at present there are

Nν

Nν = 2.9840±0.0082

Nν Nν = 2.9963±0.0074
Nν

Nν

known  to  be  three  neutrinos  of  different  flavours,  to
which the  three  charged  leptons  correspond.  The  exist-
ence  of  the  three  light  neutrino  species  has  been  known
since the time of LEP. The central value for the effective
number of light neutrinos, , was determined by analyz-
ing  around  20  million Z-boson  decays,  yielding

 [5,6]. It is worth mentioning that the
recent reevaluation of the data [7,8], including higher or-
der QED corrections to the Bhabha process, further con-
strain the value of , which is now .
The new  value is much closer to 3. Including shrink-
age  of  the  error,  it  leaves  less  space  for  non-standard
neutrino  mixings.  In  fact,  a  natural  extension  of  the  SM
by right-handed  neutrinos  leads  to  a  theoretical  predic-
tion  with  less  than  three  [9],  assuming  that  there  are
non-zero  mixings  of  active  and  sterile  neutrinos,  which
implies non-unitarity  of  the  matrix  responsible  for  mix-
ings among three known neutrino states. This can be seen
from the general neutrino mixing setting. Let us denote a
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three-dimensional space which describes known neutrino
mass  and  flavor  states  by  and ,  respectively.
Any extra, beyond SM (BSM) mass and flavor states we
denote  by  and  for ,  respectively.
In this general scenario, mixing between an extended set
of neutrino  mass  states  with  flavor  states

 is described by∣∣∣ν( f )
α

⟩∣∣∣̃ν( f )
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⟩The observable  part  of  the  above  is  the  transforma-
tion from mass  to SM flavor  states and
reads

∣∣∣ν( f )
α

⟩
=

3∑
i=1

(UPMNS)αi

∣∣∣ν(m)
i

⟩︸             ︷︷             ︸
SM part

+

nR∑
j=1

(Vlh)α j

∣∣∣ν̃(m)
j

⟩︸        ︷︷        ︸
BSM part

. (2)

UPMNS

Vlh , 0 , Vhl

UPMNS

Vlh,Vhl

If  is  not  unitary  then  there  is  necessarily  a
light-heavy  neutrino  "coupling"  and  the  mixing  between
sectors is nontrivial, . As U in Eq. (1) is unit-
ary,  and  we  know from neutrino  oscillation  experiments
that the  matrix1) [10,11] is unitary, within experi-
mental accuracy, it  follows that the elements of the non-
diagonal  matrices  in Eq.  (1)  which  are  respons-
ible for the mixings of known neutrinos with extra states
must be very small.

UPMNS Vlh,Vhl

There  is  a  natural  explanation  of  the  above  structure
of  and  matrices, and it comes with the cel-
ebrated seesaw  mechanism  which  in  the  first  place  ex-
plains the  small  masses  of  known neutrinos.  This  mech-
anism also justifies the introduction of the indices "l" and
"h"  in  Eq.  (1),  which  stand  for  "light"  and  "heavy,"  as
usually  we  expect  extra  neutrino  species  to  be  much
heavier than known neutrinos.

To get physical masses, in the seesaw mechanism, the
unitary matrix U in Eq. (1) is used to diagonalize the gen-
eral neutrino mass matrix

MS S =

 ML MD

MT
D MR

 , (3)

using a congruence transformation

UT MS S U ≃ diag(Mlight,Mheavy). (4)

ML,MD MR

The  exact  form  and  origin  of  the  neutrino  mass
matrices  and  are not relevant now. They will
be specified  in  the  next  section.  In  general,  with  the  as-

ML = 0sumption that , and

|mD| ≪ |mR|, (5)

MD
MR

| · |

which  means  that  the  elements  of  are  much  smaller
than the elements of  with respect to absolute values,
where  in the case of matrices denotes absolute values
of elements,

Mlight ≃ −MDM−1
R MT

D, (6)

Mheavy ≃ MR. (7)

In Eq. (5) we use the lowercase letter m for the elements
of  a  given  matrix M.  This  convention  will  be  applied
thoughout the paper.

MR MlightA large scale of  makes  small, which repres-
ents the main idea of the seesaw mechanism.

S U(2)L ×S U(2)R
×U(1)

µ→ eγ

S O(10)

This  mechanism  was  proposed  for  the  first  time  by
Minkowski in 1977 [12]. It  originates from the idea of a
Grand  Unified  Theory  in  which  heavy  neutrino  mass
states  are  present.  Such  neutrinos  are  supposed  to  be
sterile,  i.e.  they  are  insensitive  with  respect  to  the  weak
interaction. In Ref. [12] a model based on 

 gauge symmetry  was  considered  with  its  con-
sequences for  decays. At  that  time only 2 fermi-
on families were under consideration, but both the seesaw
mass matrix  and  famous  seesaw  formulas  were  intro-
duced. Afterwards, similar models of neutrino mass gen-
eration were discussed in 1979 [13,14] and 1980 [15-17].
The authors of these works observed that the smallness of
the mass of neutrinos can be explained when super-heavy
right-handed  Majorana  neutrinos  are  introduced,  which
were considered as the result of grand unification models
such as  theories or as a consequence of horizont-
al symmetry.  In  both  cases,  the  small  neutrino  mass  ap-
pears as a consequence of symmetry breaking.

Nowadays there is a plethora of seesaw models. With
neutrino  masses  ranging  from  zero  to  the  GUT  scale,
mass mechanisms introduce different neutrino states [18].
Apart  from  Dirac  or  Majorana  types,  there  are  pseudo-
Dirac (or quasi-Dirac) [19], schizophrenic [20], or vanilla
[21] neutrinos,  among  others.  Popular  seesaw  mechan-
isms  give  a  possible  dynamical  explanation  for  why
known active neutrino states are so light. They appear to
be  of  Majorana  type  (recently  a  dynamical  explanation
for Dirac light neutrinos has been proposed [22]). Seesaw
type-I  models  have  been  worked  out  in  Refs.
[12,14,23,24],  type-II  in  Ref.  [25],  and  type-III  in  Ref.
[26].  A  hybrid  mechanism is  also  possible  [27].  For  the
inverse seesaw model, see Refs. [28,29]. Some recent and
interesting work on seesaw mechanisms which also touch
on cosmological and lepton flavor violation issues can be
found in Refs. [30-40].

