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Phase structures and transitions of quintessence surrounding RN black holes
in a grand canonical ensemble”
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Abstract: Considering a grand canonical ensemble, we study the phase structures and transitions of RN black holes
surrounded by quintessence dark energy on two different boundary conditions, namely AdS space and a Dirichlet
wall. For AdS space, under the condition of fixed temperature and potential, as the temperature increases for lower

potential, the black hole undergoes a first-order phase transition, while for higher potential, no phase transition oc-

curs. There are two different regions in the parameter space. For the Dirichlet wall, on which the temperature and po-

tential are fixed, the state parameter of quintessence w = —2/3 is analyzed in detail. Then, three different physically

allowed regions in the parameter space of the black hole are well studied. As the temperature rises, first-order and

second-order phase transitions may occur. In this case, there are nine regions in the parameter space, which is evid-

ently distinct from the case of AdS space.
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I. INTRODUCTION

With the development of theory, researchers found a
fundamental relationship between gravity, thermodynam-
ics and quantum theory. Initially, physicists studied the
mechanics of black holes [1], and then, they found that if
they applied quantum field theory in curved spacetime to
the fundamental properties of black holes, they could ob-
tain profound results. The framework of black hole ther-
modynamics is based on the discovery made by Beken-
stein and Hawking that black holes have entropy and oth-
er thermodynamic quantities [2-5]. The Schwarzschild
black hole in AdS space was investigated by Hawking
and Page [6], where the phase transition from thermal
AdS to a black hole was found. A black hole has negat-
ive specific heat in asymptotically flat spacetime, which
causes it to be an unstable system. The problem in
asymptotically flat space can then be avoided, as the
gravitational potential of AdS space acts as a box of fi-
nite volume with unphysical perfectly reflecting walls
[6]. In addition, the emergence of AdS/CFT correspond-
ence [7-9] has also inspired relevant studies on black hole
thermodynamics [10-17].

Another preferred solution to solve this problem is to
surround the black hole with a cavity. The Dirichlet

boundary condition is supposed to be considered in the
wall of the cavity. This work was first carried out by
York [18], in which the Hawking-Page-like phase trans-
ition was found. Subsequently, it was extended to the
case of an RN black hole, which was considered in a
grand canonical ensemble [19] and a canonical ensemble
[20, 21]. The thermodynamic phases of diverse black
holes in a cavity were discussed in [22-31], which indic-
ated that the van der Waals-like phase transitions or
Hawking-Page-like phase transitions exist invariably ex-
cept for some particular cases. The relationship between
the thermodynamic properties of black holes and their
specific boundary conditions in different extended phase
spaces was studied in [32]. Apart from this, other sys-
tems such as charged scalars, boson stars, and hairy black
holes in a cavity were investigated in [33-36], which con-
cluded that there are some surprising similarities between
gravity systems in a cavity and holographic supercon-
ductors in AdS gravity. The stabilities of solitons, stars,
and black holes in a cavity were also discussed in [37-
44]. Recently, McGough, Mezei, and Verlinde proposed
that in the holographic dual, the 7T deformed CFT, is
located on a Dirichlet wall at a finite radial distance of
AdS3; in the bulk [45], which also inspires us to study the
properties of black holes in a cavity.
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From observations, we know that the universe is dom-
inated by an energy component with an effective negat-
ive pressure [46, 47]. One hypothesis for such a compon-
ent is the cosmological constant, and other hypotheses are
dynamical vacuum energy or quintessence [48-53].
Quintessence is described by an ordinary scalar field min-
imally coupled to gravity, with particular potentials that
lead to late time inflation. The quintessence field must
couple to ordinary matter and will lead to long range
forces and time dependence of the constants of nature
when it is suppressed by the Planck scale. The static
spherically symmetric solution with the quintessential
matter surrounding a charged black hole was first presen-
ted in [54]. Since then, a series of studies about black
holes in the presence of quintessence have been conduc-
ted. Quintessence modes were studied in [55, 56], and
thermodynamics including Hawking radiation, heat en-
gines, and phase transition in the holographic framework
were investigated in [57-66]. In particular, the phase
transition of the quintessence RN-dS black hole was stud-
ied through the effective thermodynamic quantities [67].
Although many relevant works have been completed,
there is no research that combines quintessential matter
and cavity boundary condition. In addition, the discovery
about the difference in phase structures of black holes
between AdS space and a Dirichlet cavity [28-31] also
prompts us to investigate the phase structures of black
holes from another perspective.

