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Abstract: In this study, we modify a scenario, originally proposed by Grimus and Lavoura, in order to obtain max-

imal values for the atmospheric mixing angle and CP, violating the Dirac phase of the lepton sector. To achieve this,
we employ CP and some discrete symmetries in a type Il seesaw model. To make predictions about the neutrino
mass ordering and smallness of the reactor angle, we establish some conditions on the elements of the neutrino mass
matrix of our model. Finally, we study the quark masses and mixing pattern within the framework of our model.
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I. INTRODUCTION

According to the global fits to neutrino oscillation
data [1], it is well known that the three mixing angles in
the lepton sector are close to the tribimaximal (TBM)
mixing [2—4]. In the TBM pattern, the values of the three
mixing angles are as follows: sin?@1, = 1/3, sin® 63 = 1/2,
and sin® 63 = 0. In contrast, the CP violating Dirac phase,
dcp, In the lepton sector is yet to be measured precisely.
However, from the global fits to neutrino oscillation data
[1], the best fit value for §cp is around 7(3/2x) in the case
of normal (inverted) ordering of neutrino masses. The
TBM value for 6,3 and Scp = (3/2)x are still allowed in
the 30 ranges for these observables in the current neut-
rino oscillation data [1]. The aforementioned values for
0,3 and 6cp are considered to be maximal. To explain
these maximal values forf,; and J.p, Harrison and Scott
have proposed the p—7 symmetry in combination with
CP symmetry, together called u—7 reflection symmetry
[5]. For further works regarding the u—rand CP symmet-
ries, see Refs. [6—12]. Ref. [6] is a review article.

In the work by Grimus and Lavoura [13], it is shown
that a mass matrix for light left-handed neutrinos has the
following form [14]:

a r r
M,=| r s b €))
b s*
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which can yield maximal values for 6,3 and Jcp. In the
above equation, a,b are real and r, s are complex. Further,
in Ref. [13], a model is constructed, which is based on
w1 —7 reflection symmetry and softly broken lepton num-
bers, to obtain a mass matrix of the same form as in Eq.
(1) for light neutrinos. In this model, three Higgs doublets
are introduced and light neutrinos acquire masses via type
I seesaw mechanism [15, 16]. The lepton number is softly
broken by the mass terms for right-handed neutrinos in
this model. However, in the absence of parameter fine
tuning in the model, muon and tau leptons can have
masses of the same order. To explain the hierarchy in the
masses for these leptons, K symmetry is introduced, un-
der which the muon is massless [13]. Realistic masses for
muon and tau leptons are explained in the above men-
tioned scenario with the soft breaking of the K symmetry
[17]. The work done together in Refs. [13, 17], which is
based on u—7 reflection symmetry, consistently explains
the mixing pattern in lepton sector and also the masses
for charged leptons.

Although the work done in Refs. [13, 17] gives a con-
sistent picture about masses and mixing pattern in the
lepton sector, it suffers from a few limitations, as ex-
plained below. It is argued in Ref. [13] that the mass mat-
rix of Eq. (1), which is obtained from u—7 reflection
symmetry, cannot give predictions about neutrino mass
ordering and the mixing angle 6;,. Moreover, in the case
of maximal §¢p, the mass matrix of Eq. (1) can make no
predictions regarding 6;3 [13]. From the current neutrino
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oscillation data, it is known that neutrinos can have either
normal or inverted mass ordering, where sin’6;, ~1/3
and sin?6;3 ~ 1072 [1]. Apart from the above mentioned
limitations, in Ref. [13], mixing pattern in the quark sec-
tor was not addressed. Nonetheless, the mixing pattern in
the quark sector [18] is known to be different from that of
lepton sector. The interest would be to know whether the
same framework could be used to understand the mixing
patterns for both quark and lepton sectors.

As stated above, in Ref. [13], a model, which is based
on type I seesaw mechanism and u—7 reflection sym-
metry, is presented with the aim of obtaining the neutrino
mass matrix of the same form as Eq. (1). In this work, we
rather aim at investigation whether the matrix in Eq. (1)
can be obtained with type Il seesaw mechanism [19-21]
in the framework of u—7 reflection symmetry. To
achieve this, we construct a model, which has three Higgs
doublets and one scalar Higgs triplet. In our model, right-
handed neutrinos do not exist, and hence, neutrinos ac-
quire masses when the Higgs triplet get vacuum expecta-
tion value (VEV). The purpose of Higgs doublets is to
give masses to charged leptons via Yukawa couplings.
With the u—7 reflection symmetry in our model, if the
VEV of Higgs triplet is real, we show that mass matrix
for the light neutrinos will have the form of Eq. (1). To
show whether the VEV of the Higgs triplet could be real,
we analyze the scalar potential of our model. We demon-
strate that by using an extra discrete symmetry, the VEV
of Higgs triplet can be real. In parallel to that, we also ad-
dress the problem of hierarchy in the masses of muon and
tau leptons. In the literature, models have been construc-
ted in order to achieve maximal values for 6,3 and Scp
using type Il seesaw mechanism [22, 23]. However, in
these models, multiple Higgs triplets have been intro-
duced in addition to the three Higgs doublets. Hence, our
model proposed here is economical compared to the
aforementioned models.

As stated previously, the mass matrix form given in
Eq. (1) can predict maximal values for 6,3 and 6cp.
However, this matrix cannot make predictions about
neutrino mass ordering and the mixing angles 6;,,6;3. As
already pointed before, we have sin?6;3 ~ 10~2 [1], which
means that 6,5 is a small angle. In this work, we perform
an analysis, based on approximation procedures [24, 25],
and derive some conditions on the elements of neutrino
mass matrix which can make predictions about the neut-
rino mass ordering and smallness of 6,3, apart from giv-
ing maximal values for 6,3 and Jcp. In this analysis, we
assume sin”6i, ~ 1/3. To achieve the above mentioned
conditions, new mechanisms should be proposed. In this
work, we have attempted to provide one mechanism to
achieve one of those conditions.

In our model three Higgs doublets give masses to
charged leptons. Thus, it is worth knowing whether these
scalar doublets can also generate masses and mixing pat-

tern for quarks. Due to CP symmetry in the lepton sector,
it is found that these Higgs doublets should transform
non-trivially under the CP symmetry. As a result, we pro-
pose CP transformations for quarks in such a way that the
corresponding Yukawa couplings are invariant under the
CP symmetry. A large hierarchy among the masses of
quarks is known. Hence, to explain the mixing pattern for
quarks, their Yukawa couplings should be hierarchically
suppressed [26]. To explain the realistic mixing pattern
for quarks through hierarchically suppressed Yukawa
couplings, we followed the work done in Refs. [27, 28].
For more information regarding other works on quark and
lepton mixings with generalized CP transformations, see
Ref. [29, 30]. Additional works addressing quark and
lepton mixings with other symmetries could be found in
Refs. [31-33].

The paper is organized as follows. In the next section,
we propose a model for lepton mixing, where maximal
values for 6,3 and 6cp can be predicted if the VEV of
triplet Higgs is real. In Sec. III, we analyze the scalar po-
tential of our model and show that the VEV of triplet
Higgs can be real if we introduce additional discrete sym-
metry Zz. In Sec. IV, we obtain some conditions on the
elements of the neutrino mass matrix of our model, which
enable predictions about the neutrino mass ordering and
smallness of 63. In Sec. VI, we investigate quark masses
and mixing patterns and demonstrate that they can be ex-
plained in the framework of our model. Conclusions are
presented in the last section. In the Appendix, we attempt
to describe a mechanism for achieving normal order of
neutrino masses.

II. AMODEL FOR LEPTON MIXING

The model we propose for lepton mixing is similar to
that in Ref. [13]. We propose scalar Higgs doublets
¢i = (¢7,¢))", where i =1,2,3, in order to give masses to
charged leptons. We denote the lepton doublets and sing-
lets by Dor = (VL))" and ag, where @ = e, u,, respect-
ively. The CP transformations on the lepton fields and
Higgs doublets are defined as [13]

Dot = iSapy°CDYy . ar — iSapy CRE.
0 0

1
S :( 0 0 1 ], 12— @1, B3 —¢3. 2
01 0

Here, C is the charge conjugation matrix. In addition to
the invariance under the above mentioned CP transforma-
tions, one needs to impose conservation of U(1),, and Z,
symmetries. Here, U(1), is the lepton number symmetry
for the individual family of leptons. Under Z, symmetry,
only the eg and ¢, change sign. Considering the afore-
mentioned charge assignments, the invariant Lagrangian
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for charged lepton Yukawa couplings is given by [13]

3
Ly =—yeDorgrer — Z Z gjeDardpjar +hec..  (3)

Jj=2 a=p,7

In order for the Lagrangian in Eq. (3) to be invariant
under CP symmetry, we should have y., to be real,
gy =g,, and g3, =—g; . Since the mass of electron
should be real, we take the VEV of ¢, to be real. In con-
trast, the VEVs of ¢, 3 should be complex, which give
masses to muon and tau leptons, whose forms are given
below [13].

my = |gouva + gyuval,  me = 1g5,v2 — g3,v3l. 4

In this work, we take (¢?) =v; for i=1,2,3. As an a pri-
ori assumption, the VEVs of all Higgs doublets are of the
same order. Hence, from the above equations, we notice
that some fine tuning is necessary in order to explain the
hierarchy in the muon and tau lepton masses. To reduce
this fine tuning, K symmetry is introduced, under which
the non-trivial transformations of the fields are given be-
low [13]

$2 © ¢3. (5)

MR — —HR,

After imposing this K symmetry in the above model, one
can see that g», = —g3,,. Using this in Eq. (4), we get

My _|v2=vs

: (6)

me V) +Vv3
Since the scalar potential of this model should also re-
spect the K symmetry, we should get v, = v3, and hence,
m, =0. Now, to explain a non-zero but small m,, soft
breaking of K symmetry can be introduced into the scalar
potential of this model [17]. The analysis related to this is
presented in the next section.

