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Abstract: We studied the instability of regularized 4D charged Einstein-Gauss-Bonnet de-Sitter black holes under
charged scalar perturbations. The unstable modes satisfy the superradiant condition, but not all of the modes satisfy-
ing the superradiant condition are unstable. The instability occurs when the cosmological constant is small and the
black hole charge is not too large. The Gauss-Bonnet coupling constant further destabilizes black holes when both
the black hole charge and the cosmological constant are small and further stabilizes black holes when the black hole
charge is large.
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I.  INTRODUCTION

It is known that general relativity should be modified
from the viewpoints of both theory and observations. For
example,  general  relativity  cannot  be  renormalized  and
cannot explain the dark side of the universe.  In contrast,
the Lovelock theorem states that, in the four dimensional
vacuum spacetime,  general  relativity  with  the  cosmolo-
gical  constant  is  a  unique  metric  theory  of  gravity  with
second order  equations  of  motion  and  covariant  diver-
gence-free  [1]. Beyond  general  relativity,  one  must  con-
sider higher dimensional spacetimes, add extra fields, al-
low higher order derivatives of metrics, or even abandon
the Riemannian geometry. Various modified gravity the-
ories have been proposed [2].

By  rescaling  the  GB  coupling  constant  in  a  special
way, a regularized 4D GB black hole solution was found
recently  [3].  This  work  provides  a  novel  classical  4D
gravity  theory  and  has  inspired  many  studies,  including
those on regularized black hole solutions [4-23], perturb-
ations [24-35], shadow and geodesics [36-41]， thermody-
namics  [42-47],  and  other  aspects  [48-51].  It  should  be
mentioned that  4D EGB gravity  was  found  to  be  incon-
sistent  based  on  the  theory  proposed  in  [3].  Fortunately,
some proposals have been raised to circumvent the issues
of  4D EGB gravity,  including adding an extra  degree  of
freedom  to  the  theory  [18-23]  or  breaking  the  temporal
diffeomorphism invariance [52, 53], where a well-defined
theory  was  formulated.  In  contrast, while  the  4D  EGB

gravity formulated in [3] may be problematic at the level
of action or equations of motion, the spherically symmet-
ric  black  hole  solution  derived  in  [3]  can  be  obtained
from conformal anomalyand quantum corrections [54-65]
as  well  as  from  the  Horndeski theory  [18-23],  which
means the  spherically  symmetric  black  hole  solution  it-
self is meaningful and worth studying.

The regularized black hole solution has some remark-
able  properties.  Its  singularity  at  the  center  is  timelike.
The  gravitational  force  near  the  center  is  repulsive,  and
the  free  infalling  particles  cannot  reach  the  singularity
[3]. One may expect that the regularized black hole solu-
tion would also show some novel properties with respect
to perturbations,  and  some  related  studies  have  been  re-
ported  [24-32, 34].  The  study  of  the  stability  of  black
holes  is  an  active  area  in  black  hole  physics.  It  can  be
used for  extracting the black hole  parameters  such as  its
mass, charge, and angular momentum. Black hole stabil-
ity is also related to gravitational waves, black hole ther-
modynamics,  the  information  paradox,  and  holography
[57, 58]. Among these studies, black hole stability in the
asymptotic de Sitter (dS) spacetime is intriguing. For ex-
ample,  spontaneous  scalarization  of  Kerr-dS  black  holes
in the scalar-tensor theory behaves very differently from
that for  asymptotically  flat  spacetimes  under  perturba-
tions [59]. The 4D Reissner-Nordström-de Sitter (RN-dS)
black hole may violate strong cosmic censorship [60-63].
Higher  dimensional  RN-dS  and  Gauss-Bonnet-de  Sitter
(GB-dS) black holes are unstable [64-68].
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A quite  surprising  and still  not  very  well  understood
result  was  discovered  in  [69-71],  where  it  was  shown
that  the  RN-dS  black  hole  is  unstable  under  charged
scalar perturbations. Such instability satisfies the superra-
diancecondition  [72].  However,  only  the  monopole

 suffers  from  this  instability.  Higher  multipoles  are
stable. This  is  distinct  from superradiance.  The  underly-
ing mechanismmay be understood using the tools of non-
linear  analysis,  as  was  partially  shown  recently
[63]. In this paper, we consider the instability of the regu-
larized 4D charged EGB black hole in the asymptotic dS
spacetime,  under  charged  scalar  perturbations.  We
demonstrate  that  the  behavior  is  very  different  from  the
case of the asymptotic flat spacetime that was considered
in  [34].  The  GB  coupling  constant  plays  a  more  subtle
role here.