In this paper, we study the phase structures and trans-
itions of RN black holes surrounded by quintessence dark
energy under two different boundary conditions, i.e., AdS
space and a Dirichlet wall. Moreover, a grand canonical
ensemble is considered, which indicates that the temper-
ature and potential of the black hole are fixed on AdS
boundary condition, while the temperature and potential
of the cavity wall are fixed on Dirichlet wall boundary
condition. The paper is organized as follows. In Sec. II,
we discuss the phase structures and transitions of an RN-
AdS black hole surrounded by quintessence dark energy.
In Sec. III, we study the phase structures and transitions
of RN black holes surrounded by quintessence dark en-
ergy in a cavity. The final summaries and discussions are
presented in Sec. V.

II. QUINTESSENCE RN BLACK HOLES
IN ADS SPACE

In this section, we discuss the phase structures and
transitions of the RN black hole surrounded by quint-
essence dark energy in AdS space. The action of the
black hole in four dimensional curved space-time is [68]

S d*x(V=g[R-2A-F"F,1+ Ly). (1)

" Tén

In the above action, the cosmological constant
A = -3/, where [ is the AdS space radius. £, is the Lag-
rangian of quintessence as a barotropic perfect fluid,
which can be written as [69]

1+ wln(p—q)] , )

L,=-
=P PO

where p, is the energy density, pg is an integral constant,
and w is the barotropic index. The solution of the spheric-
al symmetric charged quintessence RN-AdS black hole is
given by

2
ds” = f(r)dr’ - ]% A +sin’0dg”), ()

and

2M Q) a
f(r)=1_7+r_2_r3w_+l+l_2’ (4)

where M and Q are the mass and charge of the black hole,
respectively. The normalization factor a is related to the
density of quintessence dark energy

a 3w
Pq = _5 PBw+])’ (5)

where a needs to be positive and the constraint on the
barotropic index is -1 < w < —1/3.

As the horizon radius r, is the root of f(r;) =0, we
have

_n, Q@ a
2 2r ZrZ“’ 22

M (6)

In the discussion that follows, M is redundant so we
replace it with r,. Thus, the Hawking temperature is giv-
en by

T =

JAGS) 1 (1+3r,21 0> 3aw]. e

= - =t
4 Anry P 2 pPwtl

w  Th

The potential and entrophy of the black hole are, re-
spectively,

o=2,

S =nr}. (8)
T

In addition, free energy plays a crucial role in probing in-

to the phase structures and transitions of a quintessence

RN-AdS black hole in the grand canonical ensemble, and

it is given by [30, 70]
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F=M-TS - Q0, 9

in which the mass of the black hole is interpreted as en-
thalpy [71]. Ignoring the variation of /, we express phys-
ical quantities in units of / from now on to simplify the
subsequent calculation

l3w+1, Q: Q/l,
F=F/L (10)

Th=rp/l, a=al

T=TIl,

The heat capacity at constant potential is

c®=T@§)=2ﬁ%T@2). (11)
oT ), oT o

Thus, the sign of the heat capacity is the same as the sign
of dr,/0T at constant potential. We eliminate O by Eq.
(7) and Eq. (8) to obtain T =T (7}, ®)

-
b—@%@W %ﬁﬁ]. (12)

"

According to Eq. (12), curves of the horizon radius 7, in
terms of temperature 7 with fixed values of ® are plot-
ted in Fig. 1. For a fixed potential ®, T (7, ) has a min-
imum Tpyn. When T > Toin, there are two branches, of
which the Small BH with d7,/dT <0 is thermodynamic-
ally unstable and the Large BH with d7,/0T > 0 is ther-
modynamically stable. There exists one section of non-
physical curve in Fig. 1 because temperature cannot be
negative.