To explain the masses for neutrinos in the above de-
scribed framework, we introduce the following Higgs
triplet into the model.

A

A=l 2| ()
A 2
V2

A is singlet under Z,, but otherwise transform under
CPsymmetry as A — A*. Now, the Yukawa couplings for
neutrinos can be written as

1 v me
Ly= 3 ) ﬁ;ﬂ ] YQBDZLlazADpL +h.c. (®)

Here, D¢, is the charge conjugated doublet for D,r, and
o, 1s a Pauli matrix. We can notice that the terms in the
above Lagrangian break the lepton number symmetry Uy,
explicitly. This can be considered technically natural,
since the neutrino masses become zero in this model in
the limit that the symmetry U, is exact. Hence, to ex-
plain the smallness of neutrino masses, the symmetry of
U;, can be broken by small amounts. Therefore, here, the
neutrino Yukawa couplings ¥}, can be small. Due to the
invariance under CP symmetry, these Yukawa couplings
should satisfy

SY'S =(Y")". )

After electroweak symmetry breaking, we can have
(A% =v,. Now, from Eq. (8), we get the mass matrix for
neutrinos, which is given by M, = Y"v,. If v, is real, us-
ing Eq. (9), we get

SM,S = M. (10)

In order to satisfy the above relation, the form for M,
should be the same as in Eq. (1). Hence, in the above pro-
posed model, the mixing angle 6,3and the CP violating
phase 6cp are maximal. However, to satisfy the relation
in Eq. (10), va should be real. In the next section, we
present an analysis of the scalar potential in our model,
where we demonstrate that v, can be real.

Now, we estimate the value of v, in our work. As
stated above, the neutrino mass matrix is M, = Y v,.
Since the couplings Y” should be small, because they
break the U, symmetry by a small amount, we take
Y ~ 1073, Now, by fitting M, to neutrino masses, which
are obtained from the neutrino oscillation data, an estima-
tion ofvacan be obtained. Using the neutrino oscillation
data, the following mass-square differences have been
found [1], where we have given the best fit values.

mi=m}—mi =7.5%1075 eV?,
mi—m?} =255x1073 eV (NO)
m}—m3 =245x1073 eV? (10)

2

my

(11)

Here, m;,3 are neutrino mass eigenvalues and NO(IO)
represents normal (inverted) ordering. Using the above
values, we get m; ~0.0087 eV and m, ~ 0.05 eV, which
correspond to solar and atmospheric neutrino mass scales,
respectively. To fit these neutrino mass scales in our
work, we can take vp ~1-10 €eV.

II. ANALYSIS OF SCALAR POTENTIAL

The scalar fields of the model proposed in the previous
section are charged under the symmetry CPxZ, x K. The
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invariant scalar potential of this model can be written as
Vi =Vp+Vr. (12)

Here, Vp contains potential terms only for the Higgs
doublets. V7 is the scalar potential for the triplet Higgs in
our model. The form of Vj, is given by [17]

Vb == Mi¢|¢1 — M5 (162 + ¢103) + 11 (661
+ 4 [(@32)” + (¢]¢3)°]
+3(8161)(B362 + B103) + Aa($12)(863)
+ 15 [(@]¢2)(8501) + (8] d3)(391))
+ 46 [(@363)(8502) | + A2 [ (8563)7 + (4562)?
+ 5 [(@]¢2)* + (@]¢3)” + (8591)* + (951’
+ido (6] ¢2)(9]83) — (6361)(581))]
+id10(¢3¢3 — B1d2)(@] 2 — $163). (13)

In the above equation, all parameters are real due to either
hermiticity or CP symmetry of the potential. To obtain
Vr, we have followed the work in Ref. [34]. The form of
Vr is given below.

1
Vr =mATr(ATA) + EAA[Tr(ATA)f

+ 411911 TH(ATA) + A12($5 2 + §L3) TH(ATA)
+ A3 Tr(ATADTH(AA) + 214¢] AT Ag

+ Ais(BSATAG + ¢1ATAGS)

+k1(¢ioa Ay +h.c.)

+Kka(BYio2 APy + §hior Ads +h.c.)

+ik3 (@l ioaAd3 —h.c.) (14)

Here, ¢ =ioa¢;, k=1,2,3. Similarly, all parameters in
the above equation are real, due to either hermiticity or
CP symmetry of the potential.

As described in the previous section, the VEV of ¢,
is real, whereas the VEVs for ¢, 3 should be complex. Al-
though all parameters in Eq. (14) are real, due to com-
plex VEVs of ¢, 3, the trilinear terms containing «,3 can
contribute complex VEV to A. However, it may happen
that the phases of the VEVs of ¢,3 can be fine tuned in
such a way that the «»3-terms can give a real VEV to A.
We study these points by minimizing the scalar potential
of our model. Nonetheless, we first have to estimate the
order of magnitudes for the unknown parameters in Eqs.
(13) and (14). From the naturalness argument, we take all
dimensionless 4 parameters to be O(1). Since the VEVs
of Higgs doublets should be around the electroweak scale

of vew = 174 GeV, we take M?, M2 ~vi, . Now, we have
to determine the order of magnitudes for mi and «j23.
This is explained below. After minimizing the potential
of Eq. (14) with respect to A%, we get

2
KV,

VA~ ——————.
2 2
my + /lvEW
Here, k ~ k123 and A~ A;1,12. In the above equation, we
have used vy < vgw. To get a very small v5, we can con-
sider the following two cases.
casel:

ma > VEw, K~ Mp.

casell: mp ~VEw, K~ Va. (16)

In case I, the smallness of v, is explained by considering
a large value for m,, which is around 10'> GeV. In case
II, by suppressing the x parameters, one can understand
the smallness of va. In case I, the value of my is close to
the breaking scale of supersymmetry in supergravity
models [35, 36]. Hence, one can motivate case I from su-
persymmetry. In contrast, in case II, one has to find a
mechanism for the suppression of x parameters. From the
phenomenology point of view, case II can be tested in the
LHC experiment, since the masses for the components of
scalar triplet Higgs can be around few 100 GeV.

In case I, we can notice that (Vp) ~(Vr). Only the
terms containing mi and x parameters in (Vr) can be of
the same order as (Vp). Other terms in (Vr) give negli-
gibly small contribution in comparison to (Vp).In con-
trast, in case II, (V7) < (Vp). Because of this difference
in the contribution of V7 in both these cases, we minim-
ize the scalar potential of our model separately for these
two cases.

A. Casel

We parametrize the VEVs of scalar fields as follows.

(¢(2)> =v, = vcosoe?,

(@%y =y,

(¢3) = vy =vsinoe®, (A% =v, =" (17)
Here, vy, v, v/ are real. We plug the above parametriza-
tions in the scalar potential of Eq. (12). Since we want
(A% to be real, and moreover, Vi, respect K symmetry,
we look for a minimum at

a=F=w, 6=0. (18)

/e
0'=Z,

Now, we take first derivatives of Vi, with respect to
o, @, B, 8 at the values mentioned in Eq. (18). Thereafter,
we get the following two conditions.
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24 sin2w + Adgcos2w = 0, (19)

2k sin2w = k3 €S 2w. (20)

By satisfying the above two conditions, Eq. (18) gives a
minimum to our scalar potential. We justify that this a
minimum, after computing the second derivatives of the
potential. This analysis is presented shortly later.
However, with the minimum of Eq. (18), we get v, = vs.
Hence, m, =0, which follows from Eq. (6). To get non-
zero and small m,, one should add K-violating terms in
our model, which break the K symmetry explicitly by a
small amount. Here, we can see the analogy between Uy,
and K symmetries of our model. Both of these symmet-
ries are broken explicitly by a small amount in order to
generate small masses for neutrinos and muon.

After including the K-violating terms, the procedure
we follow for minimization of the scalar potential is sim-
ilar to that in Ref. [17]. However, in this work, we write a
more general form for K-violating terms as compared to
that in Ref. [17]. In Ref. [17], only the soft terms, which
break the K symmetry, are considered. The general form
for K-violating terms in our model, which respects the
symmetry CP X Z,, is given by

Vi =i0M (¢33 — ¢82) + OM3 3y + OM3 3
+8ka () 102 Ay +h.c.) + 0Ky (5 ioaAds + hic.)
+02(@302)" + 45($5¢3)> +63(0] 61)(B162)

+ 60541 61)(@103)

+615(¢) 2)(B361) + 55(b] $3)( D3 h1)

+ 028 [(#]62)” + (@501)* | + 65 [ (@] 3) + (811 ]

+i610(¢582) (P33 — Biba)

+i6A10(¢583) (@) b3 — Blb)

+i6A,(]P1) (D33 — B} b)

+i62, [(@]82)(@101) — (301)(0] ¢3)

+6A120382 TH(ATA) + 62,9 3 Tr(ATA)

+81585ATAGy + 60, spE ATAG

+i6A,(¢} 3 — B p2) Tr(ATA)

+i6A] (I ATAGs — pIATAP)).