The  paper  is  organized  as  follows.  Sec.  II  describes
the  regularized  4D  EGB-RN-dS  black  hole  and  gives  a
reasonable  parametric  region.  Sec.  III  presents  the
charged  scalar  perturbation  equations.  Sec.  IV  describes
the numerical method we used and presents the results for
quasinormal modes  (QNMs).  Sec.  V  contains  the  sum-
mary and discussion of the study.

II.  THE 4D CHARGED EGB-DS BLACK HOLE

The  4D  spherical  symmetric  EGB  black  hole  in  the
electrovacuum dS spacetime can be written as [4]

ds2 = − f (r)dt2+
1

f (r)
dr2+ r2(dθ2+ sin2 θdϕ2), (1)

where the metric function is

f (r) = 1+
r2

2α

1−
√

1+4α
(

M
r3 −

Q2

r4 +
Λ

3

) , (2)

and the gauge potential is

A = −Q
r

dt. (3)

Λ

α→ 0
r→∞

Here, M is  the  black  hole  mass, Q is  the  black  hole
charge,  and  the positive cosmological  constant.  When

,  this  solution  converges  to  that  for  the  RN-dS
black hole. As ,  the asymptotic dS spacetime with
an  effective  positive  cosmological  constant  is  obtained.
Note that  solution  (1)  coincides  formally  with  those  ob-
tained  from  the  Horndeski  theory  [18-23] and  those  ob-
tained using  conformal  anomaly  and  quantum  correc-
tions [52, 53].

α

r−

The GB coupling constant  can be either positive or
negative. In  an  appropriate  parametric  region,  the  solu-
tion  has  three  horizons:  the  inner  horizon ,  the  event

r+ rc
α

r+ rc α

r+ = 1

horizon ,  and  the  cosmological  horizon . For  negat-
ive ,  the metric function may not be real in the small r
region. However,  since  we  are  only  interested  in  the  re-
gion  between  and ,  we  allow  negative  in  this
work.  For  convenience,  hereafter,  we  fix  the  black  hole
event horizon as . Then, the mass parameter can be
expressed as

M = 1− Λ
3
+Q2+α. (4)

f (1) = 0 α > − 1
2

r+ rc
f ′(r+) > 0

Note that,  to ensure ,  we must have .  The
parametric  region  in  which  the  black  hole  event  horizon

 and  the  cosmological  horizon  are  allowed  can  be
determined  by  requiring ,  implying  that  the
black hole temperature is positive. This leads to

Q2+α+Λ < 1. (5)

This formula is very similar to the neutral case [33]. The
parametric region is shown in Fig. 1.

III.  THE CHARGED SCALAR PERTURBATION

O(ϵ)

O(ϵ2)

ψ

It is known that fluctuations of order  in the scal-
ar  field  in  a  given  background  induce  changes  in  the
spacetime  geometry  of  order  [72].  To  the  leading
order, we can study perturbations for a fixed background
geometry. Let us consider a massless charged scalar field

 on background (1). Its equation of motion is

0 = DµDµψ ≡ gµν
(
∇µ− iqAµ

)
(∇ν− iqAν)ψ, (6)

 

r+ rc

Q2 +α+Λ < 1, −0.5 < α Λ > 0 Q > 0

(Λ,α)
Q =
√

3/2

Fig. 1.    (color online) The parametric region that allows the
event  horizon  and  cosmological  horizon .  The  region  is
bounded by  , , and . As Q in-
creases,  the  allowed  region  for  shrinks.  The  extremal
value of .
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∇µwhere q is  the scalar charge, and  is the covariant de-
rivative. For  a  generic  background,  we  can  take  the  fol-
lowing decomposition

ψ =
∑
lm

∫
dωe−iωtΨ(r)

r
Ylm(θ,ϕ). (7)

Ylm(θ,ϕ)
S 2.