It is worth noting that the thermal AdS space with a
constant gauge potential is a classical solution of action
(1) in the grand canonical ensemble, which should be also
considered for our discussion. We find that there are two
regions in ® —a phase space. As shown in Fig. 2, these
two regions are referred to Region I and Region II. Spe-
cifically, in Region I, there exists a first-order phase
transition as temperature 7 increases. Nevertheless, in

041
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\
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Fig. 1. (color online) Plot of 7, against 7 for different @

with w = -2/3 and @ = 0.3, where ® = 0.99, 0.97 from left to right.
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Fig. 2.
w=-2/3.

(color online) Two regions in ®-a phase space with

Region II, there is no phase transition.

We discuss the phase structures and transitions of the
black hole in the abovementioned two regions. Our meth-
od is as follows. Egs. (6) and (7) imply that M and T are
functions of r;, and Q. According to Eq. (8), the charge
can be written as the function of r, and ®, i.e.
Q = Q(ry, ®). Substituting it into M(ry,, Q) and T(ry, Q),
we have M(ry,,®) and T(r;,®). Thus, F can be written as
the function of r, and ® according to Eq. (9). The quant-
ity in units of / can be written as F(7,®). The F-T dia-
grams with fixed ® are shown in Fig. 3 by regarding 7,
as the parameter. We notice that the behavior of the black
hole for each value of ® is self-consistent with that
shown in Fig. 1; that is, for T > Tmin, there are always
two branches, i.e., Small BH and Large BH, which shows
again that the Large BH is more stable than the Small BH
because of the lower free energy. In Region I, when tem-
perature T increases from zero but does not exceed Tin,
the thermal AdS is the only phase. When T > Tiin, the
Small BH branch and Large BH branch appear, but the
thermal AdS is still the globally stable state until the oc-
currence of a first-order phase transition. As T increases
further, the Large BH ultimately becomes the thermody-
namically preferred state. This process is illustrated in
Fig. 3(a). In Region II, there is no phase transition. Ap-
parently, for any given temperature, Large BH is always
the globally stable phase, as shown in Fig. 3(b).

Another T —® phase diagram is displayed in Fig. 4.
To avoid misunderstandings, the Small BH and Large BH
are both denoted as Black Hole. We keep the parameters
fixed; that is, we set w=-2/3 and a=0.3 in Fig. 4(a).
The temperature of the phase transition decreases to zero
as @ rises. Another homologous phase diagram is shown
in Fig. 4(b), in which we adjust w=-2/5,-2/3,-9/10,
respectively, and @ = 1. Compared with the former, this
case is slightly distinct but the similarity is that there is
only a first-order phase transition from the thermal AdS
to Black Hole.

075101-3



Yuchen Huang, Hongmei Jing, Jun Tao et al.

Chin. Phys. C 45, 075101 (2021)

0.004 -

0.002 -

0.000

P — P
0.06 0.08

0.02 0.04
= SMALL BH
-0.002 -
—— LARGE BH
-0.004 -
THERMAL ADS

(a) Region I: w = —2/3,@ = 0.3, ® = 0.97.
Fig. 3.
phase transition occurs.

0.10

—

0.0004

0.0002

.
0010

! L
0.006 0.008
= SMALL BH

L .
0.002 0.004

-0.0002

-0.0004 |- —— LARGE BH

-0.0006 - THERMAL ADS

-0.0008 |-

-0.0010 -

(b) Region II: w = —2/3, @ = 0.3, ® = 0.99.
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(color online) Phase diagrams in T —® space for various w and @. Blue curve: w=-2/5. Black curve: w=-2/3. Red curve:

w = -9/10. The first-order phase transitions occur on these curves, causing them to become the dividing lines of the two phases.