21

All parameters in the above equation are real, due to
either hermiticity or CP symmetry of the potential. Terms
in the first and second lines are quadratic and trilinear, re-
spectively. Rest of the terms in the above equation are

quartic.
In Ref. [17], only the soft terms which are quadratic

are given. Moreover, the last two terms in the first line of
Eq. (21) are given in Ref. [17], but by taking
6M3 = -5M3. We notice that if 6M3 = 6M?, the sum of
the corresponding terms in Eq. (21) is K-symmetric.
Hence, as long as 6M3 # M3, each of these correspond-
ing terms in Eq. (21) is K-violating but conserving
CP x Z,. Based on this observation, we have constructed
other K-violating terms in Eq. (21). Since the terms in Eq.
(21) break K symmetry by a small amount, their corres-
ponding parameters should be small compared to the cor-
responding parameters of Viyy.

After including the K-violating terms, the total scalar
potential of our model is

Viotal = Viny + VK~ (22)

Previously, we minimized Vi, and argued that the min-
imum can be at Eq. (18). Now, due to the presence of Vi,
the above minimum can be shifted by a small amount.
Consequently, the minimum for Viy, in terms of small
deviations 6¢, 0,5,y can be written as

6= 0+69.
(23)

=w+é8 +6_ =w+6 0
a=w+0,4 7 B=w+0d4 7

Now, we express (Viny) and (Vg) as a series summation
up to second and first order, respectively, in the afore-
mentioned small deviations. After neglecting the con-
stant terms, we get

1
Vo) = 5 ;ﬂb&,éb + Z fiba. (24)

Here, ¥, is symmetric in the indices a,b, corresponding
to the second derivatives of Vi, calculated in Eq. (18).
Non-vanishing elements of ¥, are given below.

Frv =(=825 cos 2w + 49 sin 2w)viv?
+ (82 cOs 2w + 4k sin 2wV,
F =210 — 2/18\/%\}2 082w + 2kv*V' cos 2w,
1~ 4 2 N2
Foo =— z/lv + (Agv] + K3V v sin2w,
_ 2.7 2.7 2.7 .
Foo =2k1V]V" + 2k2v7V cos 2w + K37V sin 2w,

Fo- =— 2/181/%\/2 sin2w + 410v* + 2k21%V sin 2w,

Frg = —2(2k2 €08 2w + K3 5in 20>V (25)

Here, A = —21; + A4 + A +217. The expressions for f, are
given below.
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1
for=5(6M3 ~ M)V ~ (B2 = SV cos 2

+ %(5/12 — St + %[6/13 — 62, + 615
— 845 +2(6A5 — 64g) cos 20](nv)?
+ 36— 00,
I =(5va2 + (6ky — 6/<’2)v2v' sin2w
— (62 — 6A%) sin2w(v1v)* + %(6/110 +6 v

+ (045 = SV v) +54,(nW)?,
fr =282 + 5KV sin 2w — 2(5As + 6A5) sin 2w (viv)?,
fo == (6ka + 5K,V sin 2w. (26)

Using Eq. (24), the small deviations in the minimum of
Viotal €an be obtained as

§=-F"'1. (27)

Here, 6 =(60,9-,0+,80)T, f=fo.f- fe, )T and F is a
matrix containing the elements #;.

Since some elements of ¥, are zero, Eq. (27) can be
decomposed into

60 \_ 1 fo [ Foo Fo-
()= (7 ) ~=(7 )

0 _ i fr _ Frv Fuo
(5)) el 5 7)o

We can see that ¥ is in block diagonal form containing
F1 and F>. As stated earlier, the elements of F corres-
pond to second derivatives of Vi, calculated in Eq. (18).
It follows that, if the eigenvalues of #; and ¥, are posit-
ive, then Eq. (18) gives minimum to the scalar potential
in the absence of Vg. One can see that the unknown 4 and
x parameters of Fj, can be chosen in such a way that
F1.2 yields positive eigenvalues. However, in the pres-
ence of Vg, the minimum of the scalar potential in our
model is shifted to Eq. (23). The small deviations of Eq.
(23) can be computed from Eq. (28), from which we can
see that 6_,6, # 0. Hence, v, # v3. Using the expressions
for 6_,6, in Eq. (6), we can get the required hierarchy
between m, and m., provided the parameters of Vi are
small. It can be noticed that the parametrizations used in
Eq. (23) are similar to those in Ref. [17], in whichit has
been pointed out that 6, = 0. In our work, we get 6, #0,
since f # 0. This difference is due to the fact that in Ref.
[17], K-violating quartic terms are not considered.

We have described that using the K-violating terms of
our model, we can explain the required hierarchy between
muon and tau lepton masses. However, in doing so, from

Eq. (28) we can see that §; # 0, makes vy complex. One
can fine tune the parameters in %5, f;, fp in such a way
that dp=0. In contrast, to get 6y=0, we can take
F+o0=0=fp. After using Eq. (20), F,9 =0 implies that
ky = k3 =0. To make fp =0, either we can take dky = —0k;,
or forbid the trilinear terms of Vg. From the above obser-
vations, to make v, real in case I, without fine tuning the
parameters, the trilinear terms of Viy containing ¢,
should be forbidden.

B. Casell

As explained before, in this case, terms involving
triplet Higgs give very small contribution in comparison
to that involving only doublet Higgses. As a result, the
minimization of Vi, in this case proceeds in two steps.
First, we minimize Vo, Which contains only doublet
Higgses and thereby determine the VEVs of these fields.
Later, after using the VEVs of doublet Higgses, we min-
imize the potential containing the triplet Higgs field. In
the first step of minimization, we can neglect V7 in com-
parison to Vp and the terms in Vg containing the triplet
Higgs field. In this case, we parametrize the VEVs for
#123and A as given in Eq. (17). After minimizing Vj
with respect to o, a,8, the minimum is given by Eq. (18)
with the condition of Eq. (19). Since this minimum gives
m,, =0, we introduce Vg and parametrize the deviations
in o,a,B, as given by Eq. (23). Consequently, one can no-
tice that the above mentioned deviations can be found
from Eq. (27), where, in this case, ¥ and fare 3x3 and
3x1 matrices, respectively. The components of ¥ and f
can be found from Egs. (25) and (26), where the terms
containing v'should be omitted, leading tod_,d, #0.
After using this in Eq. (6), we get small and non-zero m,,.

Since the VEVs of doublet Higgses are determined,
we now minimize Vr and try to see if v, can be real.
After using Eq. (17) in V7, we get

2 1 4
(Vr) =(my + 11v] + 4?0 + EﬁAv' —2k1v3V cos 6
— 2k2v?V' [cos® omcos(6 — 2a) + sin” o-cos(6 — 28)]

+k3v7V sin207sin(0 — o — B).

(29)
Since we are looking for a minimum at 6 = 0, we do
KVr) =0 = —2ky[cos® osin2a + sin® osin 2]
96 lg=0
+ k3 sin20 cos(a +B) = 0. (30)

As stated earlier, we have determined o, a, 8 up to the
first order in &y, 6-, 6. Plugging the parametrizations for
o, @, B in the above equation and expanding the terms up
to the first order in &y,d_,d,, we get
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2k7 8in 2w — k308 2w + 2(2k7 oS 2w + k3 sin2w)d4 = 0. (31)

Since we have ¢, # 0, after equating the leading and sub-
leading terms of the above equation to zero, we get
k> = k3 = 0. Hence, in case II, one has to forbid the trilin-
ear terms of Vr containing ¢, 3 to make v, real.

C. Imposing an extra Z3 symmetry
From the analysis of the previous two subsections, we
have seen that the trilinear terms in Viy,, which contain
¢23, should be forbidden in order to make v, real. To
achieve this, we impose the discrete symmetry Z; in our
model. Under this symmetry, the non-trivial transforma-
tions are as follows.

