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Temporal and spatial chaos in the Kerr-AdS black hole
in an extended phase space”
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Abstract: Based on the Melnikov method, we investigate chaotic behaviors in the extended thermodynamic phase
space for a slowly rotating Kerr-AdS black hole under temporal and spatial perturbations. Our results show that the

temporal perturbation coming from a thermal quench of the spinodal region in the phase diagram may cause tempor-

al chaos only when the perturbation amplitude is above a critical value, which involves the angular momentum J.

Under the spatial perturbation, however, it is found that spatial chaos always occurs, independent of the perturbation

amplitude.
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I. INTRODUCTION

Since Hawking [1] first proved that black holes can
radiate thermal energy, more and more attention has been
focused on the study of black hole thermodynamics [2-
12]. Several black holes have been indicated, revealing a
number of important properties in different dimensions,
which can provide a greater understanding of the funda-
mental problem associated with their critical behaviors.
In particular, both charged [3] and rotating asymptotic-
ally AdS back holes [4, 9] allow a first order phase trans-
ition between small-black-hole and large-black-hole,
which is analogous to the transition between liquid and
gas in Van der Waals fluids. Theoretically, this analogy
can be extended to more general cases by analyzing ther-
modynamics in an extended phase space of the black
holes, where the cosmological constant is regarded as the
thermodynamic pressure and its conjugate quantity is
identified with thermodynamic volume. Based on these
considerations, Kubiziak et al. have investigated the
P -V criticality of charged AdS black holes [13]. They
have perfectly clarified the analogy between charged AdS
black holes and the liquid-gas system, which had first
been observed by Chamblin et al. [3]. Subsequently,
P -V criticality in the extended phase space of black
holes has become an important direction in the study of
the phase transition [14-17].

Chaos is a universal physical phenomenon in those
nonlinear dynamical systems. Due to the intrinsic nonlin-

earity of Einstein’s general relativity theory, chaotic be-
havior is an important dynamics characteristic for such
relativistic systems [18-22]. In the past few decades,
more and more attention has been focused on the chaotic
behavior in the black hole background [23-37]. As a rel-
atively early work in this field, Letelier and Vieira have
proved that the particles moving along timelike geodesics
of the Schwarzschild black hole can present a chaotic mo-
tion when a particular class of gravitational perturbation
is introduced [23]. Furthermore, some works have shown
that the motion of a particle is also chaotic when it comes
close to approaching the black hole horizon [26-33]. Re-
cently, Chabab et al. [34] have studied a chaotic phe-
nomenon in the context of black hole thermodynamics
and phase transitions by means of the Melnikov method
[35]. The strong connection between the charged AdS
black hole and Van der Waals fluids has been established
for the first time. Their results can bring insight into the
correlation between the chaotic behavior and the P-V
diagram of black holes. Subsequently, this study has been
extended to other black holes, including charged or neut-
ral Gauss-Bonnet AdS black holes [36], the Born-Infeld-
AdS black hole [37], and the charged dilaton-AdS black
hole [38]. Regrettably, little attention has been paid to
chaos phenomena in the Kerr-AdS black hole within the
extended phase space.

Gunasekaran et al. have proved that a slowly rotating
Kerr-AdS black hole is analogous to the Van der Waals
liquid-gas system [17]. When the temperature of the
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black hole is below the critical value, a region of violated
stable equilibrium can appear. By using Maxwell’s equal
area law, Zhao et al. have found an isobar for the
P —Vdiagram of the Kerr-AdS black hole, which corres-
ponds to the real two phase coexistence line [39]. Based
on this fact, we predict that chaos phenomena may exist
in the Kerr-AdS black hole within the extended phase
space. To prove this prediction, we apply the Melnikov
method to investigate temporal and spatial chaos phe-
nomena of the slowly rotating Kerr-AdS black hole in an
extended thermodynamic phase space. Firstly, the main
thermodynamic characteristics of the Kerr-AdS black
hole are reviewed. Secondly, a small temporal perturba-
tion in the spinodal region of the Kerr-AdS black hole
thermodynamic phase space is introduced. Then, we de-
rive from the Melnikov function the homoclinic orbit and
display when the temporal chaos can occur in the spinod-
al region of the thermodynamic phase space. Lastly, we
recompute the Melnikov function for homoclinic or het-
eroclinic orbit and probe spatial chaotic behavior. More
details are presented in the following sections.