Here,  is  the  spherical  harmonics  on  the  two
sphere  The angular part and the radial part of the per-
turbation  Eq.  (6)  decouple.  What  we  are  interested  in  is
the radial  part,  which can be written in the Schrödinger-
like form

0 =
∂2Ψ

∂r2
∗
+

(
ω2− 2qQ

r
ω−Veff

)
Ψ, (8)

dr∗ = dr/ fwhere  the  tortoise  coordinate  is  introduced.
The effective potential reads

Veff = −
q2Q2

r2 + f
(

l(l+1)
r2 +

∂r f
r

)
. (9)

r+ rc

r+ rc

Unlike  the  case  of  the  asymptotic  flat  spacetime,  where
only  one  potential  barrier  appears  between  and ,
here,  a  negative  effective  potential  well  may  appear
between  and . We will show that this potential well
plays an important role in the instability of charged EGB-
dS black holes under perturbations.

The radial equation exhibits the following asymptotic
behavior near the horizons.

Ψ→


e−i

(
ω− qQ

r+

)
r∗ ∼ (r− r+)−

i
2κ+

(
ω− qQ

r+

)
, r→ r+,

ei
(
ω− qQ

rc

)
r∗ ∼ (r− rc)−

i
2κc

(
ω− qQ

rc

)
, r→ rc.

(10)

κ+ =
1

2 f ′(r+)
κc = −

1
2 f ′(rc)

ω

ω = ωR+ iωI
ωI > 0

Here,  is the surface gravity on the event

horizon,  and  is  the  surface  gravity  on  the

cosmological  horizon.  Thisasymptotic solution  corres-
ponds to  the  ingoing  boundary  condition  near  the  event
horizon and outgoing boundary condition near the cosmo-
logical horizon.  The  system  is  dissipative,  and  the  fre-
quency of  perturbations  is  determined  by  the  composi-
tion of QNMs. For a specific boundary condition (10), the
radial  Eq.  (8)  can  be  solved  as  an  eigenvalue  problem.
Only  some  discrete  eigenfrequencies  satisfy  both  the
radial equation and the boundary condition. The eigenfre-
quency can be written as . When the imagin-
ary  part ,  the  amplitude  of  the  perturbation-
will  increase  exponentially,  implying  that  the  black  hole
is unstable at least with respect to linear perturbations.

IV.  THE INSTABILITY OF THE 4D CHARGED
EGB-DS BLACK HOLE

The radial Eq. (8) with boundary conditions specified
by (10) is generally difficult to solve analytically, except
for a  few cases,  such as  the  pure  anti-dS ((A)dS)  space-
time,  the  Nariai  spacetime,  and  massless  topological
black  holes  [57, 58]. In  general,  approximations  or  nu-
merical methods  are  required.  Various  numerical  meth-
ods for  QNM calculations have been developed,  such as
the  Wentzel-Kramers-Brillouin  (WKB)  method,  the
shooting method, the continued fraction method, and the
Horowitz-Hubeny method [57, 58]. Not all of these meth-
ods have high accuracy and efficiency in the charged case
[73].  In  this  work,  we  adopted  the  asymptotic  iteration
method [74, 75]. In  addition,  we validate  our  results  us-
ing asymptotic iteration methods with time evolution.

A.    The asymptotic iteration method (AIM)
The AIM was originally developed for solving the ei-

genvalues of  homogeneous  second  order  ordinary  deriv-
ative functions [76, 77]. Later, it  was used for observing
QNMs  of  black  holes  in  the  asymptotic  flat  or  (A)dS
spacetimes  [74, 75].  Let  us  first  introduce  an  auxiliary
variable

ξ =
r− r+
rc− r+

. (11)

It ranges from 0 to 1 as r runs from the event horizon to
the cosmological horizon. The radial Eq. (8) then becomes