¢ — Qdo,  ¢3 — Qs

HR — QZMR, TR — erR. (32)
Here, Q =¢?/3. Under the above transformations, the
Yukawa couplings for leptons are invariant, whereas the
following couplings in Vi, are forbidden: Ago, k23,
ok, 6’ . Now, after using the parametrizations of Eq. (17)
in Vi, we get

1
Viny) =Z[/l —42;sin ¢ sin? 200

1
+ E/llov“ sindosing — 2« viv cosd.  (33)

Here, { = a—p. In the above equation, we have neglected
constant terms which do not depend on o, @, B, 0. We
can notice from the above equation that & do not mix with
o, {. Moreover, due to the absence of trilinear terms in
Vk, (Vi) do not depend on 6. As a result, we can see that
=0 is a minimum to Viy if ;v > 0. This statement is
true for both cases I and II. Hence, after imposing the
above mentioned Z; symmetry, vy can be real in our
model.
For Eq. (33), the minimum in terms of o, ¢ can be at

Fis
T {=0. (34)

Since ¢ =0 corresponds to m, =0, we introduce K-violat-
ing terms into the model. Consequently, the above men-
tioned minimum can be shifted by small deviations 6y, d,
as

[=0+6;. (35)

Now, after imposing Z; symmetry in Eq. (21) and after
following the procedure for minimizing Viya., which is

described in Sec. III.A, we get

00 i fo -11 A0 )4
=F ., F= 2 ,
(54) (fé) ( Ao 247 )"
1 1
fo= 3 (M3 —SM3W* + 76 - s
1
+ 503 S +65 = 6A5)(vv)?
1 ’ 7
+ 5012 =847, )2,

1
fr =6M** + 5@+ SX?
+ (62— SA) ()2 +8,(1)%. (36)

We can see that g, 6, # 0. After using these in the para-
metrizations for v, 3, from Eq. (6), we get

Lo
Z—’T‘ = 5160 +i. (37)

Using the above equation, the required hierarchy between
muon and tau leptons can be explained if we take
S0, 6, ~0.1.

In Sec. II, we have described our model for lepton
sector by introducing additional fields and symmetries. In
the current section, we have introduced one more sym-
metry, Z3, in order to make the triplet Higgs VEV real. In
Table 1 we summarize the additional fields and symmet-
ries, which are needed for our model, in the lepton sector.

IV. NEUTRINO MASS ORDERING AND THE
SMALLNESS OF 6,3

After showing that the triplet Higgs can acquire real
VEV, the neutrino mass matrix of the model proposed in

Table 1. Additional fields and symmetries, which are intro-
duced in the lepton sector of our model. The roles of these
fields and symmetries are also described here.

Additional field Role
b1 to generate the mass of electron
2, ¢3 to generate masses for 4 and ¢
A to generate masses for neutrinos
Additional symmetry Role
CP symmetry to get 1 —7 form for neutrino mass matrix

forbids unwanted Yukawa couplings among

4 charged leptons
U(l)y, to get diagonal masses for charged leptons
K symmetry to reduce the fine-tuning in muon and tau masses
73 to make the VEV of A to be real
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Sec. II satisfy Eq. (10). As a result, after diagonalizing
M,, 6,3 and 6cp would be maximal [13]. However, the
form of M, does not give predictions about 6,,6;30r
neutrino mass ordering. In this section, we carry out an
analysis and provide a procedure, which can give predic-

U=UUpuns, U =diag(1,1,-1),
c12¢13
_ i
Upmns =| —S12€23 — C12523513€"

512523 — C12€23513€1"

HGI'C, Cij = COS 9,‘]‘ and §ij = sin&ij. UPMNS is the Ponte-
corvo-Maki-Nakagawa-Sakata (PMNS) matrix, which is
parameterized in terms of the three lepton mixing angles
and the CP violating Dirac phase, according to the con-
vention of PDG [18]. Diagonal elements of U can be ab-
sorbed into the charged lepton fields. Now, the relation
for diagonalizing M, can be expressed as

M, = U*diag(m;,ma,m3)U". (39)
While solving the above equation, we can use an approx-
imation procedure [24, 25] related to neutrino masses and
mixing angle 6,3, which is explained below.

In the expression for Upyns one can have Majorana
phases, which cannot be determined from neutrino oscil-
lation data. However, they can affect the life-time of
neutrinoless double beta decay, since neutrinos in our
model are Majorana particles. Nonetheless, there is no
concrete evidence for this decay so far [18], and as a res-
ult, the Majorana phases can take any value between 0
and 2x. Hence, in our analysis, for the sake of simplicity,
we have chosen these phases to be zero. In contrast, by
taking some specific values for Majorana phases in the
below described procedure, one can study the conditions,
which can give rise for neutrino Yukawa couplings of our
model. Nevertheless, we shall reserve this study for a fu-
ture work.

In Upmns, we put 63 =n/4 and §cp = (37)/2. From
the neutrino oscillation data, we have sfz ~1/3 and
52, ~2-107 [1]. Here, we can notice that s?, is negli-
gibly small in comparison to unity, and hence s;3 ~ 0.15
can be treated as a small variable. In contrast, s%2 and s§3
are of order one. Since s;3 is the only small variable in
Upmns, We expand Upyns up to the first order in s;3. The
corresponding expression is given below.

tions about neutrino mass ordering and the smallness of
6,3 in our model.

In the model proposed in Sec. 1, the charged lepton
masses are in diagonal form. Hence, the unitary matrix
which diagonalizes M, can be written as

S12€13 5136710 (3%)

icp

C12€23 — §12523513€ $23C13

i6c

—C12523 — §12€23513€ €23C13

Upmns =Up +0U,

S12
C12

V2
sz _cn
V2 2
0 0 1
Cl S12

12
v V2
v

12

Uy =

)

oU = (40)

)

From the neutrino oscillation data, two mass-squared dif-
ferences for neutrinos are found, which are given in Eq.
(11). From this equation we can notice that m3/m2 ~ s3,,

which is negligibly small compared to unity. This indic-
ates that an approximation with respect to neutrino
masses can also be applied while solving the Eq. (39). In
order to fit the mass-square differences of Eq. (11), we
can take the neutrino masses as follows.

NO: m Smy, mzz,lm§+m2, m3=,/m121+m%.
10: ms3 S my, m1=,1m3+m§, mzz,/m§+m%.

(41)

Now we can notice that m;/m, < s13 in the case of NO,
whereas, m;/m, ~ 1 inthe case of 10. Similar conclu-
sions can be made about m,/m, and ms/m,.

Using the approximation scheme described in the pre-
vious paragraph, we can expand (1/m,)M, in powers of
s13, mg/m,. After neglecting the second and higher order
corrections in sy3, my/m,, for both NO and IO cases, the
elements of (1/m,)M, are given below.
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*

1 1 Z Z
_MV = 2 Z w y 5
mgy mgy Z* y W*

NO: x= 2c%2m1 +2s%2m2,
2= V2epas12(my —my) =i V2mssys,
w=m3 +C%2m2 + s%zml,
y=—-m3+ C%Zmz + S%2m1 .
10: x=2m;, z=- \/Eismml,
w=m;+m3, y=m—m3. (42)

Using the above relations, in order for the matrix M, to
make predictions about neutrino mass ordering and small-
ness of 6,3, the Yukawa couplings in Eq. (8) should satis-
fy the following conditions.

e To predict NO and smallness of 6;3:

(i) ¥;,, Y, should be suppressed by approximately 0.1
compared to that of Y Y.

(i) Y, should be real.
e To predict IO and smallness of 6;3:

(1) Y3, should be purely imaginary and its magnitude
is suppressed by approximately 0.1 compared to other
elements of Y.

(i) Y, should be real.

We recall that Y” is a symmetric matrix satisfying Eq.
(9). Hence, not all elements of ¥” are independent. As a
result, while describing the above conditions, we have
considered Y;,,Y;,. Y}, Y} as independent elements of
Y¥. Another point worth mentioning here is that the
aforementioned conditions are true after neglecting
second and higher order corrections in (1/m,)M,,.

The condition (ii) described for the cases of NO and
10 is trivially satisfied if one uses the relations in Eq.
(42). The non-trivial condition to check is the condition
(i) in the NO and IO cases. The suppression factor men-
tioned in this condition is arising due to
s13 ~(mg/m,) ~0.15. We have checked this suppression
factor for the case of NO by computing the following ra-
108 Yool /[Yul, Yool /1Yiel, 1Yo l/ 1Yy, 1Yo, l/1Y ] While for
the case of 10, the following ratios are computed in order
to check condition (i): [YJI/1Y%l, IYLI/NYl [Y2/Y).
One can notice that the neutrino Yukawa couplings are
proportional to the elements of M,, which are given in
Eq. (42). The neutrino masses in Eq. (42) are computed
using Eq. (41) and by varying m2, m2 over their allowed
30~ ranges. The mass of the lightest neutrino is varied

from 0 to m, in the NO and IO cases. While computing
the above mentioned ratios, we have also varied sfz and
s2, over their allowed 30 ranges. We have listed the al-
lowed 30 ranges for the abovementioned variables in
Table 2.

As we proceeded with above analysis, we checked if
the sum of the three neutrinos is less than 0.12 eV, which
is a constraint obtained from the cosmological observa-
tions [37]. As already described in the previous para-
graph, the suppression in the ratios of various Yukawa
couplings should be around sy3 ~ (m,/m,) ~0.15.
However, in our analysis we have found that some of
these ratios can become as large as 0.5, and thus, invalid-
ate the approximation procedure, which we are using
here. Hence, in the analysis we have restricted all these
ratios to be less than or of the order of 0.2. Selected plots
from this analysis are presented in Fig. 1. From this fig-
ure we can see that the mass of lightest neutrino, mgheest,
is constrained due to aforementioned restriction on the ra-
tios of Yukawa couplings. We can notice that mjignes has
a narrow allowed region in the case of NO compared to
that of 10. Apart from the myjgnes; in Fig. 1, s%_% is also
constrained to be in the range of 0.02 to 0.023, in the case
of NO. In contrast, this variable is not constrained in the
case of 10. As for s%z, we have found that it can take the
full 30 range in both the NO and IO cases of Fig. 1. Al-
though we have presented selected plots in Fig. 1, we
have obtained similar plots for other ratios of Yukawa
couplings, which are mentioned in the previous para-
graph. These plots justify the approximation procedure,
which we are using here, and verify the condition (i) for
the cases of NO and IO, which are mentioned below Eq.
(42).