Wojciech Flieger, Janusz Gluza Chin. Phys. C 45, 023106 (2021)
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In the present  work,  we extend the approach defined
in  our  previous  works  [41,42],  where  neutrino  mixing
matrices were considered from the point of view of mat-
rix analysis, to the case of seesaw scenarios. In Ref. [41]
we  argued  that  singular  values  of  mixing  matrices  and
contractions applied  to  interval  mixing  matrices  determ-
ine  possible  BSM  effects  in  oscillation  parameters  and
can be used to define the physical neutrino mixing space.
In addition,  a  procedure of  matrix dilation makes it  pos-
sible to find BSM extensions based on experimental data
given  for  PMNS  mixing  matrices.  In  this  way,  we  are
closer  to  understand  a  long-standing  puzzle  in  neutrino
physics, namely if  and what  kind of  extensions  with  ex-
tra  neutrino  states  are  possible,  beyond  the  three  known
light  neutrinos  mixing  picture.  Using  these  techniques,
new stringent limits for the light-heavy neutrino mixings
in the 3+1 scenario (three active, light neutrinos plus one
extra sterile neutrino state) have been obtained [42].

MR

MD ≫

≫

MR

MD

MR

In what follows, we discuss a second part of the neut-
rino  puzzle,  focusing  on  the  neutrino  mass  matrices  and
trying to figure out how much information the rigid struc-
ture of  mass  matrices  characteristic  of  seesaw  mechan-
isms  provides  about  the  neutrino  mass  spectrum.  In  a
similar spirit, a perturbation theory was used in Ref. [43]
to prove that in the seesaw type I scenario we cannot get
the fourth light neutrino. This proof was based on a stand-
ard seesaw  assumption  that  elements  of  the  heavy  neut-
rino  sector  represented  conventionally  by  the  Majorana
mass  matrix  are  much  larger  than  elements  of  the
Dirac mass matrix , |mR| |mD| . Besnard [44] gave an
elegant  proof,  using  the  min-max  theorem,  that  in  the
seesaw scenario there is a gap in the spectra. In the proof,
the author assumed that the whole mass matrix is not sin-
gular  and  thus  excluded  a  massless  neutrino.  However,
current  experimental  data  do  not  exclude  the  possibility
of one massless neutrino. Also, the assumption |mR| |mD|
is not sufficient in general. It can be seen in the simplest
way  by  considering  matrix  with  all  elements  much
larger than those of , but all equal. In this case, taking,
for instance,  three dimensional, the rank of this mat-
rix  is  2,  so  one  eigenvalue  is  zero.  This  example  shows
that the relation between matrix structures and derived ei-
genvalues is  complicated.  Moreover,  considering  ele-
ments of the same order may be misleading and inaccur-
ate. Even a simple matrix

A =
(

100 −95
−95 90

)
(8)

λ(A) = {190.131,−0.131}
results  in  two completely  different  scales  of  eigenvalues

. To infer eigenvalues and eigen-
vectors  from  the  structured,  large-dimensional  matrices

which pose different scales of elements is not trivial. We
will examine also a connection between masses and mix-
ings for the generic seesaw model.

The  structure  of  the  paper  is  as  follows.  In  the  next
section  we  will  discuss  different  ways  in  which  seesaw
models can be realized. In Section III the main results are
obtained  for  the  neutrino  mass  spectrum.  In  a  scenario
with two sterile  neutrinos,  analytic  entrywise bounds for
heavy neutrinos are presented. A higher dimensional situ-
ation  is  discussed  using  inverse  eigenvalue  methods  for
the  positive  definite  matrices  only.  Also,  an  alternative
proof  to  Ref.  [43]  is  given,  showing  that  for  the  seesaw
mass matrix  with  hierarchical  block-structured  sub-
matrices there are only 3 light neutrino states. In addition,
it is shown how large splits among heavy neutrino states
can  occur.  In  Section  IV  we  discuss  an  angle  between
subspaces of the eigenvalues which connects masses and
mixings.  In  the  last  section,  we  conclude  our  work  and
present possible directions for further studies of the neut-
rino mass and mixing matrices. The work is supported by
an Appendix where details are given of the matrix theory
needed for refining studies of the mass matrix structures.

II.  SEESAW TYPES OF MASS MATRICES

A.    Standard seesaw mechanisms

νR

Oscillation experiments  have  established  that  neutri-
nos are not massless [45,46], and we already know that at
least two of the three known neutrinos are massive. This
calls  for  the  introduction  of massive right-handed neut-
rino states to the matter content of the theory. Then, sim-
ilarly to the quark sector where right-handed quark fields
are  present,  right-handed  neutrino  fields  lead  to  the
Dirac mass term in the mass Lagrangian,

LD = −ν̄LMDνR+h.c., (9)

MD 3×nRwhere  is a complex  matrix. Now, allowing for
self-conjugating Majorana fields

νC = Cν̄T = ν, (10)

νR = (νL)C, νL = (νR)C
which  relates  right-handed  and  left-handed  fermionic
fields, , another mass term

LM = −
1
2
νLML(νL)C+h.c. (11)

ML 3×3can  be  constructed.  is  a  complex  symmetric
matrix  build  exclusively  from  left-handed  chiral  fields,
making a description more economic1) [47,48].

MR nRIn the same way  can be constructed with  right-
handed chiral fermionic fields. In general, the mass Lag-
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1) In his seminal work, Majorana wrote "Even though it is perhaps not yet possible to ask experiments to decide between the new theory and a simple extension of
the Dirac equations to neutral particles, one should keep in mind that the new theory introduces a smaller number of hypothetical entities, in this yet unexplored field."
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rangian can include both Dirac and Majorana terms

LD+M =− ν̄LMDνR−
1
2
ν̄LML(νL)C

− 1
2

(νR)CMRνR+h.c.. (12)

In  the  Dirac-Majorana mass  term the resulting fields  are
of Majorana type. It is possible to write this in a compact
form, in which it resembles the Majorana mass term

LD+M = −
1
2

n̄LMD+MnCL +h.c., (13)

nL =
(
νL, (νR)C

)T
where  fullfils Eq. (10).

The  Dirac-Majorana  mass  term  (13)  underlies  a
seesaw mechanism of the neutrino mass generation which
tries  to  explain  the  small  masses  of  known neutrinos  by
assuming large masses of sterile neutrinos.