0 =
∂2Ψ

∂ξ2

(
f

rc− r+

)2

+
∂Ψ

∂ξ

f∂ξ f

(rc− r+)2

+

(ω− qQ
(rc− r+)ξ+ r+

)2

− f

 l(l+1)+
(
ξ+ r+

rc−r+

)
∂ξ f[

(rc− r+)ξ+ r+
]2


Ψ.
(12)

ξ

The above equation is in general difficult to solve ana-
lytically; thus, we use numerical methods. In terms of ,
the asymptotic solution near the horizons can be written as

Ψ→


ξ
− i

2κ+

(
ω− qQ

r+

)
, ξ→ 0,

(ξ−1)−
i

2κc

(
ω− qQ

rc

)
, ξ→ 1.

(13)

Then, we can write the full solution of Eq. (12) satis-
fying the asymptotic behavior (13), as follows:

Ψ = ξ
− i

2κ+

(
ω− qQ

r+

)
(ξ−1)

i
2κc

(
ω− qQ

rc

)
χ(ξ). (14)
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χ(ξ) ξ
(0,1)

Here,  is  a  regular  function  of  in  the  interval
, and it obeys the following homogeneous second or-

der differential equation

∂2χ

∂ξ2 = λ0(ξ)
∂χ

∂ξ
+ s0(ξ)χ, (15)

in which the coefficients are

−λ0(ξ) =
i
(
ω− qQ

rc

)
(ξ−1)κc

−
i
(
ω− qQ

r+

)
κ+ξ

+
f ′(ξ)
f (ξ)

, (16)

−s0(ξ) =− (rc− r+) ((ξrc−ξr++ r+) f ′(ξ)+ l(l+1)(rc− r+))
f (ξ) ((ξ−1)r+− ξrc) 2 −

(
ω− qQ

rc

)(
ωrc−qQ

2κcrc
+ i

)
2(ξ−1)2κc

+

(
ω− qQ

r+

)(
qQ− r+ω

2κ+r+
+ i

)
2κ+ξ2 +

(
ω− qQ

r+

)(
ω− qQ

rc

)
2κ+(ξ−1)ξκc

+

i f ′(ξ)
(
ω− qQ

rc

)
2(ξ−1)κc f (ξ)

−
i f ′(ξ)

(
ω− qQ

r+

)
2κ+ξ f (ξ)

+

(rc− r+) 2
(
ω− qQ

ξrc− ξr++ r+

)
2

f (ξ)2 . (17)

λ0(ξ) s0(ξ)
ξ (0,1)

ξ (n+2)

The coefficients  and  are regular functions
of  in  the  interval . Differentiating  (15)  with  re-
spect to  iteratively leads to an -th order differen-
tial equation

χ(n+2) = λn(ξ)χ′(ξ)+ sn(ξ)χ(ξ), (18)

where the  coefficients  are  determined  iteratively,  as  fol-
lows:

λn(ξ) = λ′n−1(ξ)+ sn−1(ξ)+λ0(ξ)λn−1(ξ),

sn(ξ) = s′n−1(ξ)+ s0(ξ)λn−1(ξ). (19)

ξ = ξ0

Expanding the  coefficient  functions  around a  regular
point ,

λn(ξ) =
∞∑
j=0

c j
n(ξ− ξ0) j,

sn(ξ) =
∞∑
j=0

d j
n(ξ− ξ0) j, (20)

c j
n d j

n

ω

in  which  the  expansion  coefficients  and  are func-
tions of , and the iterative equations give

c j
n = ( j+1)c j+1

n−1+d j
n−1+

j∑
k=0

ck
0c j−k

n−1, (21)

d j
n = ( j+1)di+1

n−1+

j∑
k=0

dk
0c j−k

n−1. (22)

For  sufficiently  large n,  the  cutoff  of  the  iteration  in
the AIM is given by

sn(ξ)
λn(ξ)

=
sn−1(ξ)
λn−1(ξ)

, (23)

which  leads  to  the  following  expression,  in  terms  of  the
expansion coefficients:

d0
nc0

n−1 = d0
n−1c0

n. (24)

ω

ξ = 1− r+
r

ξ =
(
1− r+

r

)
/

(
1− r+

rc

)
Λ→ 0

q = 1

The  QNMs  can  be  worked  out  by  solving  this
equation.  We  vary  the  iteration  times  and  the  expansion
point  to  ensure  the  reliability  of  the  results.  The  results
are  also  checked  by  using  other  auxiliary  variables  such

as  or .  Except  for  some

extremal cases (  or when the bblack hole becomes
extremal), they coincide well. Hereafter, we set  for
convenience.