The conditions mentioned below Eq. (42), for both
the NO and IO cases, cannot be achieved just with the CP
symmetry. An additional mechanism should be proposed
to satisfy these conditions. In an attempt towards this, we
have proposed one mechanism to achieve condition (i)
for the case of NO, where the necessary suppression in
the Yukawa couplings is explained through non-renor-
malizable terms within the framework of CP symmetry.
This mechanism is presented in the Appendix. In this

Table 2. Allowed 30 ranges of the neutrino oscillation ob-
servables [1], which are used in our analysis.

Parameters Allowed range
m? (6.94-8.14)x107% eV?
m2 (NO) (2.47-2.63)x1073 eV?
m2 (10) (2.37-2.53)x1073 V2
52, 0.271-0.369
2, (NO) 0.0200-0.02405

535 (10) 0.02018-0.02424
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(color online) Ratios of the magnitude of Yukawa couplings versus the mass of lightest neutrino. The left- and right-hand side

plots are for NO and IO, respectively. In both plots, we vary the neutrino oscillation observables over their allowed 3o ranges, which

are given in Table 2. For other details, see the text.

work, we do not have a mechanism to achieve condition
(i) for the case of 10 and to achieve condition (ii) for both
NO and IO. These problems would be investigated in fu-
ture works. As already described, with the generalized CP
transformations and u—rsymmetry, 6,3 and §cp will be
maximal. However, in future neutrino oscillation experi-
ments, 6,3 and §cp may be found to be away from their
maximal values. In such a case, one needs to device a
mechanism for the breaking of u— 7 reflection symmetry
in order to explain the non-maximal values for the above
mentioned observables. However, these topics are out-
side the scope of the present study.

V. QUARK MIXING

In our proposed model for lepton mixing, three Higgs
doublets exist. Since they can also give masses to quarks,
it is interesting to check whether quark mixing can also
be explained with CP and other symmetries of our model.
As already described in Sec. I, since there is a hierarchy
among quark masses, the mixing pattern for quarks can
be explained if their Yukawa couplings are hierarchically
suppressed. Babu and Nandi have proposed one model
[27] for explaining quark mixing through hierarchically
suppressed Yukawa couplings. Later, this model has been
modified in Ref. [28], where the suppression in Yukawa
couplings is explained with a singlet scalar field. We fol-
low the work of Refs. [27, 28] to explain quark mixing in
our framework.

A. Model for quark masses and mixing

We denote the three families of quark doublets, up-
and down-type singlets as Q1 , ujr and djr, respectively.
We propose a scalar field X, which is singlet under stand-
ard model gauge group. We assume all the quark fields to
be singlets under the symmetry K xZ, x Zs. The X field is
singlet under K xZ3 but is odd under Z,. Both the quark
and X fields transform under CP symmetry as

L 0~AT 0T
QjL_)ly CQJL’ Ujr =1y C”jR,

dg —y’Cdly, X—X". (43)

Now, with the above mentioned transformations and
fields, we consider the following effective Lagrangian for
quark masses.

_ X \2 ~
Ly =h3,Q31.¢1u3r + (M) [h‘313 O3Ld1d3r
+hi, QoL rusg + W3 Qo1 usr
~ X\ _
+ 13, O3 ruor] + (M) (14, Qo1 p1dor

+h%,0o1.¢1d5R + 15, Q31.41dor
+h,01L1ur + hs; Qo frusr
+h501Lb1usR + hY, Q3. d1uir]

X\ o )
+(M) (7Y, Qidrur +hS, Qrdrdir

+h,01L¢1doR + h,011.41d3R]

Xy’ _ X \10 _
+(M) [hng2L¢1M1R]+(M) [h%, Qsp1uir] +h.c.
(44)

The above Lagrangian is valid below a mass scale of M.
The non-renormalizable terms of this Lagrangian can be
motivated by the UV completion of this model, which is
presented in the next subsection. According to this UV
completion, we propose a flavor symmetry U(1)r and
heavy vector-like quark (VLQ) fields above the scale M.
After integrating the heavy fields in our model, below the
scale M, the non-renormalizable terms of Eq. (44) can ap-
pear. Here we can see that M represents the mass scale of
heavy VLQs. Since new particles can be probed at the
LHC experiment if their masses are around 1 TeV, we
take M ~ 1 TeV.

Due to CP symmetry, the Yukawa couplings h‘jf;{d
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should be real in Eq. (44). After X acquires VEV, for
(X) <M, we can see that X/M gives suppression to the
effective quark Yukawa couplings. Since the Yukawa
couplings of Eq. (44) are real, we assume (X) is complex,
and this can be the source for CP violation in the quark
sector. In the Lagrangian of Eq. (44), only the doublet ¢,
generates Yukawa couplings for quark fields. The other
doublets ¢,3 do not generate these Yukawa couplings
due to the presence of CP x K symmetry.

After electroweak symmetry breaking, using Eq. (44),
the matrices for up- and down-type quarks can be written,
respectively, as

u 6
hi,€

— u 4
M,=| hj €
u 4 u 2 u
hy € M€ hy

u 4 u 4
hi,e®  hie

hgzez hy, e v,

d 6 1d 6 pd 6
h{, €  hi,€ h136
My = h‘zileg hgze4 hg3e4 Vi. (45)
d 10 3d 4 3d 2
h3]€ h32€ h33e
X .
Here, e = —-. The form of M, , is similar to the corres-

ponding matrices in Refs. [27, 28]. However, the only
difference is that the elements 21 and 31 of M, are gener-
ated at a higher order compared to those in Refs. [27, 28].
It is argued in Ref. [28] that the above mentioned ele-
ments do not affect quark masses and mixing if they are
generated at higher order. Hence, after diagonalizing the
above matrices, the masses and mixing angles for quarks,
up to leading order in |¢|, are given by

2 6
(my,me,my) = (\h3s), 1y, llel”, |y = hiyhs, /ho, llel)vi,

d 2 1.d 4 11.d 6
(mb,ms,md)%(|h33||6| :|h22”5| »|h11||€| Wi,

hd it
Vasl = |27 = 22 le,

h5, Ty

hd i
Vel % |22 — 2 |el%,

d h’l

g

d d u
N L A

ubl ~ hd h"’ hd hu € )

33 2233 33

arg(V,p) ~ darg(e). (46)

Due to three Higgs doublets in our model, we have
Vil +val? +vs]> ~ (174 GeV)?. To satisfy this, we take
v1,v ~ 174/ V2 GeV. With this value for v;, we fit the ex-
pressions of Eq. (46) to the following best fit values [18].

(my,me,my) = (172.76,1.27,2.16 x 107%) GeV,
(my,mg,mg) = (4.18 x10%,93,4.67) MeV,

(IVaush Vsl IVia]) = (0.2245,0.041,0.00382),
arg(V,p) = —1.196 (47)

After the abovementioned fitting, we give a sample set of
numerical values with |e] = 1/5.5 as follows.

(IR, sy, Y = Ry hs TR ~ (1.4,0.31,0.49),

(1A%, 1h, 1, k4 ) ~ (1.03,0.69,1.05),

(hf? hLIZZ’ h‘213’ hg3 ’ h73’ hlit3)
~(1.49,-1.45,0.69,-0.8,1.12,1.0),

arg(e) ~ —0.3. (48)

From the numerical values given above, we can see that
the magnitudes of all Yukawa couplings are less than
about 1.5. We have considered numerical values with
el = 1/6. However, in this case, some of the Yukawa
couplings can become larger than 2.0. Hence, with
le| = 1/5.5 and O(1) Yukawa couplings, we can explain
the quark masses and mixing pattern in our model. Since
we expect new physics to appear around 1 TeV, we can
take the cut-off scale of Eq. (44) to be M ~ 1 TeV. Now,
for |e] = 1/5.5, we get KX)| ~ 181 GeV.

B. UV completion

Here, we present the UV completion for our model in
order to explain the origin of non-renormalizable terms of
Eq. (44). To achieve this UV completion, we follow the
works of Refs. [28, 38]. The idea of this UV completion
is to explain non-renormalizable terms following from a
theory which is renormalizable at a high scale. Hence, we
assume our model is renormalizable at and above the
scale M and propose a flavor symmetry U(1)g, which is
exactly above M. To generate non-renormalizable terms
below M, we propose additional fields like flavons and
VLQs, which transform under U(1)g. The standard mod-
el quarks are charged under the U(l)r symmetry.
However, the Higgs doublets and X field are singlets un-
der U(1)g. The U(1)r symmetry is spontaneously broken
when the flavons acquire VEVs around M, which is also
the mass scale of VLQs. Here, we can see that our model
should respect the symmetry CPXxKXZ;XxZzxU(1)g
above the scale M. However, below M, after integrating
the heavy VLQs and flavon fields, our model should gen-
erate non-renormalizable terms of Eq. (44), which re-
spect the symmetry CP X K X Z; X Z3.