LL

ML MD

Here we  discuss  in  more  detail  what  has  been  men-
tioned in the Introduction. First,  we assume that the left-
handed Majorana mass term  vanishes, since it is for-
bidden by SM symmetries,  or it  may result  from higher-
dimensional  operators  [49],  which  effectively  damp  the
order  of  magnitude  of  elements  below  that  of .
Secondly,  we  assume  that  Dirac  neutrinos  acquire  mass
through  the  standard  Higgs  mechanism,  so  the  elements
of the Dirac neutrino mass matrix are of the order of the
electroweak scale. Lastly, perhaps the most important as-
sumption concerns the right-handed Majorana mass term,
which is a manifestation of new physics beyond SM, and
tells  us  that  right-handed  neutrinos  are  very  heavy
particles. Altogether, we assume:

ML ≃ 0, MD ∼ EW−scale≪ MR ∼ GUT−scale, (14)

EW−scale
102 GUT−scale

1015

where  refers  to  the  electroweak  spontaneous
symmetry  scale  (  GeV)  and  the  was ori-
ginally taken to be of the order of  GeV.

2×2Hence, we get the  symmetric block seesaw mass
matrix  as  given  in  Eq.  (3),  which  with  assumption  (5)
gives the neutrino mass spectrum (6) and (7).

M−1
R MD

Kanaya  [50]  and  independently  Schechter  and  Valle
[51]  showed  that  it  is  possible  to  block  diagonalize  the
seesaw mass matrix, up to the terms of the order .
In this case the mixing matrix takes the following form:


1− 1

2
M†D(MRM†R)−1MD (M−1

R MD)†

−M−1
R MD 1− 1

2
M−1

R MDM†D(M†R)−1

 .
(15)

The seesaw mechanism can be neatly connected with

the effective theory [49] in which

Leff = −
1
Λ

∑
l′,l

yl′l(ΨT
l′Lσ2Φ)C−1(ΦTσ2ΨlL)+h.c., (16)

ψT
lL = (νlL, lL) ,ΦT =

(
Φ+,Φ0

)
yl′l

Λ

Leff

and  are  the  SM  lepton  and
Higgs  doublets,  respectively.  The coefficients  denote
dimensionless  couplings  and  is  the  energy  scale  at
which new  physics  effects  do  not  decouple.  After  spon-
taneous  electroweak  symmetry  breaking,  takes  the
form

Leff →LL = −
1
2
ν̄LML(νL)C+h.c. (17)

with

ML =
yv2

Λ
. (18)

There exist many ways to extend the SM which result in
the  effective  Lagrangian  (16).  On  the  other  hand,  if  we
assume that we complete the SM by adding only one type
of particle, we are constrained to three possibilities to in-
duce  a  light  neutrino  spectrum.  These  three  possibilities
lead to  the  different  realizations  of  the  seesaw  mechan-
ism:
1. Seesaw Type-I (canonical seesaw).

νR

In  this  case,  we  add  right-handed  neutrino  fields
 to the SM. Thus, we get the seesaw formula discussed

previously

ML→ Mlight ≃ −MT
DM−1

R MD,

|mD| ≪ |mR|. (19)

Λ

MR

Here  in Eq. (16) is identified with the inverse of mat-
rix .
2. Seesaw Type-II [24, 25].

νR
∆ = (∆++,∆+,∆0) Λ

Instead  of  we  can  add  a  scalar  boson  triplet
 to get small neutrino masses. Here  in

Eq.  (16)  is  identified  with  the  masses  of  scalar  boson
triplets. In this variation of the seesaw model, the masses
of the neutrinos are given by

ML→ Mlight ≃
µv2

M2
∆

, |µ| ∼ |m∆|, |v| ≪ |m∆|, (20)

M∆ ∆where  corresponds to the mass of the boson triplet .
3. Seesaw Type-III [26].

Σ = (Σ+,Σ0,Σ−) Λ

In  the  last  case  we  complement  SM  with  a  fermion
triplet  which  corresponds  to  in  Eq.
(16). In the Type-III mechanism we get the following for-
mula for neutrinos masses:

Wojciech Flieger, Janusz Gluza Chin. Phys. C 45, 023106 (2021)
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ML→ Mlight ≃ −yT M−1
Σ yv2, |y| ≪ |mΣ|, (21)

MΣ Σwhere  corresponds to the mass of the fermion triplet .

B.    Extended seesaw mass matrices

νR

S R

Now we  focus  on  seesaw extensions  connected  with
extra  fermion  fields,  which  is  a  wide  area  of  studies.  In
most of them, besides the right-handed neutrino fields 
characteristic  for  the  seesaw  type-I  model,  new  singlet
fermion fields  are added. This type of extension of the
seesaw  mechanism  was  introduced  for  the  first  time  in
1983 by Wyler and Wolfenstein [52]. The corresponding
general mass term takes the following form:

LESS =− ν̄LMDνR− ν̄LML(νL)C− (νR)CMRνR

− ν̄LM1S R− (νR)CM2S R

− (S R)CM3S R+h.c., (22)

MD M1 M2
ML MR M3

where , ,  are  matrices  of  the  Dirac  type  and
, ,  are  matrices  of  the  Majorana  type.  This

mass term can be written in a compact form, in a similar
way as for an ordinary seesaw:

LESS = −N̄LMESSNCL +h.c. (23)

MESSwith the symmetric mass matrix 

MESS =


ML MD M1

MT
D MR M2

MT
1 MT

2 M3

 . (24)

MESS

However,  the  most  popular  extensions  of  the  seesaw
mechanism with  additional  singlet  fields,  namely  an  in-
verse seesaw (ISS) and a linear seesaw (LSS), use a less
general structure of 

MISS=


0 MD 0

MT
D 0 M2

0 MT
2 M3

 , MLSS=


0 MD M1

MT
D 0 M2

MT
1 MT

2 0


where : |m3| ≪ |mD| ≪ |m2| , |mD| ∼ |m1| ≪ |m2| .

(25)

It is important that for both linear and inverse seesaw
mechanisms, we can rearrange the mass matrices in such
a way that they will have the same structure as Eq. (3):

ISS :

MD = (MD,0) , MR =

(
0 M2

MT
2 M3

)
, (26)

LSS :

MD = (MD,M1) , MR =

(
0 M2

MT
2 0

)
. (27)

≪

Due to this rearrangement, these models can be analysed
in  the  same  way  as  the  canonical  seesaw  (3),  with  the
same hierarchy of elements, i.e. | D| | R|.