B.    The eigenfrequencies of the charged
scalar perturbation

ωR

Λ α ωI

ωI

α

ωI ωI

Let us first study the effects of the black hole charge
Q on  the  fundamental  modes  of  QNMs.  The  results  are
shown  in Fig.  2.  In  the  left  panel,  we  see  that  in-
creases  with Q almost  linearly.  The  slope  is  steeper  for
larger  and . In the right panel,  increases for small
Q and then decreases for  larger Q.  For  sufficiently large
Q, the black hole becomes stable. When Q is small,  in-
creases with increasing . This behavior is similar to the
case  of  the  asymptotic  flat  spacetime  [34].  However,
when Q is  large,  decreases  with  increasing .  This
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Λ,α Q→ 0 ωR ωI

α

should  be  contrasted  with  the  result  for  the  asymptotic
flat  spacetime.  It  implies  that  the  positive  GB  coupling
constant  can  destabilize  the  black  hole  when  the  black
hole  charge Q is  small,  whereas  it  stabilizes  the  black
hole at large Q. Note further that, regardless of the values
of  considered, when , both  and  tend to
0  from  above.  This  implies  that  weakly  charged  black
holes in the dS spacetime are always unstable. The exist-
ence of  does not change this phenomenon qualitatively.

α

ωR Q = 0.1 Q = 0.4
ωR α

Λ

ωR ∝ αΛQ

Now,  we  study  the  effects  of  on  the  fundamental
modes  in  more  detail. Fig.  3 shows  the  real  part  of  the
fundamental  modes ,  for  and .  For
fixed Q, the real part  increases almost linearly with 
and .  Combining  the  results  from Fig.  2,  we  conclude
that .

ωI

Q = 0.1 Q = 0.4
ωI Λ

Λ α ωI

Λ Λ

ωI α

Λ ωI α

α ωI

α

α

ωI

The behavior of the imaginary part of the fundament-
al  modes  is  more  interesting.  In Fig.  4, we  show the
cases  for  and .  From  the  left  and  right
panels,  we  see  that  increases  with  small  and de-
creases with larger . The effect of  on  is subtle and
relevant to  and Q. When both Q and  are small (left
upper panel),  increases with . For small Q and larger

 (right upper panel),  increases with  first and then
decreases  with .  For  larger Q (lower  panels),  de-
creases  with .  This  phenomenon is  very  different  from
the  case  of  the  asymptotic  flat  spacetime  [34],  where 
roughly  increases .  This  implies  that  the  positive  GB

α

α

coupling constant  can suppress the black hole instabil-
ity. As  increases, it can even change the qualitative be-
havior of a black hole under a perturbation and can render
an unstable black hole stable.

The instability we found here is reminiscent of super-
radiance. However,  the  present  case  is  quite  subtle.  Us-
ing a method similar to that in [34, 70], one can show that
the superradiance occurs only when

qQ
r+

> ω >
qQ
rc
. (25)

Although  the  unstable  modes  encountered  in  our
study indeed satisfy (25), it is observed that some oscilla-
tion frequencies corresponding to stable modes also are in
the range determined by (25) (see Table 1 for evidence).
In fact, as shown in [34, 70], the superradiant condition is
the  necessary  but  not  sufficient  condition  for  instability.
The  precise  mechanism  of  the  instability  found  here
should be studied better and will be addressed in Sec. V.

C.    Evolution of the perturbation field

ψ

We  also  directly  compute  the  time-evolution  of  the
perturbation field  to further reveal the instability of the
4D charged  EGB-dS black  hole.  For  the  time  evolution,
the Schrödinger-like equation becomes

l = 0
Λ = 0.01 Λ = 0.1.