Under the U(1)r, we denote the charges for Qji, ujr
and djr as qjr, ujr and djr, respectively. We propose
only two flavon fields, F, and F,, whose charges under
U(l)g are fi and f,, respectively. Flavons are charged
under CP symmetry but are otherwise singlets under
K xZyxZ;. Under the CP symmetry, flavons transform
like the X field of our model. Now, to generate non-renor-
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malizable terms for up-type quarks in Eq. (44), we intro-
duce VLQs Kj and Kjr, which are color triplets and
their hypercharges are same as those of right-handed
singlet up-quarks. Analogous to Kj and Kz, we intro-
duce Gj. and Gjr, which generate non-renormalizable
terms for down-type quarks. The above VLQs are sing-
lets under SU(2) symmetry of the standard model and
K xZ3. These fields are charged under Z, symmetry. Un-
der the CP symmetry, they transform like the quark
fields.

After describing the field content and their charge as-
signments in the UV completion of our model, we fur-
ther explain the generation of non-renormalizable terms
of Eq. (44). The hj, term in Eq. (44) is renormalizable,
which can be generated in our model by taking g3 = u3;.
To generate the 7%, term in Eq. (44), we consider the be-
low invariant terms in the UV completion.

Ly =03.01Kir + F{KirK 1L + XK 1. Kor
+ FQKQRKZL + XKZL”ZR +h.c.. (49)

Since the terms in the above equation are invariant under
CP symmetry, the dimensionless Yukawa couplings
should be real; these are O(1), which we have not written
explicitly here. The U(1)r charges for K;,K;r can be
fixed in terms of corresponding charges of quarks and
flavons in such a way that the above equation is invariant
under U(1)g. Similarly, the Z, charges for these VLQs
can be assigned such that the above equation is invariant
under Z,. The U(1)r xZ, charges for VLQs of K-type are
given in Eq. (57). When the flavons acquire VEVs, the
VLQs in Eq. (49) acquire masses of the order of M. After
integrating these heavy VLQs, terms in Eq. (49) generate
the hf, term of Eq. (44).

By introducing more VLQs of K-type, the process de-
scribed in the previous paragraph can be applied to gener-
ate other non-renormalizable terms of Eq. (44). Below we
show the invariant Lagrangians of the form L, which
generate the hy; term of Eq. (44), after integrating the
heavy VLQs and flavons. The U(1)rxZ, charges for the
VLQs in these Lagrangians can be seen in Eq. (57).

LY =031 Kir + FiKirKiL + XKL Kor + F2 Kor Ko + X Kot Kag + F2 K3r K31 + XK Kag + MKag Kar,

+XI_<4LM1R +h.c.. (50)
5y = 0061 Ksr + MKsgKsi + XKsi Ker + F1 Ker Kor. + X Ko uzr +h.c. (51)
5, = Oo.d1Ksg + MKsg Ky, + XKsi K7r + F2 K7 K71 + X K7L uog +h.c. (52)
L5, =01¢1Ksg + MKsg K5 + XKs K7 + Fo K7r K71, + X K71 Ksg + M Kgr Ky + +X Kg Ko + F2 Kor Ko,
+X1_(9Lu1R +h.c. (53)
L, =01.¢1Ki0r + F2Ki0r K101 + XKoL K11R + F2K11RK 1L + XK 1LK 1R F2 K1 or KoL + XK 120 Ki3r
+ FrKi3rKisL + XKi3 Kiar + F2Kiar Kian + XKia Kisr + MK sr K s+ XK s uir +hec.. (54)
L, =011.¢1Ki0r + F2Ki0rK 101 + XK10LK 1R + F2K11rR K111 + XK1 K 2R + F2K1or Ko, + XK 120K 3R
+F2[_(13RK13L +Xk13LLt2R+h.C.. (55)
L5 =01.¢1K10r + F2 K 0r K101 + XK 1oL K11R + F2 K1 1R K11 + XK 1L K12 + F2 K2R K121
+XK12LK16R + FlklﬁRKlﬁL +XK16LM3R +h.c.. (56)
UDr 1 Kir = q3p, KiL, Kor = q3p+ fi, Ko, Ksr = g3p+ fi—f, KL, KaL, Kar = @35+ fi =2/,
Ksr,Ks1,Ker, K7 = @2y K71, Kgr, K31, Kor = @2 — fo, KoL — q27— f1, Ko = qor =2/,
Kior = q1r, KoL, Kiir = q1ir— 2. K. Kior = g1 =2/, KoL, Ki3r, Kier = q17 =3 /2,
KL, Kiar = qip—4f2, KL, Kisr, KisL = qip =5/,  KieL,usr = g1 =32 - fi.
Z; : K1, KR, K31, K3R, K51, K5R, Kg1, Kgr, K101, K10R, K120, K12R, K141, K14R, — €VeED,
Ko, Kor, K41, K4r, K61, K6r, K71, K7R, KoL, Kor, K111, K11R, K131, K13R, K15R, K151, K161, K16R — Odd. (57)
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Since the Lagragians of Eqgs. (49) —(56) are invariant
under U(1)r, we get relations among the U(1)g charges of
quarks and flavons. These relations can be consistently
solved. Taking ¢3¢, fi, and f, as independent variables,
the above mentioned relations can be expressed as

G =q3r+f1, qir=qp+fi+3f, uzr=qsy,

The procedure described above has been applied in
order to generate non-renormalizable terms for down-
type quarks of Eq. (44). In this case, we introduce VLQs
Gir,Gi, where i=1,---,30. Below, we give invariant
Lagrangians in the form of £, which generate the A,
term in Eq. (44), after integrating the heavy VLQs and
flavons. Since these Lagrangians are invariant under the
U(1)g X Z,, the charges of VLQs under this symmetry are
fixed in terms of corresponding charges of quarks and

= qs3p+ fi— fa

urf =qaf+fi =2/ (58) flavons. These charges are given in Eq. (68).

LY = 031G 1R + FIGIRG 1L + XG1LGoR + F1GorGor + XGord3R +hec..

L5, =05.61G1r + F1GRGi1 + XG1LGor + F1GorGor + XGo1 Gar + MG3rGa1 + XGa . Gar
+ F;G_4RG4L + XG_4Ld2R +h.c..

L9, =021.61Gsr + F1GsrGs1. + XGs.Ger + F1GerGeL + XGoLGr + F1G7r G + XG71.Gsr
+MGsrGgL +GsLdsr +h.c..

L3, =051.1Gsg + F1GsrGs1. + XGs.Ger + F1GerGoL + XGeL. G1r + F1GrG71 + XG71.Gor
+ F;GQRGQL + XGordor +h.c..

L, =01.61G1ior + F1G10rG 1oL, + XG1oLG11R + +F1G11RG 111 + XG11L.G 2R + F1G12rG 121 + XG121. G13r
+ F2G13rG 130 + XG 130G 14r + F2G14rG 14 + XG 14.G15R + F2G5rGisL + XGsLdag +hec..

Ltllz =01L.$1Gior + F1G1rG 1oL + XG10LG11R + F1G11RG 1L + XG 111G 12R + F1G12rG 121 + XG121.G13R
+ F2G13RG 131 + XG13.G 4R + F2G14rG 141 XG 141G 16R + MG16rG 161 + XG161.doR +h.C..

LY, =0111G1or + F1G10rG 101 + XG 101G 1R + F1G11RG11L + XG11LG 1R + F1G12rG 121, + XG 121 Gi7R
+ F1G17RG17L + XG17.G 18R + F1G13RG s + XG5 G 1o + F3G19rG oL + XGrordir +h.c..

L3, =0s11 Msg + F1GsgGsp + XG5, Gog + F1GorGer, + XGo1.Gg + F1G1rG11, + XG71.Gog + F3GorGop,
+XGorGaor + F3G20rGaor + XGa01.Ga1r + F3G21rGa11 + XG211.Goor + F3G2orGooL,
+XG21Go3r + F1G23rG 231 + XG231.Goag + F1G2arGoar + XGoardig + hec.

1:‘311 =03.91G 1R + F1IGIRGIL + XG11.Gar + F1GorGaL + XGo1.Gosr + F1Gasr Gost, + XGos . Gagr + F1Ga6r Gl
+XGa6.Go7r + F3G2rGo71, + XGo. Gogr + F3GosrGog, + XGosi Gaor
+ F3G29rGooL + XG291. G30r + F3G30rG30L + XGordir +h.c..
UDr : Gir = g3, GiL.Gr = @3 = fi  GaL,G3r,G3L,Gar,Gosr = q37 — 21,
GuL = q3r=2f1+ fo, Gsr = qor, GsL,Ger — g2 — f1,
GeL,G1R = q27 —2f1, G7L,Gsr,G3L,Gor = q27 — 3 f1
GoL,Gaor = @27 =3f1+ f2, Gior = q1y,  GioL,G1ir — q17 — f1,
GuL,Gir — q17—2f1,  Gi20,G13r.G17R — q17 =3 /1,
Gi3L,Giar = q17=3fi—f3.  G14L,G15r, G161, Gier — q17 =31 —2f2
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GisL = qir=3f1-3f3,
GioL — g1y =5f1— 2,
GaL,Gor = q25 =31 +3 /2,
GasL,Goar = @24 f1 +412,
GasL,Gaer = q37 — 3 11,
GasL,Gaor — q37 —4f1+ 212,
gL — g3y —4f1 +4 /.