II. THERMODYNAMICS OF THE KERR-ADS
BLACK HOLE IN AN EXTENDED
PHASE SPACE

In this section, let us give an overview on the thermo-
dynamics of a four-dimensional AdS rotating black hole.
It can be described by the following Kerr-AdS metric [9,
40]
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where / is the AdS radius. The associated thermodynam-
ic quantities are as follows [9, 17, 41]:
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The mass M and the angular momentum J are respect-
ively connected with parameters m and a
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In the extended phase space, the cosmological con-

3 . .
stant A = —p can be interpreted as a thermodynamic

pressure P, which has the following relation
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In this case, the first law of black hole thermodynamics
and Smarr formula are respectively written as

SM =T8S +QydJ + VP, (6)
M
5 =TS +QuJ-VP. (7)

Here, V is the thermodynamic volume conjugate to P. In
the present work, we focus on a slowly rotating Kerr-AdS
black hole. Thus, after neglecting all higher order terms
of J, the equation of state can be written as [4, 39]
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where v is the specific volume satisfying the relation
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Equation (8) suggests that some P—v critical behavi-
ors really exist. The “real” phase diagram of the slowly
rotating Kerr-AdS black hole has been investigated in the
extended phase space via Maxwell’s equal area law [39].
A second order transition exists, i.e., between large and
small black hole phase transition, which is analogous to
the gas and the fluid phase transition in the Van der
Waals system. This phase transition occurs at the follow-
ing critical point

1 90i 1
—2x90 VI, To= ——— (10
ve=2x90¢ VU, T 25 yg 10

11
Poz—— .
¢ 36xV10J

In Fig. 1, we show the P—v diagram corresponding to
the Kerr-AdS black hole. We can clearly see that a small-
large black hole phase transition exists in the case of
T <T.. An example of this transition is specifically
presented in the right panel of Fig. 1. Notice that the P—v
curve contains two stable regions and one unstable re-
gion. Two stable regions are ve[0,a] and v e [B, ],
which correspond to the small black hole region and the
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Fig. 1. (color online) P—v diagram of the Kerr-AdS black hole for different temperatures. The angular momentum parameter is

chosen as J = 1. In the right panel with the case of T < T, it is obvious that the curve is divided into three regions: two stable regions

(black lines) and one region (blue line). The red dotted line represents the coexisting line of the small black hole (with specific volume

v,,) and the large black hole (with specific volume v;,) with transition pressure Py, which satisfies Maxwell ’s equal area law.

large black hole region, respectively. The unstable region
v € [a,B] is referred to as the spinodal region. In the un-

stable region, the small and large black hole phases can

6P(V, T())

coexist. Furthermore, we note that <0 in two

. OP(v, T . .
stable regions but % >0 in the unstable region.
Vv

Mathematically, the two extreme points a and f are de-
6P(v, T(]) _ 3P(V, T())
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flection point at v = vy is determined by

termined by
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2P(v, T

0 (V; 0) _ 0.

Some works have suggested that the Melnikov meth-
od is well suited for studying chaotic behavior of the
black hole within the extended thermodynamic phase
space [34, 36-38]. Hence, we shall investigate the chaos
phenomenon of the Kerr-AdS black hole under periodic
thermal perturbations with the help of the Melnikov
method.

III. TEMPORAL CHAOS IN A SPINODAL
REGION

Here, the effect of a weak temporally periodic per-
turbation shall be considered, when the Kerr-AdS black
hole is quenched by the spinodal region. According to the
standard procedure, we need to make use of the Kerr-AdS
black hole equation of state to construct the Hamiltonian
for the fluid flow and derive the Melnikov function con-
taining information about the occurrence of temporal
chaos. With respect to the temporal perturbation, we first
consider a specific volume vy (the inflection point) in the
spinodal region, which corresponds to an isotherm
To(To < T.). The weak time-periodic fluctuation of the
absolute temperature near T, can be written as [42]

T =Ty + eycos(wt)cos(M) (11)

with & << 1. According to Ref. [34], one can suppose that
the black hole flow takes place along the x axis in a finite

tube with a unit cross section, which includes a total mass
of 2r/q of the black hole in a volume of (27/¢)vy. Here, ¢
is a positive constant.

From Ref. [34], xo can be denoted as the Eulerian co-
ordinate of a reference system. Thus, the mass M of a
column of the Kerr-AdS black hole with the unit cross
section between the reference xo and a general Eulerian
coordinate x can be expressed as

M=fp(§,t)d§, (12)

where p(x,f) denotes the black hole density at the posi-
tion x and the time ¢ It should be pointed out that
p(x(M,1),t)"! = xpy(M,1) = v, where v represents the spe-
cific volume.