Fig. 2.    (color online) The real part (left) and the imaginary part (right) of the fundamental modes of the QNMs, for . The solid
lines are for , while the dashed lines are for 

 

l = 0 Q = 0.1
Q = 0.4

Fig. 3.    (color online) The real part of the fundamental modes of the QNMs, for . The left panel is for , while the right pan-
el is for .
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−∂
2Ψ

∂t2 −
2iqQ

r
∂Ψ

∂t
+
∂2Ψ

∂r2
∗
−V(r)Ψ = 0, (26)

ψIn  order  to  compute  the  time evolution  of , we  ad-
opt the discretization approach introduced in [69]. The re-
liability  of  this  numerical  method can be  verified  by the
convergence  of  computations  when  increasing  the
sampling density. We impose the following initial profile:

Ψ(r∗, t) = 0, t < 0,

Ψ(r∗, t) = exp
[
− (r∗−a)2

2b2

]
, t = 0.

(27)

(r∗, t)
∆t/∆r∗ = 0.5

r∗
r∗(r)

r∗(r) limr→r+ →−∞
limr→rc

→∞ r∗(r)

Eq. (26) is discretized in the  plane. In addition,
we set , to satisfy the von Neumann stability
conditions. Unlike some other analytical models where 
can  be  solved  analytically,  here,  can only  be  ob-
tained  numerically;  diverges  as  and

;  hence,  the  error  of  numerical  can  be
very large in the near horizon region. Therefore, we intro-

ϵ r∗(r)duce  a  cutoff  for  solving  the  relation  by  solving
the following system expression:

r′∗(r) = 1/ f (r), r∗(rh+ ϵ) = 0, withr ∈ [rh+ ϵ,rc− ϵ]. (28)

ϵ

r∗(r)

Usually,  the  cutoff  should not  be  too  small;  other-
wise,  it  will  lead  to  a  significant  error  in  the  resultant

.

r∗ 1/ f
r→ rh r→ rc

r∗(r)
1/ f (r) rh

1/ f (r) ∼ 1/(r− rh)

f (r) rh

1/ f
f (r)

To obtain the late time evolution of the perturbation,
we need to solve a large range or .  Since  tends to
diverge  when  and , in  the  near  horizon  re-
gion,  can be  extracted  analytically.  A  direct  solu-
tion  is  to  expand  with  respect  to ,  because  the
horizon  requires  that .  However,  this
direct  expansion can lead to very large numerical  errors.
A better solution is to expand  with respect to  and
then  obtain  the  expansion  of  in terms  of  the  expan-
sion coefficients of . After solving the analytical  ex-
pansion coefficients,  one  may glue  the  analytical  expan-

Q = 0.1, Λ = 0.12 l = 0Table 1.    The fundamental modes for , and , corresponding to the orange line in the upper right panel of Fig. 4.
The last column is the imaginary part of the frequency extracted from the time evolution.

α
qQ
r+

qQ
rc

ω (AIM) ωI  (time domain)

0.5 0.1 0.0244042 0.0290311+0.0001514i 0.0001515

0.6 0.1 0.0248557 0.0297114+0.0000779i 0.0000780

0.65 0.1 0.0250987 0.0300692+0.0000191i 0.0000192

0.7 0.1 0.0253547 0.0304355-0.0000541i -0.0000547

0.75 0.1 0.0256252 0.0308094-0.0001400i -0.0001390

l = 0 Q = 0.1
Q = 0.4 Λ Λ

Fig. 4.    (color online) The imaginary part of the fundamental modes of the QNMs, for . The upper panel is for , while the
lower panel is for . The left panel shows the results for small , while the right panel shows the results for larger .
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r∗(r) r ∈ [rh+ ϵ,rc− ϵ]
r∗

sion in  the  near  horizon  region  and  the  numerical  solu-
tion of  in . In this way, one may ob-
tain a very large range of , and long-time evolution can
be realized.