G17L,G1sr = qi7 — 411,
GaoL,Gair = q25 = 3f1 + 212,
GoL,Gor = o —3f1 +4 /2,
GoaL = qop =5f1+4f2,
Go6L,G27RR = @37 — 411,

GisL,Gior = q17 =511,

G2, Gogr = @3y —4f1+ /o,

GooL,G3or — q3r —4f1+3 /2,

Zy : G1L,G1Rr,G3L,G3R,G51,Gsr, G7L, G7R, G101, G10R: G121, G12R G141, G 14R, G18L,
G18r,G20L, G20r, G221, G22R, G241, G24R, G251, G25R, G271, G27R, G291, G29R — €ven.
GoL,Gar, Gy, G4r, GeL, Ger, GsL, Gsr, GoL, Gor, G111, G118, G131, G13R, G151,
G15R,G16L,G16R, G171, G17R, G191, G19R, G211, G21R, G231, G23R, G261, G26R s

G231, Gagr, G3oL, G3or — odd.

Since the Lagrangians in Egs. (59)—(67) are invariant
under U(l)g, nine relations emerge among the U(1)g
charges of quarks and flavons. These relations can be
solved consistently along with Eq. (58). After doing this,
the U(1)r charges of singlet down-type quarks can be ex-
pressed as

dyy=q3r=2fi+fo, dif=q3p—4fi+4f.

(69)

d3f=q3r =211,

In this section, we have described our model for the
quark sector as well as the UV completion to it. As part
of this whole construction, we introduce extra fields and
symmetries into our model, which are summarized in
Table 3.

VI. FULL SCALAR POTENTIAL

In Sec. III, we have detailed the analysis of scalar po-
tential for the model described in Sec. II. However, the
model in Sec. II addresses problems related to the masses
of leptons. Later, within the framework of that model, we
have addressed the hierarchy in the masses of quark fields
in Sec. V. Concurrently, we have introduced additional
singlet scalar fields: X, Fy, F,, which can give extra

(68)

[

terms with the doublet and triplet Higgses in the scalar
potential. These extra terms may change the results de-
rived in Sec. III. For this purpose, in this section, we give
the full scalar potential of our model. After minimizing
the full scalar potential, we demonstrate that the above
mentioned singlet scalar fields do not change the main
conclusions of the analysis made in Sec. III. We recall the
following main conclusions of Sec. III: (i) triplet Higgs
acquire real VEV, (ii) VEVs of doublet Higgses @, 3 ex-
plain the hierarchy between m,, and m..

The full scalar potential of our model is

Viul = Viny + V., + Vi + Vi (70)

Here, Vx r, r, is the invariant scalar potential of our mod-
el, arising due to the singlet fields X, Fy, F>. V;f contains
potential terms due to X, F, F», which violate K-sym-
metry explicitly. Recall that the minimization of Viy, + Vg
has been discussed in Sec. III. First we find a minimum
for Viny + Vxr, r,. Further, we study the shift in this min-
imum due to the presence of K-violating terms. In this re-
gard, the minimization of Vi,y, after applying the Z; sym-
metry, has been studied in Sec. III.C. Here, we verify
whether this minimization can be affected by Vx r, r,. The
form for this potential is given below.

Vx.r,F, =—my(X"X) = m (F} F1) —m, (F3F2) + x(X*X)? + Ap, (F{F1)? + A5, (F3 F2)* + ACX* + X*2)
+ BX*+ X+ V(XX + X X) + Ap, p, (F F)(F3F2) + Ap x (FLF (X X) + Az KFIFD(X2+X%)
+ Apx (F3F2)(X*X) + Ay (F3F2)(X* + X72) + g, x (811X X) + ), y(611)(X7 +X*%)
+ A, x (D362 + B303) (X" X) + ) (B2 + B63)(X* + X"2) + Aax Tr(ATAYXX) + A Tr(ATAY (X + X2)
+ Ap,g,(F{FD(@]01) + Ap,g, (F3F2) (@1 01) + Ap, 0, (Fi F1(@362 + 0503) + A, (F3 F2)(@32 + 0 63)

+ Ap ATH(ATA)F 1) + Ap A Tr(ATA)(F3 Fy).

(71)
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Table 3. Additional fields and symmetry, along with their roles, in the quark sector of our model.

Additional field Role
X to generate hierarchy in quark masses and also CP violation in quark sector
F\,F» to generate masses for VLQs in the UV completion of our model

Ki,Kir(i=1,---,16)
GiL,Gr(i=1,---,30)

to generate effective Yukawa couplings for up-type quarks from UV completion our model

to generate effective Yukawa couplings for down-type quarks from UV completion our model

Additional symmetry

Role

Ur

to generate invariant terms in the UV completion of our model

In the above equation, all parameters are real due to her-
miticity and CP symmetry.

In Eq. (71), Fy and F, appear in the form of F}F,
and FJF3, respectively. As a result, we can consider the
VEVs of F; and F, to be real. Hence, we can parameter-
ize the VEVs for X, F;,F, as

<X>=Vxei9’(, <F1>=Vfl, <F2>=Vf2. (72)
Here, 6x is the phase in the VEV of X. After using the
above VEVs and Eq. (17) in Eq. (71), we get

(Vx.r.F) 32v§( [A + /lg(vi + %IXV% + %vaz + AV
+ /l}-ﬂx"% ++4F, xvi] 08 20x +2BvS cos 40x.
(73)

In the above equation, we have not written constant terms
which do not contain phases of the VEVs of the fields. It
is possible to notice that 8y do not mix with the phases in
the VEVs of ¢,3 and A. Hence, the minimization of
(Vinv), Which is presented in Sec. II1.C, is not affected due
to (Vxr, r,). Consequently, A can acquire a real VEV,

while Eq. (34) remains valid. From the minimization of
(Vx.r, r,) With respect to 6y, we get

1
00820y == ——[A+ Avg + Al yvi + ) (v
VX :
+ /l’AXv’2 + /ljplxvjzﬁ + /ljpzxvffz]. (74)
The above relation corresponds to the minimum for 6y,
provided the below condition is satisfied.

1687y >[A + v + Al i + 4 v + Ay’

2 + | (75)
Here we have shown that X can acquire complex VEV.
This must be achieved to generate the CP violation in the
quark sector, which is discussed in Sec. V.

After minimizing (Vin)+{(Vxr, r,), Wwe have shown
that the minimum can be given by Eqgs. (34) and (74).
This minimum can be shifted by small amount due to K-
violating terms. Terms in Vg are presented in Sec. III.
Below we give the form for V.

Vi =024,x(0302)(X"X) + 6,y (0503)(X"X) + 6 Agx(@302)(X? + X7%) + 62, (8583)(X* + X7%)
+ 60,7, ($582)(F} F1) + 6, p ($563)(F F1) + 620, (852)(F3 F2) + 6, - (85¢3)(F3F2)
+i6A01($53 — 582) (X" X) +16A22 (B3 — B162) (X7 + X*2) +16423(B3¢3 — B 02)(F F1) +16424(0103 — 91 2)(F3 Fa). (76)

All parameters in the above equation are real due to either
CP symmetry or hermiticity of the potential. These para-
meters should be small compared to those in
Vinv + Vx.F, F,, since the above potential violates K sym-
metry by a small amount. We can see that the VEVs of
X,Fi,F, in V’f( can give additional contribution to f; and
J¢ in Eq. (36). Since the parameters of V. are small, we
can notice that the contribution due to X, F,F, can be of
the same order as the terms already obtained for f; and f;
in Eq. (36). As aresult, the hierarchy in m, and m. can be
explained in our framework.

VII. PHENOMENOLOGY OF OUR MODEL

In Secs. III and VI we have analyzed the minimum of
the scalar potential of our model. One needs to study
whether this minimum corresponds to a global or local
minimum. Following the studies made in Refs. [39, 40],
we expect some additional conditions to be imposed on
the parameters of our model in order for the minimum of
the potential in this work to be global. Nonetheless, we
shall work on the vacuum stability of our scalar potential
in future studies.