Now, let us consider the thermodynamic phase trans-
ition displayed in the one dimensional thermal compress-
ible Kerr-AdS black hole flow, which can be depicted in
Lagrangian coordinates via the following system:

dv oOu Ou 0T
—==, = 13
ot oM’ ot M (13)
Here, u stands for the velocity and t corresponds to the
stress tensor. According to Korteweig ’s theory, 7 is
defined as

ou v

T=-P(V,T)+/,la—M—AW. (14)

After substituting (14) into (13), we can obtain that

& x 3 _8p(v, T) x Px

o oM Moz o

(15)

Let M — gM, i — gt, ¥ — qx, u — o, Eq. (15) can be re-
cast as
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Here, ¢ and py are positive constants. For convenience,
"~" has been omitted in Eq. (16). Then, the mass-volume
constraint can be written as

2
f v(M,t)dM = 2nv. (17)
0

It is logical to construct the Hamiltonian of the sys-
tem, which has the following form

1 27
H:—f
T Jo

where 4 is a positive constant and F(v,T) is given
by [36]

?+F(V,T)+T

u Aq OV
((3M) ’ ( )

v

F(v,T)z—fP({,T)dg’. (19)
Notice that P(Z,T)=P(,T)dV/d/ is an effective equa-
tion of state obtained by replacing ¢ in terms of the ther-
modynamic volume V = 7/3/6 before performing the in-
tegral. Considering that v = vy and is the infection point in
the spinodal region, we have P,,(vo,To) =0, P,(vo,To) >
0, and P,,,(vo,To) <0. At the equilibrium point (vg,Tp)
with v=vy and u =0, v and u can be expanded in Fourier
cosine and sine series on [0,2r], respectively. By using
Eq. (17), we can obtain that

v(M,t) =xpy(M,1) = vo+ x1(t)cosM

+x2(t)cos2M + x3(t)cos3M + ...,

u(M,t) =x,(M,t) = u; (t)sin M
+ur(H)sin2M + uz(t)sin3M + ... (20)

For the sake of carrying out the perturbation analysis, we
need to expand P(v,T) near the equilibrium point (vo, To)
in a Taylor series and keep terms to third order. Thus, one
has [36]

P, T) =P(vo,To) + P, (vo, To)(v = vo) + Pr(vo, To)(T — To)

1._
+ =Py, (vo, To)(v = vp)?

[\

vav(VOs TO)(V - V0)3
3!

+P,r(vo, To)(v —vo)(T — To) +

.\ Pyt (vo, To)(v = vo)*(T = To)
> .

21)

Considering that Prr(vo,To), P.rr(vo,To), and
Prrr(vo,To) are to be zero, they have been ignored in the
above expression. By substituting Eqs. (19)-(21) into Eq.
(18), the Hamiltonian can be rewritten as

2 2 4 v 4 v

2 u? 48J% 48J2
HFLML_(KTO__ O LONEL YR e
0 0

12002 , 90> , 360J% , , 90J% ,
- MRt X XX
vy Vo Vo vy
A 2,2
+ o + 2qu)cz2 - %aycos(wt)xl
bis
- Zeycos(wt)xlxz, (22)

where (x1,x;) and (u;,uy) stand for the positions and ve-
locities of the first two modes. Consequently, it is not dif-
ficult to drive the corresponding equations of motion,
which are as follows:

X1 =uy, X2=up,
. 0H, pg 96J2
i =———¢guoqu; =| =T -—|x
0x 2 v
24077 36072 7207
+— xlxz——7x?——7x1x§—Aq2x1
Yo Yo Yo

Fiath) n
+ 757 cos(wt) + Zsy cos(wt)xy — eoquy,

0H,

ity = — —— —4goquy
(9XQ
. 96J7 12002 , 72007 ,
= 5TO— Xt 5~ T X1 X2
Yo Yo Yo
36072

- xg —4A¢% x> + %mcos(wt)xl —4spoqus.