ISS
Using Eqs.  (4)  and  (15),  we  get  the  following  for-

mula for the light neutrino sector in the  case:

Mlight = MDM−1
2 M3(M−1

2 )T MT
D. (28)

M3
M2

MD
M2

MR

In  the  inverse  seesaw scenario,  a  small  neutrino  mass  is
obtained by double suppression of the Dirac mass matrix.
It  is  first  suppressed  by  the  matrix ,  and  the  second
source of suppression lies in the inverse of the matrix ,
which has elements much larger than those of . It im-
plies  that  the  order  of  magnitude of  elements  of  can
be smaller than the corresponding elements of  in the
canonical  seesaw.  Thus,  it  is  more  plausible  to  detect
such heavy neutrino states in high energy colliders.

LSSSimilarly, in the  case the light neutrino sector is
given by the formula

Mlight = −MDM−1
2 M1−MT

1 (M−1
2 )T MT

D. (29)

MD

Here,  the  light  neutrino  sector  depends  linearly  on  the
Dirac  mass  matrix , in  contrast  to  quadratic  depend-
ence in the ordinary seesaw mechanism.

We can see that despite differences in the structure of
linear, inverse  and  type-I  seesaw  scenarios,  the  corres-
ponding  mass  matrices  can  be  expressed  uniformly  by
one general matrix,

M =
(

0 MD
MT

D MR

)
, (30)

with

The structure of the seesaw mass matrix (30) with the
assumption  (31)  is  the  starting  point  for  analysis  of  the
general  properties  of  the  eigenvalues  and  eigenvectors
which arise.

III.  STRUCTURE OF THE SEESAW MASS MAT-
RIX AND NEUTRINO MASSES

MThe matrix  in Eq. (30) can be split into the sum of
two matrices with different scales of elements:

M =
(

0 MD
MT

D MR

)
=

(
0 0
0 MR

)
+

(
0 MD
MT

D 0

)
≡M̂R+M̂D. (32)
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λi(M) σi(M) i = 1,2, · · · ,n

Such a  split  gives  us  an   opportunity  to  use  the  theorem
from the matrix analysis (Theorem B7) (eigenvalues and
singular  values  of  a  given  matrix M will  be  denoted  by

 and  , respectively;  see  Ap-
pendix  A  for  relevant  definitions),  which  connects  the
spectrum of the sum of two matrices with the spectrum of
those  matrices.  However,  this  is  true  only  for  Hermitian
matrices.  Therefore,  at  the  beginning  we  will  consider  a
real symmetric  mass matrix which implies  the conserva-
tion of CP symmetry, see e.g. Refs. [53-58]. In what fol-
lows,  the CP invariance  will  be  identified  with  a  real
symmetric  mass  matrix.  With  these  assumptions,  we  get
the following result.

λ(MR)≫ MD ∈ M3×n,MR ∈ Mn×n

Proposition  III.1. In  the  CP-invariant  seesaw  scenario
with | D|, , exactly  3
light neutrinos are present.

M

Proof. In the seesaw model, we assume two well-sep-
arated scales of elements of the mass matrix (31). Let us
split the mass matrix  according to these scales into the
sum (32). Weyl's inequalities (B4) can be transformed in-
to the following inequality:

|λi(M)−λi(M̂R)| ⩽ ρ(M̂D). (33)

The  spectral  radius  is  smaller  than  each  matrix  norm
(B1), and in particular,

ρ(M̂D) ⩽ ∥M̂D∥2 = ∥MD∥2 ⩽ ∥MD∥F , (34)

∥ ∗ ∥2
M̂D MD

∥ ∗ ∥2 ⩽ ∥ ∗ ∥F MD

where  is an operator norm. We use the fact that the
operator  norms  of  and  are  equal  and  also  the
following  relation  between  the  operator  and  Forbenius
norm: .  Since  all  elements  of  have  the
same order of magnitude, the following estimation can be
made

M̂ROn the other hand, we know that matrix  has at least
three eigenvalues equal to 0. Since the eigenvalues of the
Hermitian matrix can be arranged as in Eq. (B2), we have

|λi(M)−0| ⩽ ρ(M̂D) for λi(M̂R) = 0. (36)

M√
3n

Hence,  three  eigenvalues  of  must  be  smaller  than
| D|.  This  means  that  at  least  three  light  neutrinos

exist.
|λ(MR)| ≫

M MR

Now, let us assume that | D|. With this as-
sumption we can show that  all  remaining eigenvalues of

 must  be  large,  i.e.  of  the  order  of  elements  of .
This  is  another  conclusion  from  Weyl's  inequalities.

M
M̂R

M̂R

MR

Equation (33) tells us that the eigenvalues of  are max-
imally  shifted  by  | D|  from  the  eigenvalues  of .
However, all eigenvalues of  which remain are equal
to eigenvalues of . Therefore,

|λ(MR)| ≫
Thus,  in  the CP-invariant  seesaw  scenario  with

| D|, exactly three light neutrinos exist, and all
additional states must be heavy.
 

MDAs  the  matrix  couples  left-handed  and  right-
handed  chiral  fermions,  Eq.  (37)  estimates  the  mass  of
heavy  neutrinos  to  be  the  mass  obtained  by  neglecting
light neutrinos, shifted at most by the maximal strength of
the coupling to the light neutrino sector.

The  above  discussion  relies  on  the  eigenvalues  of
mass matrices. However, eigenvalues are not good quant-
ities  for  general  neutrino  mass  scenarios  with  complex
symmetric matrices. Such matrices can have complex ei-
genvalues, and moreover, they are not always diagonaliz-
able by the unitary similarity transformation. Instead, sin-
gular values are useful,  since due to the Autonne-Takagi
theorem  (Theorem  B5),  we  can  always  find  a  unitary
transformation  which  will  diagonalize  the  complex
seesaw mass matrix. Thus, the above result can be gener-
alized to the complex seesaw scenario with the use of the
analog of Weyl's inequalities for singular values.

σ(MR)≫
MD ∈ M3×n,MR ∈ Mn×n

Corollary  1. In  the  seesaw  scenario  with 
| D|, , exactly  3  light  neutrinos
are present.

Proof. For  singular  values,  we  have  the  analog  of
Weyl's inequalities,

|σi(M)−σi(M̂R)| ⩽ σ1(M̂D) = ∥M̂D∥2, (38)

thus using  similar  arguments  as  in  the  proof  of  Proposi-
tion III.1, we attain the assertion.
 