III. QUINTESSENCE RN BLACK HOLES
IN A CAVITY

In this section, we investigate the RN black hole sur-
rounded by quintessence dark energy in a cavity. The ac-
tion with a time-like boundary d M on a four dimension-
al spacetime manifold M is

1

S=Ten

fM d*x(V=gIR = F*"Fpy ]+ L,)

8 oM

dx =y (K - Ky). (13)

The counter term above is the Gibbons-Hawking-York
surface term. K is the extrinsic curvature, y is the metric
on the boundary, and Kj is a subtraction term to make the
Gibbons-Hawking-York term vanish in flat spacetime.
When the metric on dM is fixed, the Gibbons-Hawking-
York term is crucial to obtain the correct equations of
motion from performing the variation [28]. We can ob-
tain the quintessence RN black hole solution from the ac-
tion (13)

2
ds* = f(r)de* - ]% —ri(de? +sin’0dg?).  (14)
and
oM Q7
f(,)=1_7+% a (15)

- PIwt+l’

Suppose that the wall of the cavity surrounding the
black hole is located at rg. For such a system in a grand
canonical ensemble, the wall is maintained at a temperat-
ure 7 and a potential ®. The charge Q of the system is
defined as equal to the black hole charge without the cav-
ity and the entrophy S of the system is defined as equal to
a quarter of the event horizon area of the black hole
S =nr;. For such a system, the total energy can be writ-
ten as [72]

E = rg|1 = Vfrp)]- (16)

We define the temperature as
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_(G_E) _ i 1 (1_Q_2+3aa))
S /o m 47rrhm ri rfl‘”” (;7)

where T}, is the Hawking temperature of the black hole,
and we have used r, to eliminate M

Q* a
M= 2+2rh 2 (18)
The potential is defined as
1 1
_(a_E) _Q(a‘ﬁ) "
00 /s NiOR

With all these quantities above, the first law of ther-
modynamics can thus be written as

dE = TdS +®dQ. (20)
The free energy can be given by

F=E-TS -®Q. 1)
Physical quantities in units of rg can be concise:

30t A
x=ry/rg, a=alry’™, Q=Q/rg,

T =16xrgT, F=F/rg. (22)

Plugging Eq. (22) into Eq. (21), we can obtain the specif-
ic expression for free energy:

f:l—\/l—ﬁ—x+§2—Q—2+i—T—x—®Q (23)

x xe 16

Similarly, temperature and potential can be written in
units of rp

— 4 0> 3a
T = —— (1—%+X3Z‘fl] (24)
x\/l—a—x+Q2—Q—+%
X  xv
and
®= et ) : (25)

x3w

—  —
\/1 —ZI—x+Q2—Q—+—

However, there are some constraints on the physical

quantities of the black hole, which can be presented in
x—Q space. First, x < 1 apparently holds because the ho-
rizon radius r, is less than cavity radius rz. On the one
hand, we need to ensure that the temperature T is not less
than zero, which gives

0% < x% +3awx' 3. (26)

Note that Q? = x% + 3awx'~3* means the emergence of an
extreme black hole. On the other hand, all physical quant-
ities must be real numbers, and thus, f(rg) > 0 needs to be
satisfied, which gives

(1-a)x—x*+ax!—3
1-x ’

27

The above formula should be changed into
0% <1+3aw when x=1. To simplify the calculation
without loss of generality, we set w = —2/3 and only con-
sider the case of Q > 0 because the constraints of Q on x
are symmetric. The physically allowed regions in x—Q
space are displayed in Fig. 5, which are divided into three
categories according to the value of a. For w =-2/3, the
expression for Boundary I is Q =0, that for Boundary II
is x=1, that for Boundary Il is Q = Vx—ax—ax?, and
that for Boundary IV is Q= Vx?2—2ax3. There is no
Boundary III in Fig. 5(a) because it is outside Boundary
IV. Moreover, no Boundary II is in Fig. 5(c) because the
upper limit is x = (1 —a)/a instead of x = 1.

Our strategy to study the phase structures and trans-
itions is as follows. First, we use Eq. (25) to express
0 = O(x,®) and substitute it into Eq. (24) and Eq. (23),
respectively. Therefore, we have T T(x,®) and F (x T,D).
Again, substltutmg the above T(x,®) into F(x T,D), we
obtain F(x,®). With x as the parameter, F —T diagrams
for fixed @ can thus be plotted. However, those F—T
curves are the cases that belong to the black hole solution.
We have not considered the cases for the boundaries. The
situation of each boundary is different, and we need to
determine the lowest free energy on each boundary when
the grand canonical ensemble parameters 7 and @ are
fixed.