Yo
(23)

By setting z = (x1,x2,u1,u2)”, the above equations can be
organized in a compact form, namely,

(1) = go(z) + 81(z, ). (24)

Here, the small perturbation gi(z,7) is periodic in time.
The unperturbed system (& = 0) is given by

2(t) = go(2). (25)

By linearizing the unperturbed system about z =0, one
can obtain
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z4() = Aza (1), (26)

where the Jacobian matrix A reads [42]

0 0 1 0
0 0 0 1
A= _age 0 —epog O @7
0 —4Ag* + ¢ 0 —4epng
. n 96.J2 .
with ¢ = ETO — ——. Its eigenvalues are as follows:
%
0
—eHoq , nTy 962 \|*
Ao = _4fap -0 28
12 ) Euyq [ 5 T v ’
To 967\
/13,4 =— 28/10q + {482[1(2)6]2 [4Aq2 - 7% + _S]] . (28)
S
0

If the parameters satisfy the following constraints

Ty 96J? Ty 96J?
2 )8 2 s
0 2 0
1A <qg-< — (29)

and &(>0)is small enough, then the first mode is un-
stable with 1; >0 and A, <0 but the second and higher
modes are stable.

Next, let us analyze the unperturbed (e =0) system
z(f) = go(z) existing in a two-dimensional invariant sym-
plectic manifold, which contains a homoclinic orbit con-
necting the origin to itself. The corresponding analytical
form can be written as [35]

2.0 7\
(f’gg?ﬂ) sech(Br)
0
20(0) = AN (30)
—/32(T(;)J2] sech(Br) tanh(Br)
0
with
B=¢-Ad. 31)

In Fig. 2, we show the phase portrait corresponding to
the homoclinic orbit of the unperturbed system, which
agrees with the analytical expression (30). From this fig-
ure, we can see that the homoclinic orbit possesses two
branches, which are the two wings of the butterfly-like
orbit, respectively. According to Eq. (30), it is easy to de-

duce that zy tends to a saddle point (i.e., the origin point)
as t — oo,

After introducing the time-periodic perturbation (10)
(i.e., € #0), the above homoclinic orbit may be destroyed,
which means that the chaotic behavior of the system be-
comes possible. In light of the Melnikov method, the
Melnikov function for the present perturbed system can
be computed by using the following formula [42, 43]

+00

M(1y) = f g0 (zo(t = 10)) T n=ag1 (zo(t — t0), H)dt (32)

—00

with
0 1 00
-1 0 0 O
Jn:Z - 0 0 0 1 (33)
0O 0 0 O

Here, go(zo(t—10)) and g1(zo(t—19),t) have the following
forms

) sech[B(t —tg)] tanh [B(z — #g)]

180]2
B vo h
8o(zo(t—10)) = 'B 180J2 sech[5(r—1o)]
36002 ( B2v’ |}
———| == sech®[B(t -1,
v (180]2 [B(r—10)]
2
gvoﬁzsech2 [B(t— fo)]sech? [B(t—10)]
(34)
and
0.4 T L T T T T
0z} ]
\
u(t) 0.0 <
02 4
-0.4 L L I |
-6 -4 -2 0 2 4 6
x(t)
Fig. 2.  (color online) Homoclinic orbit of the unperturbed

system with 7 =0.02894 < T.. The parameters are set to J =1,
g=1, and A=0.01. These arrows stand for the time flow dir-
ection.
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gsyvo cos(wt) + 8;1061/5’2( 181?]2 )
sech[S(t — to)] tanh [B(z — to)]

0

7 By’

Z( 1802

g1(zo(t—10),0) =

)2 sech[B(t — tg)]ey cos(wt)
(35)

After straightforward calculations, we find that the Mel-
nikov function can be written in the following form

M(ty) = Nwy sin(wtg) — guol (36)
with
v] : v Tw V8ﬁ3
N=|—2 | Z0%ech(Z2), 1= 2L, 37
(180]2) 5 seehGp) =50 GD

Note that M(#y) as simple zeros at Nwy sin(wty) — quol = 0
only when

quol

<1
Nwy

(38)

Hence, it is logical to conclude that the sufficiently small
temporal perturbation may cause the occurrence of the
chaos behavior due to the temporal thermal fluctuation.
What is more, Eq. (38) can be translated into a critical
value for the perturbation parameter vy, which reads

s w
2V5quovi cosh(ﬁ)

Ye = . (39)

45Jmw

We note that the small temporal perturbation with
v > 7y, guarantees the transversal intersection between un-

04 r () .

0.2 -

uft) oo -

02+

04 I i ' I 1

5 4 2 0 2 4

x(t)
Fig. 3.