MR

Mheavy

MR

MR

One  of  the  main  seesaw  mechanism  assumptions  is
that besides the three light neutrinos, all additional neutri-
nos should be very massive. The masses of heavy neutri-
nos are dominated by the spectrum of the  submatrix.
However,  as  we  can  see  from  the  simple  example  (8),
even when the elements of the matrix are of the same or-
der,  the  eigenvalues  can  fall  apart.  As  a  consequence,
some  eigenvalues  of  could  be  very  small,  which
contradicts  the  seesaw  assumptions.  Such  a  possibility
can easily be seen from the Laguerre–Samuelson inequal-
ity for the real roots of polynomials. Our goal is to estab-
lish conditions under which eigenvalues of the  mat-
rix are  always  large.  In  the  case  of  one  additional  neut-
rino,  the  situation  is  trivial  since  is  represented  by
just  one  number.  Moreover,  in  this  case,  the  seesaw
mechanism  is  no  longer  valid,  since  the  light  spectrum
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M

M

contains two massless neutrinos, which contradicts exper-
imental  results.  With  two  and  more  additional  neutrinos
the  general  solution  to  the  problem  is  very  difficult.  In
principle,  we  want  to  exclude  the  region  smaller  than
some boundary  value.  In  general,  the  matrix is  com-
plex  symmetric  and  masses  correspond  to  the  singular
values. Thus, if we are able to find a lower bound for the
smallest  singular  value  and  impose  it  to  be  larger  than
some limit value, the problem is solved. Moreover, in the
CP-invariant  scenario,  can  be  considered  as  real  and
symmetric, in which case the masses are given by eigen-
values. It is known that for normal matrices singular val-
ues  are  equal  to  the  absolute  values  of  the  eigenvalues
[59].  Thus,  by  bounding  singular  values  we  treat  both
cases.  In  the  mathematical  literature,  there  are  available
different lower bounds for the smallest singular value ex-
pressed  by  matrix  elements  [60-65].  We  follow  Refs.

[61,64], where

σn(A) ⩾ |det A|
 n−1
∥A∥2F

 n−1
2
⩾ X, (39)

a11,a12, ...,ann

(−X,X)

and n is the dimension of the matrix. X is some boundary
value and A is a matrix with elements . This
nontrivial inequality can be solved analytically in two di-
mensions, corresponding  to  the  scenario  with  two  addi-
tional neutrinos,  using e.g.  Mathematica [66]. This scen-
ario,  known  as  the  minimal  seesaw,  is  currently  being
studied  intensively  [67-73]. The  analytic  formulas  re-
strict matrix elements to singular values larger than some
positive number X, which in the case of eigenvalues cor-
respond to  the  region outside the  interval .  Using
the abbreviations:

Y1 =
a11a2

12

a2
11−X2

, Y2 =

√√√a4
11X2+2a2

11a2
12X2−a2

11X4+a4
12X2−2a2

12X4(
a2

11−X2
)2 , (40)

Y3 =
−a2

11X2+a4
12−2a2

12X2

2a11a2
12

, Y4 =

√√
X4−a2

11X2−a2
11+X2, (41)

we get:

a12,a22 ∈ R∧
{(

a11 > X∧X > 0∧a22 ⩾ Y1+Y2

)
∨

(
a11 > X∧X > 0∧a22 ⩽ Y1−Y2

)
∨(

X > 0∧a22 ⩾ Y1+Y2∧a11 < −X
)
∨

(
X > 0∧a11 < −X∧a22 ⩽ Y1−Y2

)
∨(

−X = a11∧a12 > 0∧X > 0∧a22 ⩾ Y3

)
∨

(
−X = a11∧X > 0∧a22 ⩾ Y3∧a12 < 0

)
∨(

X = a11∧a12 > 0∧X > 0∧a22 ⩽ Y3

)
∨

(
X = a11∧X > 0∧a12 < 0∧a22 ⩽ Y3

)
∨(

−Y4 = a12∧Y1−Y2 = a22∧X > 0∧a11 < X∧−X < a11

)
∨(

Y4 = a12∧Y1−Y2 = a22∧X > 0∧a11 < X∧−X < a11

)
∨(

a12 > Y4∧X > 0∧a11 < X∧−X < a11∧a22 ⩽ Y1+Y2∧Y1−Y2 ⩽ a22

)
∨(

X > 0∧a11 < X∧a12 < −Y4∧−X < a11∧a22 ⩽ Y1+Y2∧Y1−Y2 ⩽ a22

)}
. (42)

To approach  higher-dimensional  cases  we  use  the  in-
verse eigenvalue problem, i.e.  reconstruction of  matrices
from the spectrum [74,75]. Such a reconstruction for Her-
mitian matrices, i.e. in the CP-invariant scenario, is con-
trolled by the Schur-Horn theorem [76,77]

{λi}ni=1 {di}ni=1
Rn

Theorem  III.1. (Schur-Horn) Let  and  be
vectors in  with entries in non-increasing order. There

{di}ni=1

{λi}ni=1

is a Hermitian matrix with diagonal entries  and ei-
genvalues  if and only if

k∑
i=1

di ⩽
k∑

i=1

λi k = 1, · · · ,n and
n∑

i=1

di =

n∑
i=1

λi. (43)
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MR

The  construction  of  matrices  based  on  this  theorem
can  be  realized  by  different  approaches  [78-82]. An  im-
portant feature of this theorem is the majorization condi-
tion between eigenvalues  and diagonal  elements  (43).  In
the case of large eigenvalues, this relation implies that di-
agonal elements must also be large in comparison to off-
diagonal  elements.  However,  this  works  only  if  the 
matrix  is  non-negative  definite,  i.e.  all  eigenvalues  are
non-negative. Such a situation in the case of three sterile
neutrinos is  presented in Fig.  1.  In a scenario with some
eigenvalues large but negative, Eq. (43) does not restrict
matrix elements.

To bypass  the  requirement  of  non-negative  definite-
ness and CP conservation, we can invoke singular values
once again. As in the eigenvalue case, singular values can
also  be  used  to  reconstruct  a  matrix  via  a  procedure
known  as  the  inverse  singular  value  problem  [83,84].
However, we  currently  have  at  our  disposal  only  theor-
ems  which  connect  eigenvalues  and  singular  values
(Weyl-Horn  theorem  [85,86]) or  singular  values  and  di-
agonal  elements  (Sing-Thompson  theorem  [87,88]).