The scalar fields, which are proposed in our model,
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are: three Higgs doublets, one Higgs triplet and three
singlet scalar fields. We can choose the U(1)r symmetry
of our model to be gauged. As a result, after electroweak
symmetry breaking, the following fields remain in the
theory: one doubly charged scalar, three singly charged
scalars, seven neutral scalars, and five pseudo scalars. In
case I, which is described in Sec. III, the scalar fields be-
longing to the triplet Higgs can have masses around 10'?
GeV. Otherwise, we can choose the parameters in the
scalar potential of our model in such a way that all the
scalar fields can have masses less than or about 1 TeV. In
the case where the masses for the scalar fields are less
than 1 TeV, one can study the collider phenomenology.
For this study, one needs to know the interaction of the
scalar fields with the standard model particles. We can
see that the scalar components of Higgs doublets and
Higgs triplet have gauge interactions. For the field ¢, it
has Yukawa interactions with quark fields. Hence, the
scalars belonging to doublet and triplet Higgses can be
produced at the LHC experiment via gauge or strong in-
teractions. After production, they will decay into stand-
ard model fields. In the case of singlet scalars X, Fy, F,,
the flavons have Yukawa interactions with VLQs.
Moreover, these flavons interact with doublet and triplet
Higgses in the scalar potential. As for the X field, it has
Yukawa interactions containing a VLQ and a right-
handed quark field. Moreover, X has interactions with
Higgs fields in the scalar potential. Since VLQs are color
triplets, they can be produced at the LHC experiment via
strong interactions. From the decay of these VLQs, one
can produce the abovementioned singlet scalars in the
LHC experiment. Studying the collider phenomenology
of this model is beyond the scope of this work.

In the lepton sector of our model, the Yukawa coup-
lings for charged leptons are diagonal. Hence, these
Yukawa interactions are flavor conserving. In contrast,
the Yukawa couplings for neutrinos are flavor violating.
As a result, the singly and doubly charged triplet Higgs
fields can drive flavor violating decays of the form
¢ — 3¢ and ¢ — {'y. However, it is stated in Sec. II that
the Yukawa couplings for neutrinos are suppressed by
about 1073. Hence, the branching ratios for the above
mentioned decays are suppressed even if the components
of the triplet Higgs can have masses around few hundred
GeV. As a result, constraints due to non-observation of
charged lepton flavor violating decays [18] are satisfied
in our model.

The phenomenology of our model in the quark sector
is similar to that discussed in Ref. [28]. In this regard, the
X field can cause flavor changing neutral currents at tree
level in our model. Consequently, there can be mass split-
ting in the K° — K° and D° - D° due to the mediation of X.
We have estimated the above mentioned mass splittings,
using the procedures described in Refs. [27, 28]. For this
purpose, we define 8 =v;/M. In our calculations, we have

taken e~p=1/5.5and the mass of X as 1 TeV. The
Yukawa couplings for h‘f’z” are given in Eq. (48). We have
chosen h4 ~1 and A% =-0.7. Using the above set of
parameters, we have found Amg~107'® GeV and
Amp ~ 1075 GeV. These numerical values are smaller
than the corresponding current experimental values,
which are as follows: Amg=3.5x10""" GeV and
Amp =2.35%x10""* GeV [18]. Hence, our model satisfies
the constraints due to the mass splitting in K°—K° and
D°-DO.

By choosing U(1)r to be gauged, the gauge boson
corresponding to this symmetry, Z’, can be massive. The
mixing between Z—Z’ is constrained to be very small. In
this regard, phenomenology due to Z’can be studied in
our model. For more details about the phenomenology on
Z', see Refs. [41, 42].

VIII. CONCLUSIONS

In this work, we have proposed a model, which ex-
plains the maximal values for 6,3 and é¢p in the lepton
sector. To achieve this purpose, we have introduced three
Higgs doublets and one Higgs triplet. This model is based
on pu—7 reflection symmetry and type Il seesaw mechan-
ism. To explain the above observables, the VEV of triplet
Higgs should be real. Moreover, due to u—7 reflection
symmetry, the masses for muon and tau can be of the
same order. After introducing the K symmetry and expli-
cit violation of it by a small amount, we have studied the
minimization of the scalar potential of our model. There-
after, we have shown that the VEV of triplet Higgs can be
real, apart from explaining the hierarchy in the muon and
tau masses. In addition to predicting the above observ-
ables, the mass matrix for neutrinos in our model can
make predictions about the neutrino mass ordering and
smallness of 6,3, if the elements of this matrix satisfy cer-
tain conditions, which are given in Sec. IV. To explain
these conditions, one has to propose a new mechanism in
addition to CP symmetry. Although we do not have a
mechanism to explain all the conditions given in Sec. IV,
we have attempted to give one mechanism to explain con-
dition (i) for the case of NO. This mechanism is presen-
ted in the Appendix.

Since in our model three Higgs doublets exist, we
have studied the Yukawa couplings between quarks and
these doublets by proposing CP transformations for quark
fields. After employing a certain texture for these
Yukawa couplings, we have consistently explained the
quark masses and mixing pattern. To employ this texture
in the quark sector of our model, we have introduced ad-
ditional fields like VLQs and singlet scalars. One of these
singlet scalars should acquire a complex VEV in order to
generate the CP violating phase in quark sector. Finally,
we have analyzed the scalar potential containing the sing-
let scalars and the above mentioned Higgs fields. After
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this analysis, we have demonstrated that the masses and
mixing pattern in lepton and quark sectors can be consist-
ently explained.
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APPENDIX: A MODEL FOR ACHIEVING CONDI-
TION (I) IN THE CASE OF NO

In Sec. IV, we have described some conditions on the
elements of the neutrino mass matrix, which can make
predictions regarding the case of NO or 10 and about the
smallness of ;3. These conditions are purely phenomen-
ological and cannot be achieved with just the CP sym-
metry. An additional mechanism should be proposed in
order to satisfy these conditions. For the case of NO, con-
dition (i) can be achieved if we propose an extra U(1)s
symmetry and the singlet scalar fields S,5,. Under the
U(l)s symmetry, we consider the following charge as-
signments, where / is some non-zero rational number:
D,y —1l, S1—>-2I, S, — —I. Under U(l)g, egr should
transform like D, , whereas the rest of the fields in our
model are singlets. S,5, transform under the CP sym-
metry as S — S} ,. With the above charge assignments,
the Yukawa terms for D, in Eq. (8) are forbidden. Now,
these terms can be effectively generated by the following
invariant terms.

St =, . Sy =, .
Y.~ D5 020D +Y, 52 DYy 128D

S
+ Y,ﬁzDgLiazADd +he.. (A1)

Here, M is a mass scale that is analogous to that in the
quark sector Lagrangian of Eq. (44). The above non-
renormalizable terms can be generated by studying the
UV completion for these terms, where one can propose
heavy vector-like leptons whose masses are around M.
The process of this UV completion is analogous to the
description in Sec. V.B. In order for Eq. (77) to be invari-
ant under CP symmetry, Y, should be real and Y, =Y.
After U(1)s symmetry is spontaneously broken, terms in
Eq. (77) effectively generate the Yukawa couplings
Y;,. Y, Y. Moreover, by taking (S;.)/M ~ 0.1, condi-
tion (i) for the case of NO is satisfied. Since Y), is real
and Yy, =", (S1)and (S,) should be real. We justify
this statement by studying the scalar potential for these
fields.

The scalar potential, which is invariant under
CPxZyxZ3x KxU(1)pxU(l)s and contains S;, can be
written as

Vs,s, ==m3 (S1S1) = m§ (5352) + s (S 15 1)°
+5,(8582)% + As,5,(S 1S 1)(S5S52)
+ 4,5, (@101)(S TS 1) + Ag,s, (502
+¢303)(S 1S 1)+ Ag,5,(#161)(S552)
+ Ag,5,($302 + $363)(S552) + Aas, Tr(ATAY(S 1S 1)
+Aps, TE(ATA)(S 58 2) + A5 x(S 1S (X" X)
+A5,x(S3S DX X) + A (ST DX +X77)
+ A5 x(S38)(X% + X2 + Ap,s, (F{F1)(S}S 1)
+AF,s,(F1F1)(8582) + Ap,s,(F3F2)(S1S1)

+ Ap,s, (F3F2)(S382) +a(S1S3+51557).
(A2)

Now, the K-violating terms containing S;, can be writ-
ten as

Vi =0d4,5,(@5¢2)(S S 1) +0A) 5 (¢363)(SS1)
+ 04,5, (8502)(S352) + A, ¢ (853)(S3S52)
+i6A25(B303 — $102)(S 1S 1) +i6a6(5 b3
—$1$2)(S3S2). (A3)

In the above two potentials, all parameters are real due to
hermiticity or CP symmetry. Similar to the desciption in
Sec. VI, we can see that the potential terms in Vy s, and
V¢ do not alter the main conclusions of Sec. III.C. This
means, even with the fields S, A acquires real VEV,
whereas the VEVs of ¢, 3 explain the hierarchy in m, and
ms.

Here, we demonstrate that S;, can acquire real
VEVs. In this regard, we can see that the last term of
Vs,s, can only contain the phases in the VEVs of §,.
Hence, after parameterizing  (S;) = v, e and
(S1)=vse%, we get

(Vs, 5.) 2 +2av, v* cos(26;, —6y). (A4)

51 Vs,
The above term has a minimum at 26, —6; =0 when
avs, <0. To satisfy this minimum, we can choose
65, = 05, = 0. Now, the minimum at 6,5, = 6;, =0 cannot be
shifted by the terms of Vi, since S appear in the form

of 1§ and S35, in Vl/f,' Hence, there exist a parameter
region where the VEVs of §| and S, are real in this model.
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