8

u(t) oo

stable and stable manifolds, which may give rise to the
emergence of the Smale horseshoe chaotic motion [40].
In order to check this analytical condition on the chaotic
threshold, numerical results for different values of y are
shown in Fig. 3. For convenience, both x, and u, have
been fixed at zero. Fig. 3(a) displays normal trajectories
of the system in the presence of the small temporal per-
turbation (for y <y.). Figure 3(b) shows the occurrence
of chaotic motion for y > y..

From Eq. (39), one can conclude that the critical
value vy, depends on the value of the angular momentum
J. In Fig. 4, one can clearly see that y. decreases as the
value of the angular momentum J increases. This means
that a larger J value makes the occurrence of the chaos
behavior easier under the time-periodic thermal perturba-
tion.

IV. SPATIAL CHAOS IN THE EQUILIBRIUM
STATE

In this section, let us consider the effect of the small
spatially periodic perturbation in the equilibrium config-
uration with an absolute temperature (7o <T.) of the
form [42]

T =Ty + ecos(gx). (40)

On the basis of the Korteweig theory, the stress tensor
can be written as

T=—-p, T)-AV’, (41)

where p(v,T) satisfies the Kerr-AdS black hole equation
of state in Eq. (8), A>0 is a constant, and the symbol ’

d . .
stands for o It should be pointed out that, for a static
x

e . . dr
equilibrium without body forces, one can obtain — =0
X
so as to have 7 = const = —B. Furthermore, B is the ambi-

0.8

Ty
0al #

0z Hf)

0z by

B

08 1 1 1 1 1
6 -4 -2 0 2 4 [

x(t)

(color online) Temporal evolution in the phase space of velocity vs displacement for the perturbed system in the specific tem-

perature 7 =0.02894 < T..: (a) y=0.0188 <y.: (b) y =5 >y.. Parameters are set to /=1, g=1, A=0.01, £=0.001, w=0.01, and go =0.1.
The initial conditions are chosen as a fixed point ( y2vo’/(180J2),0) in the right branch of the homoclinic orbit.
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Fig. 4. (color online) Dependence of the critical value y. fon
the angular momentum J for the Kerr-AdS black hole. Other
parameters are set as in Fig. 2.

ent pressure as x| — co. Based on this fact, Eq. (41) can
be changed into the following form

V' =B-pW,T). (42)
Here, the constant 4 has been set to A =1 as in Refs. [34,
36].

First, we discuss the unperturbed system (T = T). For
arbitrary temperature 7 =T, < T., the nonlinear systems
in Eq. (42) exist at three fixed points, v, v;, and v3, re-
spectively. In light of the magnitude of the ambient pres-
sure B, Eq. (42) can generate three different types of por-
traits in the v—v" phase plane:

Case 1. The ambient pressure B lies in the range
Py <B< P(B,Tg). Py is the phase transition pressure.
Then, the values vy, v, and vz , where P(vi,T) =
P(v2,To) = P(v3,Ty) = B, are displayed in Fig. 5(a); mean-
while the portrait of Eq. (42) in the v—v' phase plane is
displayed in Fig. 5(b).

Case 2. The ambient pressure B lies in the range
P(a,Ty) < B < Py. Then, the values v;, v,, and v3 , where
P(v,To) = P(v,Ty) = P(v3,T9) = B , are presented in Flg
6(a), meanwhile, the corresponding v—v' phase plane is
presented in Fig. 6(b).

Case 3. The ambient pressure B is equal to the phase

00020 P (@)

0.0015 -

0.0010 -

0.0005 -

1 L L
15 20

0.0000
0 25 30

Fig. 5.
dot line) connecting vs to itself.

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

!V -0.20

transition pressure Py, i.e., B= Py. In this case, the val-
ues vy, va, and V3, where P(v,,Ty) = P(vy,Ty) = P(v3,Tp) =
Py , are exhibited in Fig. 7(a); meanwhile the correspond-
ing v—V' phase plane is exhibited in Fig. 7(b).

From these figures, one can conclude that the present
unperturbed system exists with a homoclinic orbit for
both case 1 and case 2 while it has a heteroclinic orbit for
the final case. It is obvious that the above characteristics
allow us to calculate the Melnikov function for these or-
bits.