Thus,  we  miss  the  symmetry  of  the  matrix  and  further
work is needed to combine all these components.

IV.  SEPARATION BETWEEN EIGENSPACES IN
THE SEESAW SCENARIO

We are interested in how masses and mixings are con-
nected to each other in the seesaw scenario. Recently, an
interesting relation has been found between eigenvectors
and  eigenvalues  for  neutrino  oscillations  in  [89, 90].  To
answer this we will study the behavior of the eigenspace

M̂R M̂D

M̂R

M
M̂R

of the matrix  under the perturbation  (32). Thus,
we  are  interested  in  the  estimation  of  the  difference
between eigenspaces spanned by eigenvectors of  and

 (32). As a starting point, let us consider the eigenprob-
lem for  the  matrix . For  block-diagonal  matrices,  ei-
genvalues  correspond  to  the  eigenvalues  of  its  diagonal
blocks. In this case, one of these blocks is a zero matrix.
Thus, this block has a threefold eigenvalue 0 and the cor-
responding eigenvectors are

(1,0,0,0,0,0, · · · ,0)T ,

(0,1,0,0,0,0, · · · ,0)T ,

(0,0,1,0,0,0, · · · ,0)T . (44)

M̂R MR

sinΘ

M̂R

VL V
′

L M̂R M

They span a standard 3-dimensional Euclidean space em-
bedded in a  (3+n)-dimensional space.  The rest  of  the ei-
genvalues of  correspond to those of the  submat-
rix. Our approach will be based on the Davis-Kahan the-
orem  (Theorem  C2),  which  is  valid  for  the CP-con-
serving  case  (a  generalization  to  the CP-violating  case
seems  to  be  possible  [91],  but  it  requires  a  separate
study).  It  allows  us  to  estimate  the  sine  of  the  angle
between subspaces,  denoted  as , spanned by  the  ei-
genvectors. Since the eigenspace spanned by the zero ei-
genvalues of  has a very simple structure, we will fo-
cus on the estimation of the angle between spaces corres-
ponding  to  light  neutrinos.  Information  about  the  other
pair of subspaces follows immediately from the orthogon-
ality of the mixing matrix. Let us denote the eigenspaces
spanned by  the  eigenvectors  corresponding  to  small  ei-
genvalues  by  and ,  respectively  for  and .
Then in the seesaw scenario (see Fig. 2) we have

∥sinΘ(VL,V
′

L)∥ ⩽ 1
δ
∥M−M̂R∥ =

1
δ
∥MD∥, (45)

δ

sinΘ(VL,V
′

L)

VL V
′

L

where  is  the  distance  between  the  largest  of  the  light
masses and the smallest of the heavy masses. The above
inequality says that  can be estimated using a
gap between the spectra and the size of the perturbation.
It  is  clear  that  if  the  subspaces  and  are  close  to
each other  then the sine between them will  tend to zero.
Therefore, from (45)  we can draw the following conclu-
sions:

● If the separation between light and heavy neutrinos
is  pronounced,  as  in  the  seesaw  case,  then  the  subspace
spanned by light  neutrinos is  almost  parallel  to  the 3-di-
mensional  Euclidean  space.  However,  when  these  two
spectra approach each other not much information can be
retrieved from Theorem C2.

δ

MD

● Even if the  is not that large, these two subspaces
still can be almost parallel when  is very small.

 

λ1 = 101 λ2 = 100
λ3

λ3 ∼ 0

Fig. 1.    (color online) An illustration of the Schur-Horn the-
orem  for  the  non-negative  definite  matrix.  Two  eigenvalues
have been set up to  and , and the third eigen-
value  ranges from 0 to 100 to see the behavior of the diag-
onal elements and off-diagonal elements for a different spread
between eigenvalues. When the spread is large, i.e. , the
diagonal elements  can  be  very  small  and  off-diagonal  ele-
ments can take significant values. On the other hand, if all ei-
genvalues are large then diagonal elements dominate.
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V.  SUMMARY AND OUTLOOK

MD MR
MR

Simple  ideas  are  very  often  the  most  powerful,  and
this is the case for the seesaw mechanism, which provides
an  attractive  way  to  explain  the  smallness  of  the  light
neutrino masses by introducing very massive sterile neut-
rino  states.  This  manifests  in  a  specific  structure  of  the
mass and mixing matrices. We treat various seesaw types
of mass matrices uniformly,  including linear and inverse
extensions, using the same, general and rigid-block mass
matrix  structure.  We have  proved  that  under  the  general
sub-matrix mass hierarchies (31) exactly three light neut-
rinos emerge (Prop. III.1 and Cor. 1). Moreover, as a con-
sequence we have derived the allowed splitting for heavy
neutrinos  in  terms of  submatrices  and  (37).  As
the spectrum of  dominates the contribution to heavy
masses, we have investigated the structure of this matrix
to ensure the spectrum is large. In a minimal seesaw scen-
ario  with  two  sterile  neutrinos,  we  have  given  analytic
bounds for heavy neutrino masses expressed by the mat-
rix elements (42). For cases with a larger number of addi-
tional neutrinos the inverse eigenvalue problem has been
applied. However this can be done systematically only in
the CP-invariant  case  and  for  positive  definite  matrices.
The  general  solution  for  any  dimension  still  requires
more study. The inverse singular value methods could be
especially  useful.  This  requires  connection  of  currently
available  theorems  with  the  specific  structure  of  the
seesaw  mass  matrix.  Lastly,  we  studied  the  behavior  of
the angle  between  subspaces  spanned  by  the  eigen-
vectors which connects masses with mixings. In this case
the Davis-Kahan theorem applied to the seesaw mechan-
ism gives a simple estimation of the angle between mix-
ing spaces depending on the norm of the Dirac mass mat-
rix.

Our  work  is  based  on  matrix  theory,  which  is  a  vast
and  rich  field.  We  would  like  to  outline  a  few  potential

directions related to neutrino physics for further studies:
●  Gershgorin  circles  provide  alternative  inclusive

entrywise bounds for eigenvalues. They can be applied to
models with a diagonally dominant mass matrix to get in-
sight into the mass spectrum.

● Symmetric gauge functions are strictly connected to
the  unitary  invariant  norms.  We  use  unitary  invariant
norms  in  our  study  of  the  mixing  matrices  [41,42,92].
The symmetric  gauge  functions  can  provide  a  new  per-
spective into the mixing analysis.