On Boundary I, that is, 0 =0, we notice that

or =-0<0, (28)
0Q IBoundary I
which implies that on the boundary other than (0,0),
points with lower free energy can be found in the physic-
ally allowed region because the points on the right of
(0,0) are beyond the physically allowed region. We refer
to (0,0) as the H state, which might be a candidate with
the globally lowest free energy.

On Boundary II, that is, x = 1, which implies that the
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(a) 0 < @< 1/3. H State and M State
Fig. 5.

(b) 1/3 <@ < 1/2. H State and L State

HSTATE

(c) 1/2 <@ < 1. H State and L State

(color online) Three types of distinct physically allowed regions in x— Q space. The yellow area is physically allowed and the

black curve is the boundary. The coordinates of these states are A State (0,0), M State ( V1-2a,1), N State (% a+ % -2, 12;55 ), L State

(on Boundary III), and P State (0, %ﬁ ).

cavity merges with the event horizon, we find that

a—[i =-0<0. (29)
0Q |Boundary II
This indicates that on that boundary, the free energy
will decrease as Q increases, so the point with the lowest
free energy is the right endpoint, which is denoted by M
State. In M State, the black hole is an extremal black hole
and the cavity merges with the event horizon.
On Boundary 111, that is, O = Vx—ax—ax?, the free
energy of this boundary can be written as

.

~ xT

F=1-—-®
16

x—ax—ax?. (30)
If T and @ are determined, the globally minimal free en-
ergy on this boundary is also determined because it is
only the function of x. Nevertheless, what we really need
is that when @ is fixed, the globally minimal free energy
of the boundary changes with temperature 7. To solve
this problem, we perform the following deduction:

AF(x,T,D) ~ 40(2ax+a-1)
e =T, d) = ——— . (3])
Ox xVx—"ax-"ax>
Substituting this into Eq. (30), we obtain
—_— 2 X —
Fd)=1+ O2ax” +3ax—3x) (32)

64nVx—ax—ax?

With x as the parameter, F —T curves for fixed ® can
be plotted. It is worth noting that the above equations can
only describe the behavior of stagnation points on the
boundary, and thus, the endpoints are supposed to be con-

sidered because there is no singularity for F(x,®) on
Boundary II1. For the case shown in Fig. 5(b), (1 -a)/2a <
x<1. We denote x=(1-a)/2a as N State and x=1 as M
State, and the point between M State and N State may
also be the candidate of globally minimal free energy,
which is denoted as L State. For the case shown in Fig.
5(c), 1-a)/2a< x< (1-a)/a. We denote x=(1-a)/a as
P State and L State between P State and N State may
have the locally minimal free energy. In N State, the
black hole is an extremal black hole, and the cavity
merges with the outer event horizon. In L State, the cav-
ity merges with the outer event horizon. In P State, the
charge of the black hole equals zero, and the cavity
merges with the outer event horizon.

On Boundary IV, that is, 0 = Vx2=2ax3, the black
hole is an extremal black hole. In the previous discussion,
we have actually reached such a conclusion that Bound-
ary IV belongs to the black hole solution, and that is why
Eq. (26) can take the equals sign. Therefore, Boundary IV
does not need to be considered again and the globally free
energy on the boundary can only be the endpoints,
namely H State or M State in Fig. 5(a) and H State or N
State in Fig. 5(b) and Fig. 5(c).

Once again, we use the heat capacity at constant po-
tential Co to judge thermal stability. As discussed before,
Cyp>0 and Cop <0 correspgnd to stable an_q unstable
states, respectively. Using 7'(x,Q) and ®(x,Q) in Egs.
(24) and (25) to eliminate Q, we obtain the expression of
x against 7 and @, which is plotted in Fig. 6. We divide it
into three cases in advance, and each case corresponds to
a subgraph.

In addition, we find there are nine regions in ®—a
phase diagram, as shown in Fig. 7. To obtain the detailed
information about the phase structures and transitions of
each region, we display the F — T diagrams of the physic-
ally allowed regions and the candidates on the boundar-
ies in Fig. 8. The specific and representative cases for
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(color online) Nine regions in ®—a phase space.

each region are selected, and the subsequent analyses are
as follows.