After adding a small spatial perturbation, expressed in
Eq. (40), we can rewrite the Eq. (43) for a perturbed sys-
tem as follows:

ecos(gx)

V' =B=p(v,To)- (43)

Then, the Melnikov function can be expressed as [42]
+00
M(xo) = fFT(Z(x = x0)Jn=1G(Z(x = x0), x)dx  (44)

with

1a=( 5 5) 4s)

Let v = w; then, Eq. (43) can be changed into two first-
order equations, which read

’
V' =u,

ecos(gx)

w =B—-P(,Ty) - (46)

As in the previous section, the general solutions of a
homoclinic or heteroclinic orbit can be written as

)

Then, the expressions of the ' and G functions are re-

vo(x — xo)

wo(x — xp) “7)

Z(x—xp) = (

(b)

(color online) Case 1: (a) B and vy, v,, v3 in P—v diagram; (b) v—1' phase portrait. One can see a homoclinic orbit (read dash
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dot line) connecting v; to itself.
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(b) v—v" phase portrait. One can see a homoclinic orbit (blue dash

(b)
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Fig. 7. (color online) Case 3: (a) B and vy, v2, v3 in P—v diagram; (b) v—' phase portrait. One can see a heteroclinic orbit (read dash

dot line) connecting vy to v3.

spectively given by
F(Z(x—xp) = | W00~ 20) (48)
077\ B=p(vo(x—x0).To) |’
and
0
G(Z(x—x0))=| _ cos(gx) ] (49)
vo(x — x0)

By introducing a new variable X = x—x,, the Melnikov
function can be reduced to

M(xg) = —Lcos(gxo) + K sin(gxg) (50)
with
" wo(X) cos(gX) TWO(X) sin(gX)
L= _— K= —dX. 1
o e TR

From Eq. (50), it can be deducted that M(xy) always
contains simple zeros for any given value of L and K,
which signals that spatial chaos can occur in the thermo-
dynamic system of the Kerr-AdS black hole under spa-

0.03 T T T T T T

0.02 -

0.01 |-

v' 0.00

-0.01 |

-0.02 |-

-0.03 L L 1 L L !
0 2 4 6 8 10 12 14

Fig. 8. (color online) Portrait of the perturbed equation in
v—1’ phase plane for case 1.

tially periodic thermal perturbation. This result is in
agreement with other AdS black holes [34, 36-38]. In
Figs. 8-10, the numerical solutions of the perturbed dy-
namical Eq. (46) for these three cases are plotted in the
v—' plane, respectively. The corresponding initial con-
figurations are chosen to be the homoclinic orbit or het-
eroclinic orbit. These figures clearly indicate that spatial
chaos under spatially periodic thermal perturbation in-
deed exists.

V. SUMMARY

In summary, we have investigated the occurrence of
chaotic behavior under temporally and spatially periodic

055101-8
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(color online) Portrait of the perturbed equation in
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Fig. 10.
v—v' phase plane for case 3.

(color online) Portrait of the perturbed equation in

perturbations in the unstable spinodal region of the Kerr-
AdS black hole within the extended phase space. The per-
turbed Hamiltonian system corresponding with the mo-
tion of the Van der Waals system in the spinodal region,
following from the Kerr-AdS black hole equation of state,
was derived and found to have nonlinear terms giving rise
to homoclinic or heteroclinic orbits in the extended phase
space. Analysis of the zeros of the appropriate Melnikov

functions provides information about the onset of chaos
phenomena in the extended thermodynamic phase space.
Under the temporal perturbation in the spinodal region,
we showed that the zeros of the Melnikov function give a
critical value of the temporal perturbation y. for the oc-
currence of the temporal chaos. Only when the perturba-
tion amplitude y is larger than the critical value y. can
the chaotic behavior emerge. Our results showed that a
larger J value makes the occurrence of the chaos behavi-
or easier under the time-periodic thermal perturbation.
Moreover, we also consider the spatial thermal perturba-
tions that are periodic in space. It is found that spatial
chaos can occur in the small/large black hole equilibrium
configuration when the system suffers from spatial
thermal perturbation. Since the Melnikov function M(xq)
always contains simple zeros, the occurrence of the spa-
tial chaos is independent of the perturbation amplitude.

In the present work, the Melnikov method has been
utilized to probe chaotic characteristics in order to reveal
the strong connection between a neutral rotating AdS
black hole and the Van der Waals fluid system. To our
knowledge, this is the first study on thermal chaos in the
rotating AdS black hole. We hope that our results can
help to further understand the occurrence of the chaos
with respect to the phase picture of such rotating AdS
black holes within the extended phase space. For simpli-
city, we have restricted ourselves to the neutral rotating
AdS black hole in the four-dimensional spacetime. Exten-
sions to higher dimension and charged rotating AdS black
holes are straightforward. It will also be interesting to see
if thermal chaos can appear in these cases. Let us leave
the exploration of such phenomena to future work.
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