● The  characteristic  polynomial  with  real  roots  dis-
cussed in this work is a particular example of hyperbolic
polynomials. This  gives  the  opportunity  to  study  eigen-
value problems from a more general point of view.

●  Semidefinite  programming  (SDP)  does  not  come
directly from matrix theory. However, this area of math-
ematical  programming  is  based  on  positive-definite
matrices. SDP  can  be  used  to  better  understand  the  re-
gion of physically admissible mixing matrices [41,93].
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APPENDIX: MATRIX THEORY INSIGHT INTO
SEESAW MASS MATRIX STUDIES

In this  appendix  we  introduce  definitions  and  theor-
ems used in the main text.  Proofs for  statements  presen-
ted here can be found in Refs. [94-96].

A.    Matrix norms
Let  us  begin  with  consideration  the  matrix  "size"

problem. A set of all matrices of a given dimension along
with  matrix  addition  and  matrix  multiplication  creates  a
vector space. Thus, it is natural to consider a size of vec-
tors or a distance between two points of this space.  This
can be done by introducing a function called the norm.

∥ · ∥ R

Definition  1 A  norm  for  a  real  or  complex  vector
space V is a function  mapping V into  that satisfies
the following conditions:

∥A∥ ⩾ 0 and ∥A∥ = 0⇔ A = 0,

∥αA∥ = |α |∥A∥,

∥A+B∥ ⩽ ∥A∥+ ∥B∥. (A1)

The  same  is  true  for  the  matrix  space.  However,  for
matrices, this can be done in two ways. We can use either
the standard vector norm (A1) or introduce the more ad-
equate  so-called  matrix  norm  which  takes  into  account
specific matrix multiplication.

∥ · ∥Definition 2 A matrix norm is a function  from the

 

sinΘ

sinΘ MD

Fig.  2.    (color  online)  The  behavior  of  the ,  controlled
by the Davis-Kahan theorem, in the seesaw scenario. The re-
gion below the graph represents  allowed values.  In this  case,

 is bounded by a function depending on the norm of 
and the  gap  between  the  spectrum.  As  heavy  neutrinos  be-
come lighter and lighter the blowout of the bound is observed.
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Rset  of  all  complex  matrices  into  that satisfies  the  fol-
lowing properties

∥A∥ ⩾ 0 and ∥A∥ = 0⇔ A = 0,
∥αA∥ = |α| ∥A∥,
∥A+B∥ ⩽ ∥A∥+ ∥B∥,
∥AB∥ ⩽ ∥A∥∥B∥. (A2)

It  is  important  to  emphasize  that  usual  vector  norms
(A1)  and matrix  norms (A2)  are  strictly  connected:  Any
vector  norm can  be  translated  into  a  matrix  norm in  the
following way

∥A∥⋆ = max
∥x∥⋆=1

∥Ax∥⋆, (A3)

∥ · ∥⋆where  stands for a corresponding vector norm. The
matrix norm defined in this way ensures the submultiplic-
ativity  condition  and  is  called  the  induced  matrix  norm.
The most popular matrix norms are:

∥A∥ =max∥x∥2=1 ∥Ax∥2 = σ1(A)● Spectral norm: .

∥A∥F =
√

Tr(A†A) =

√√ n∑
i, j=1

|ai j|2 =√√ n∑
i=1

σ2
i (A)

●  Frobenius  norm: 

.

∥A∥1 =
max∥x∥1=1 ∥Ax∥1 =max j

∑
i

|ai j|
●  Maximum  absolute  column  sum  norm: 

.

∥A∥∞ =

max∥x∥∞=1 ∥Ax∥∞ =maxi

∑
j

|ai j|

●  Maximum  absolute  row  sum  norm: 

.

B.    Eigenvalues and singular values
Neutrinos with definite masses are obtained through a

unitary transformation which brings the mass matrix into
diagonal form. In a general  seesaw scenario where diag-
onalization is done by the congruence transformation (4),
masses are  given by singular  values.  However,  if  we re-
strict  attention  to  the CP-invariant  case,  diagonalization
goes through the similarity transformation, and the quant-
ities  corresponding  to  neutrino  masses  are  eigenvalues.
We  will  present  a  theorem  concerning  both  of  these
quantities, starting with the notion of a spectral radius.

A ∈ Mn
ρ(A) =max{|λ| : λ ∈ σ(A)}

Definition 3. Let . The spectral radius of A is
.

All matrix norms and the spectral  radius are connec-
ted by the following theorem.

n×n
∥ · ∥

Theorem B1. Let  A be an  matrix, then for  any
matrix norm  the following statement is true:

ρ(A) ⩽ ∥A∥. (B1)

A ∈ MnTheorem B2. Let  be Hermitian.  Then the ei-

genvalues of A are real.

A ∈ Mn

Using this theorem we can arrange the eigenvalues of
a given Hermitian matrix , e.g, in a decreasing or-
der

λ1 ⩾ · · · ⩾ λn, (B2)

and this convention is used in this work.
Theorem B3. (Spectral theorem for Hermitian matri-

ces)
A ∈ Mn

U ∈ Mn Λ ∈ Mn
A = UΛU†

A matrix  is Hermitian if and only if there is a
unitary  and  diagonal  such  that

.
There exists an equivalent decomposition theorem for

singular values.
Theorem B4. (Singular value decomposition)

A ∈ Mm×n q =min{m,n}
Σ = (σi j) ∈ Mm×n σi j = 0 i , j

σ11 ⩾ σ22 ⩾ · · · ⩾ σqq
V ∈ Mm×m U ∈ Mn×n A = VΣU†

Let  be  given  and  let . Then
there is a matrix  with  for all 
and , and  there  are  two  unitary
matrices  and  such that .

Autonne and Takagi [97,98] gave us a criterion based
on singular values, which characterizes the class of sym-
metric matrices.

Theorem B5. (Autonne-Takagi)
A ∈ Mn A = AT

U ∈ Mn Σ

A = UΣUT Σ

Let . Then  if and only if there is a unit-
ary matrix  and a nonnegative diagonal matrix 
such  that . The  diagonal  entries  of  are  the
singular values of A.

Since there are matrices for which both sets of eigen-
values and of singular values are well  defined, the ques-
tion naturally  arises  of  how these  quantities  are  connec-
ted.  The  following  theorem  provides  the  basic  relation
between these numbers.