For Region I, the F — T diagram is plotted in Fig. 8(a),
and the corresponding physically allowed region is shown
in Fig. 5(a). As discussed before, H State and M State are
the candidates for minimal free energy on the boundary.
Therefore, one can plot the free energy of H State, M
State, and the locally stationary points in the physically
allowed region against temperature. There are two
branches for the physically allowed region, Small BH and
Large BH, which connotes that there are both a locally
maximal and a locally minimal free energy in that region.
When temperature T is small, H State has the minimal
free energy; thus, it is the globally stable state. When
temperature continues to rise, a first-order phase trans-
ition occurs from H State to Large BH, and the latter be-
comes the thermodynamical preferred state. As T in-
creases further, a second-order phase transition occurs;
then, M State becomes the stablest state.

For Region II, the F — T diagram is plotted in Fig. 8(b).
Compared with Region I, only the value of ® changes in
this region; thus, the candidates remain unchanged since
the physically allowed region stays the same. However,
the difference is that the free energy of the point where

(b) @=0.45. From left to right, the
values of ® are 2.00, 1.20, 1.00.

(color online) Plots of x against 7 for different @ and ®. The Small BH branches with a negative slope are unstable states

. T 7 L L L L ) 5
30 40 50 0 10 20 30 40 50

(C) a = 0.7. From left to right, the
values of ® are 2.00, 1.00.

Large BH tangent to M State is higher than that of the
first-order transition, resulting in only the first-order
transition from H State to M State occuring in this region.

For Region I11, the F — T diagram is plotted in Fig. 8(c),
from which one can see that only the Small BH branch is
in the physically allowed region. This just corresponds to
the case ® = 50 in Fig. 6(a). As T increases, there is only
a first-order phase transition occurring from H State to M
State.

For Region IV, the F — T diagram is plotted in Fig. 8(d),
of which the physically allowed region is displayed in
Fig. 5(b) and the x—T diagram is plotted in Fig. 6(b). It
is distinct from the case shown in Region II, mainly be-
cause the locally minimal free energy on the boundary
lies at L State, which is between M State and N State. We
can see from Fig. 8(d) that L State is actually a combina-
tion of a curve and a straight line. The curve corresponds
to the movement of L State on Boundary III, while the
straight line corresponds to L State coinciding with M
State. When the temperature T rises, the black hole un-
dergoes a first-order phase transition from H State to L
State.

For Region V, the F — T diagram is plotted in Fig. 8(e).
Unlike in Region IV, in this region, the free energy of the
point where Large BH is tangential to L State is lower
than that of the first-order transition, resulting in the addi-
tion of a second-order transition from Large BH to L
State. In general, a first-order phase transition and a
second-order phase transition occur sequentially in this
region.

For Region VI, the F — T diagram is plotted in Fig. 8(f).
There is only the Large BH branch for the physically al-
lowed region, which can also be realized from Fig. 6(b).
As T increases, a second-order phase transition occurs
from Large BH to L State.

For Region VII, the F — T diagram is plotted in Fig. 8(g)
and the physically allowed region is shown in Fig. 5(a).
Notably, no phase transition occurs in this region. In this
case, only the point that has the minimal free energy on
the boundary might be the globally stable state, on ac-
count of Egs. (24) and (25) without real roots in the phys-
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(color online) Plots of free energy F against temperature 7 in nine regions. The black dot is where a first-order phase trans-
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(1) Region IX: @ = 0.7,® = 2.00.

ition occurs while the gray dot is where a second-order phase transition occurs. The solid lines represent the physically allowed region,

and the dashed lines represent the boundaries.

ically allowed region. It also implies that it is impossible
to find an x—T curve in Fig. 6(a), and hence, there are
only three corresponding curves for four regions.

ForRegion VIII, the F — T diagramisplotted in Fig. 8(h).
As T increases, a first-order transition occurs from H
State to Large BH. This region is very similar to Region
V, but the difference is that no second-order phase trans-
ition occurs because the Large BH line and L State line
will never intersect.