|ψ(t)|
ln |ψ|

ln |ψ|

ln |ψ|

Λ ln |ψ|
Λ

ln |ψ|

We show two examples of  in the log plot in Fig.
5, from which we can see that  linearly depends on t
at  later  times.  From  the  left  panel  of Fig.  5,  when Q is
small,  the  system  is  unstable  (  linearly  decreases
with t),  while for large values of Q, the system becomes
stable (  linearly grows with t). This is in accordance
with  previous  results  of  the  frequency  analysis  (see  the
right panel of Fig. 2). From the right panel of Fig. 5, we
see that when  is small, the system is unstable (  lin-
early  increases  with t),  while  for  large  values  of ,  the
system  becomes  stable  (  linearly  decreases  with t).
This is  in  accordance  with  previous  results  of  the  fre-
quency analysis (see the bottom right panel of Fig. 4).

ωI ∂t ln(|ψ|)

It  is  also  important  to  verify  the  validity  of  the  AIM
with respect to the time evolution. There are comprehens-
ive methods for extracting frequencies from the perturba-
tions'  time-domain  profiles,  such  as  the  Prony  method
used in [69].  Here,  we extract  by computing 
for later  times  and  compare  the  results  with  those  ob-
tained using the AIM. This simple process only allows to
extract the imaginary part of the dominant mode and may
not be sufficiently accurate when QNMs are close to each
other. However, it is sufficiently good for the purposes of
our  current  analysis.  We  provide  the  comparison  in Ta-
ble 1 (see the last two columns), from which we can see
that all  of the time evolution results perfectly agree with
those of the AIM.

Λ

Λ

α
α

Λ→ 0

Finally,  we  show  the  unstable  region  of  the  charged
EGB-dS black  hole  under  charged  scalar  perturbation  in
Fig. 6. The black hole is unstable only when  and Q are
not  too  large.  As  or Q increases, the  black  hole  be-
comes  less  unstable.  For  positive ,  the  unstable  region
shrinks.  For  negative , the  unstable  region  widens.  Al-
though we do not show the results for  owing to the
limitation  of  our  numerical  method,  we  can  expect  that
there  should  be  sudden  drops,  since  we  have  found  that
there is no instability for the asymptotic flat charged EGB

black holes under charged scalar perturbations [34]. This
phenomenon was also disclosed for RN-dS black holes in
[70].

D.    Effective potential

l = 0
r+ rc

ωI > 0 α = 0.8
ωI < 0

α

Now let us take a look at the effective potential when
. In the left panel of Fig. 7, we see that there is a neg-

ative potential well between  and . This potential well
is  the  key  point  for  the  occurrence  of  instability.
However, the  negative  effective  potential  does  not  guar-
antee .  For  example,  the  case  has a  negat-
ive  potential  well,  but .  Thus,  the  existence  of  a
negative  potential  well  can  be  viewed  as  the  necessary
but  not  sufficient  condition  for  instability  [78].  In  the
right panel of Fig. 7, the potential well disappears for lar-
ger .  The  perturbation  wave  can  be  easily  absorbed  by
the black  hole,  and  the  corresponding  background  be-
comes stable with respect to charged scalar perturbations.
Note  that  the  positive  cosmological  constant  is  crucial
here for creating the necessary potential well.

l = 1

ωR ∝ Q α

Now,  let  us  consider  the  eigenfrequencies  of  the
charged scalar perturbation when .  The fundamental
modes are shown in Fig. 8. The left panel shows that the
realtion  still exists for higher l. However,  very

|ψ(r∗ = 88.4216, t)| α = 2/3, Λ = 1/10
|ψ(r∗ = 88.4216, t)| α = 1/10, Q = 2/5

Λ a = 88.4216, b = 1/10

Fig. 5.    (color online) Left panel: the time evolution of  at , where the different curves correspond to
the different  values of Q.  Right  panel:  the time evolution of  at , where the different  curves corres-
pond to the different values of . For both plots we set .