A ∈ Mn
σ1(A) ⩾ · · · ⩾ σn(A) ⩾ 0 {λ1(A), · · · ,λn(A)}
∈ C |λ1(A)| ⩾ · · · ⩾ |λn(A)|

Theorem  B6. Let  have  singular  values
 and  eigenvalues 

 ordered so that . Then

|λ1(A) · · ·λk(A)| ⩽ σ1(A) · · ·σk(A) f or k = 1, · · · ,n (B3)

with equality for k = n.
Using the above definitions and basic theorems, a the-

orem  which  bounds  eigenvalues  of  the  sum  of  two
matrices  can  be  formulated.  In  the  general  case,  we  can
say  almost  nothing  about  eigenvalues  of  the  sum  of
matrices.  However,  for  Hermitian  matrices,  the  situation
is more accessible and we have a set of helpful relations.
We  will  present  only  the  main  result  provided  by  Weyl
[99]; however, it can be extended to more specific cases.

Theorem B7. (Weyl's inequalities)
n×nLet A and B be  Hermitian matrices. Then

λ j(A+B) ⩽ λi(A)+λ j−i+1(B) f or i ⩽ j

λ j(A+B) ⩾ λi(A)+λ j−i+n(B) f or i ⩾ j (B4)
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After some  work,  the  above  relations  can  be  trans-
formed to the following form:

|λ j(A+B)−λ j(A)| ⩽ ρ(B). (B5)

Despite  the  fact  that  Weyl's  inequalities  can  be  used
to estimate  eigenvalues  of  the  sum  without  any  restric-
tion to scale of its summands, they give the best results if
one of the matrices can be treated as a small additive per-
turbation  of  the  second  matrix,  which  is  a  case  of  the
seesaw mechanism.

A†A
As singular  values  are  defined as  square roots  of  the

Hermitian  matrix  we  should  expect  that  a  similar
result to Weyl's inequalities is also valid for singular val-
ues.  However,  due  to  their  nonegative  nature,  we  can
only estimate the singular values of the sum from above.

Theorem B8. (Weyl's inequality for singular values)
m×n q =min{m,n}Let A and B be a  matrices and let .

Then

σ j(A+B) ⩽ σi(A)+σ j−i+1(B) f or i ⩽ j. (B6)

C.    Eigenspace

S ⊥

The  behavior  of  eigenvectors  of  a  matrix A under  a
perturbation  is  much  more  complicated  than  that  of  the
eigenvalues.  However,  in  the  case  of  subspaces  spanned
by eigenvectors  there  are  theorems allowing quantitative
prediction of  their  perturbation.  Estimation of  the  differ-
ence  between  perturbated  and  unperturbed  eigenspaces
can  be  done  with  the  help  of  orthogonal  projections,  as
the following example shows. Let S be an eigenspace of
A spanned by some of  its  eigenvectors  and let  be its
orthogonal complement. Then A can be decomposed as

A = E0A0E†0 +E1A1E†1, (C1)

E0 E1
S ⊥ Â = A+E

Ŝ

where  is the orthonormal basis for S and  is the or-
thonormal  basis  for .  Similarly,  for  and ei-
genspace  we have

Â = F0Λ0F†0 +F1Λ1F†1 . (C2)

Ŝ

Ŝ E0E†0 F0F†0
x = E0α α ∈ CdimS

Ŝ x̂ = F0F†0 E0α

We  would  like  to  know  how  well  vectors  in  ap-
proximate vectors in S.  The orthogonal projectors onto S
and  are  given  by  and  respectively.  Every
vector x in S can  be  written  as  where 
and its projection onto  is . Thus

∥x− x̂∥ =∥E0α−F0F†0 E0α∥ = ∥(I−F0F†0)E0α∥

=∥F1F†1 E0α∥ = ∥F†1 E0α∥. (C3)

F†1 E0 x̂Hence  tells us how close  is to x.

Before we move to the main perturbation theorem, let
us state the auxiliary theorem which highlights geometric
aspects of the relation between subspaces [100].

X1,Y1 n× l
l× l

U1 V1 n×n
2l ⩽ n

Theorem  C1. Let  be  matrices with  or-
thonormal columns. Then there exist  unitary matrices

 and , and  an  unitary  matrix  Q, such  that  if
, then

QX1U1 =


I
0
0

 , (C4)

QY1V1 =


C
S
0

 , (C5)

C,S
0 ⩽ c1 ⩽ · · · ⩽ cl ⩽ 1 1 ⩾ s1 ⩾ s1 ⩾ · · · ⩾ sl ⩾ 0

C2+S 2 = I

where  are  diagonal  matrices  with  diagonal  entries
 and , respect-

ively, and .
The relation between matrices C and S resembles the

relation  between  trigonometric  functions.  This  allows  us
to define angles between subspaces.

E F l−
Cn E F

Definition 4. Let  and  let be dimensional sub-
spaces  of . The  angle  operator  between  and  is
defined as follows

Θ(E,F ) = arcsinS . (C6)

E F

It  is  a  diagonal  matrix  whose  diagonal  elements  are
called the  canonical  (principal)  angles  between  sub-
spaces  and .

Moreover,  using  the  matrix  norm  we  can  define  the
gap between two subspaces.

E F l−
Cn

E F E
F

Definition  5. Let  and be dimensional sub-
spaces of . Let E and F be orthogonal projections onto

 and  respectively. The distance between subspaces 
and  is defined to be

∥E−F∥ = ∥E⊥F∥ = ∥sinΘ∥. (C7)

The  perturbation  behavior  between  eigenspaces  of
Hermitian  matrices  is  described by the  renowned Davis-
Kahan theorem [101].

S 1 [a,b] S 2
(a−δ,b+δ) R E = PA(S 1),F⊥ = PB(S 2)

S 1
S 2

Theorem  C2. Let  A  and  B  be  Hermitian  operators,
and  let  be  an  interval  and  be the  comple-
ment of  in . Let  be
orthogonal projections onto subspaces spanned by eigen-
vectors of A and B corresponding to eigenvalues from 
and  respectively.  Then  for  every  unitarily  invariant
norm,

|||EF⊥||| ⩽ 1
δ
|||E(A−B)F⊥||| ⩽ 1

δ
|||A−B|||, (C8)
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where

δ = dist(σ(A),σ(B)) =min{|λ−µ| : λ ∈ σ(A),µ ∈ σ(B)}. (C9)
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