For Region IX, the F — T diagram is plotted in Fig. 8(i).
This region is a deformation of Region VI, and it is very
similar to Region VIII in that when T tends to infinity,
the Large BH branch and the L State line approach infin-
itely but never intersect, and thus, no phase transition oc-
curs.

In summary, as T increases, a first-order phase trans-
ition occurs in Regions II, III, IV, and VIII, a second-or-
der phase transition occurs in Region VI, a first-order and
a second-order phase transition occur successively in Re-

gion I and Region V, and no phase transition occurs in
Regions VII and IX. In Fig. 7, one can refer to L;;;; as
the critical line between Region i and Region i+ 1. As a
increases, Las4, L4s, Lsg, and Lg; originate from the same
® and gradually diverge. Meanwhile, the value of ® on
Li», Lys, L34 and Lys decreases and converges to zero as
a— 0.5. It is worth noting that the straight line @ = 0.5 di-
vides the original Ls¢ into the current Lss and Lgy. This is
because, when @ > 0.5, the Large BH branches tend to in-
finity and never intersect with L State lines as T rises, as
explained before. However, for the general case, if
1+3aw <0, M State disappears, and the Large BH
branches of the physically allowed region never intersect
with L State lines as T rises, which leads to the disap-
pearance of the second-order phase transition. Equival-
ently, the equation of the vertical line in the ®-a dia-
gram is

a=-1/30. (33)
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It is intriguing to plot the 7—® phase diagrams to
conclude the conclusions above. As shown in Fig. 9, we
set a=0.45 and 0.7, respectively. In Fig. 9(a), there are
three potential phases with the lowest free energy. When
® < d, ~0.12, H State, Black Hole, and L State in turn
become the globally stable state as 7 increases. When
D, <D <D, ~1.13, only H State and L State have the
globally lowest free energy with the change in 7. When
D < O < D3~ 1.35, the three phases become the can-
didates of lowest free energy again. Significantly, as @
rises to @3, the first-order phase transition line between
H State and Black Hole will become almost a vertical
line. It corresponds to the transition between Region V
and Region VI; that is, when ® increases by a small
amount, T decreases sharply. In Fig. 9(b), there are only
two potential phases with the lowest free energy. As @
rises to @4 ~ 1.83, T decreases rapidly, which corres-
ponds to the transition between Region VIII and Region
IX.

IV. CONCLUSION

In this paper, we considered a grand canonical en-
semble and studied the phase structures and transitions of
an RN black hole surrounded by quintessence dark en-
ergy in AdS space and in a cavity, separately. For the
quintessence RN-AdS black hole, we fixed the temperat-
ure and the potential and found that for some temperat-
ures, there are two branches of the black hole, namely
Small BH and Large BH. By calculating the heat capa-
city at constant potential, we discovered that the Small
BH branch is unstable, whereas the Large BH is stable.
Furthermore, a first-order transition occurred as temperat-
ure increased for some small values of ® instead of large

®. Thus, we divided all the cases into two regions in the
® —a phase diagram in Fig. 2, in which one point can de-
cide whether a phase transition occurs or not. Moreover, a
T — @ phase diagram is displayed in Fig. 4.

Moreover, we investigated the phase structures and
transitions of the black hole in another boundary condi-
tion, i.e., the Dirichlet wall. Initially, we used the energy
of the system obtained in [72] to construct the first law of
thermodynamics. The case for the barotropic index
w =-2/3 was studied in detail. Moreover, we obtained
the constraints of black hole parameters x and Q in a cav-
ity, which were separated into three cases depending on
the value of a. In the physically allowed region, we ob-
tained the F — T curves for fixed ® with x as the paramet-
er. On the boundary, the position of the latent lowest free
energy was evaluated through the expression of F, and
we labeled these points in the x—Q space as different
states. Finally, we plotted the F—T diagrams and ob-
tained the phase transitions. In summary, there are nine
regions with different phase structures. To distinguish
them more clearly, we plotted the nine regions in the
® -7 phase diagram in Fig. 7. The T — ® phase diagrams
were also plotted in Fig. 9, in which the phase structures
for fixed w and a could be displayed clearly. The discrep-
ancy in the phase structures and transitions of a quint-
essence RN black hole between the two different bound-
ary conditions is distinct.
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