 

 

α

q = 1

Fig.  6.    (color  online)  The  unstable  region  of  the  charged
EGB-dS  black  hole  under  a  charged  scalar  perturbation.  The
shadows under the constant  lines are the corresponding un-
stable regions. Here, .
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ωR

ωR <
qQ
rc

ωI α

weakly  affects .  All  of  the  fundamental  modes  have
 beyond  the  superradiant  condition.  The  results

in the left  panel are different from those in Fig.  2.  Here,
 increases with Q and  monotonically. Note that all of

the modes are stable now.
The stability for the higher l values can be explained

using the effective potential, as shown in Fig. 9. There is
only one potential barrier and there are no potential wells
to accumulate the energy for triggering instability.

l , 0

ψ

A detailed time evolution for  is shown in Fig. 10.
From these  two panels,  we see  that  the  perturbations  in-
deed  decay  in  the  long  term,  and  larger l values  yield  a
more significant decay of ;  hence, no instability occurs
for higher values of l.

V.  SUMMARY AND DISCUSSION

Λ

We  studied  the  instability  of  charged  4D  EGB-dS
black holes  with  respect  to  charged  massless  scalar  per-
turbations. This instability satisfies the superradiant  con-
dition. However,  not  all  of  the  modes  satisfying  the  su-
perradiant condition  are  unstable.  The  precise  mechan-
ism of  this  instability  is  not  well  understood.  Neverthe-
less,  the  positive  cosmological  constant  should  play a
crucial role. The instability occurs when the cosmologic-
al  constant  is  small.  This  is  reminiscent  of  the  Gregory-
Laflamme  instability  [79]  since  there  exists  a  hierarchy

Λ

between the  black  hole  event  horizon  and  the  cosmolo-
gical horizon. The instability here is different from the "
instability"  found in [35, 64-68],  which occurs  when the
black  hole  charge  and  the  cosmological  constant  are
large.

l = 0

We analyzed this instability from the viewpoint of the
effective potential.  Higher l has only one potential barri-
er  beyond the  event  horizon.  The  perturbation  dissipates
and does not lead to instability. The monopole  has a
negative  potential  well  between  the  event  horizon  and
cosmological  horizon,  which  can  accumulate  the  energy
necessary  fortriggering  the  instability.  But  the  negative
potential well is just the necessary but not sufficient con-
dition for the instability.

Unlike  the  case  of  the  asymptotic  flat  spacetime,  the

l = 0Fig. 7.    (color online) The effective potential when . The left and right plots correspond to the orange lines in the upper right and
lower right panels of Fig. 4, respectively.

 

l = 1 Λ = 0.05

Λ

Fig. 8.    (color online) The real part (left) and imaginary part (right) of the fundamental modes when . Here, . The results
for other  values are similar.

 

 

l = 1
Q, Λ

Fig. 9.    (color online) The effective potential when . The
results for other  values are similar.

Peng Liu, Chao Niu, Cheng-Yong Zhang Chin. Phys. C 45, 025104 (2021)

025104-8



α

α
α

Λ,Q α α

Λ→ 0

effect of the GB coupling constant  on the perturbation
is relevant to the black hole charge and cosmological con-
stant.  It  makes  an  unstable  black  hole  more  unstable
when both  the  black  hole  charge  and  cosmological  con-
stant are small and makes a stable black hole more stable
when  the  black  hole  charge  is  large.  Weakly  charged
black holes in the dS spacetime are always unstable. The
existence of  does not change this phenomenon qualitat-
ively.  However,  can  change  the  qualitative  behavior
when  the  black  hole  charge  is  large  and  make  unstable
black  holes  stable.  We  show  that  the  unstable  region  of
( ) shrinks for positive  and enlarges for negative .
Unfortunately, our results are not sufficiently accurate for

, owing to the limitation of our numerical method.
The case in which a black hole becomes extremal is also
beyond  the  scope  of  this  method.  Stability  of  extremal
black  holes  may  be  very  different  from  that  of  non-ex-

tremal black holes. There is a universal "horizon instabil-
ity" [80-82]. We leave these issues to further studies.

We point out several topics worthy of further invest-
igations.  Stability  with  respect  to  massive  perturbations
should be explored in detail to reveal how the mass term
affects  stability  with  respect  to  charged  perturbations.
The  stability  of  the  4D  charged  Einstein-Gauss-Bonnet
anti de-Sitter black hole would be a very interesting issue
to address as well. We plan to explore these questions in
the near future.
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