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Abstract: In this study, we investigate the quasinormal mode and late-time tail of charged massless scalar perturba-
tions of a black hole in generalized Rastall gravity. The black hole metric in question is spherically symmetric, ac-
companied by a  power-Maxwell  field surrounded by a  quintessence fluid.  We show that  the massless  scalar  field,
when dressed up with the magnetic field, acquires an effective mass, which significantly affects the properties of the
resultant quasinormal oscillations and late-time tails. Specifically, the quasinormal frequencies become distorted and
might even be unstable for particular  spacetime configurations.  Additionally,  the exponent of  the usual  power-law
tail is modified according to the modification in the structure of the branch cut of the retarded Green's function. In
particular, as the effective mass is generated dynamically owing to the presence of the magnetic field, we may con-
sider a process through which the field is gradually removed from the spacetime configuration. In this context, while
the quasinormal oscillations converge to the case of massless perturbations, we argue that the properties of resultant
late-time tails do not fall back to their massless counterpart. The relevant characteristics are investigated using nu-
merical and analytic approaches.
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I.  INTRODUCTION

The black  hole  is  one  of  the  most  intriguing  predic-
tions  of  Einstein's  general  relativity.  It  is  a  particular
spacetime  region  typically  created  by  the  gravitational
collapse  of  a  compact  object  in  its  late  stage,  when  its
mass  exceeds  the  upper  limit  of  neutron  stars  [1].  From
both theoretical  and  experimental  perspectives,  the  sub-
ject  has gained much interest  over  the past  few decades.
As the  culmination  of  continuous  efforts,  the  recent  ad-
vent of empirical  detection of gravitational waves eman-
ating from black holes has elicited further interest. In par-
ticular, the  merger  signals  of  a  black  hole  binary  cap-

tured by the LIGO and Virgo collaboration [2] furnished
the first  direct piece of evidence of black holes and sub-
sequently  inaugurated  a  novel  era  of  gravitational-wave
astronomy.

The quasinormal modes (QNMs) carry the character-
istic sound of a black hole. In terms of dissipative oscilla-
tions, they bear the essential properties of the underlying
spacetime  metric  [3].  The  associated  temporal  profile
constitutes  the  ringdown  phase  of  the  collapse,  from
which a black hole is formed. On the one hand, such sig-
nals  are  mathematically  straightforward  compared  with
those  emanating  from  the  merger  process.  On  the  other
hand, the  strength  of  the  associated  gravitational  radi-
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ation is speculated to still fall within the scope of the on-
going space-borne gravitational  wave detector  programs,
such  as  LISA  and  TianQin  [4, 5].  In  particular,  studies
have  been  performed  to  evaluate  the  detector  signal-to-
noise ratio regarding the feasibility of an eventual detec-
tion [6, 7].

t−(2l+3) t−(2l+2)

Theoretically, QNMs can be investigated using black
hole  perturbation  theory.  Among  the  earliest  endeavors,
Regge and Wheeler  created the framework of  the metric
perturbations  in  spherically  symmetric  black  holes  [8].
Subsequent developments by Zerill [9] and Moncrief [10]
further refined a few pertinent aspects. For rotating black
holes,  Teukolsky  first  derived  the  linearized  scalar  and
metric perturbation equations for the Kerr spacetime [11,
12].  Although  the  physical  system  is  dissipative  and
therefore  non-Hermitian,  the  mathematical  procedure  to
obtain QNMs  can  be  effectively  considered  an  eigen-
value  problem.  Subsequently,  the  emergence  of  discrete
complex frequencies is attributed to the ingoing and out-
going  boundary  conditions,  respectively,  applied  at  the
horizon and outer spatial bound (often located at infinity).
By  using  the  continued  fraction  method  proposed  by
Leaver  [13, 14], we  encounter  the  discrete  complex  fre-
quencies reminiscent of the atomic spectrum of hydrogen
in  quantum  mechanics.  The  eigenvalue  nature  of  the
problem  is  also  transparently  considered  in  terms  of  the
matrix  method  [15– 18],  in  which  we  explicitly  solve  a
matrix  secular  equation  for  the  quasinormal  frequencies.
In contrast,  Leaver  proposed  the  Green's  function  ap-
proach,  which reformulates the general  solution in terms
of  the  spectrum  decomposition  [3, 19]. From  this  per-
spective,  the  main  characteristics  of  the  perturbation
fields are attributed to the intrinsic singularities of the rel-
evant Green's  function.  Specifically,  the  QNMs  corres-
pond  to  the  poles  of  the  Green's  function,  whereas  the
branch cuts essentially govern the late-time tails. In addi-
tion to the QNMs, the late-time tail is a topic of pertinent
relevance. On the one hand, the time profile of QNMs de-
cays  exponentially;  on  the  other  hand,  the  late-time  tail
largely  follows  a  power-law  form.  Therefore,  the  final
stage  of  the  temporal  evolution  of  the  perturbations  is
dominated  primarily  by  the  late-time  tail.  As  mentioned
earlier,  mathematically,  the  origin  of  the  late-time tail  is
attributed  to  the  branch  cut  and  cannot  be  obtained  by
summing the QNM poles. For instance, for massless scal-
ar perturbations, the tail is due to a branch cut on the neg-
ative  imaginary  axis  in  the  frequency  domain,  which
stretches  from  the  origin.  Researchers  have  argued  that
the presence of the branch cut sensitively depends on the
asymptotical structure of the potential [20]. Additionally,
it is  often interpreted in  the literature  as  the  backscatter-
ing of perturbed wave packets by the spacetime far away
from the  horizon [21–23].  Price  was the  first  to  observe
an inverse power-law tail,  or , for massless
scalar perturbations in the Schwarzschild black hole met-

t−(l+3/2) sin(µt)

t−5/6 sin(µt)

t−1 sin(µt)

ric [24]. Extensive studies for different metrics further in-
dicated  that  such  an  inverse  power-law  form  is  a  rather
general characteristic for massless perturbations in spher-
ical  spacetimes  that  are  asymptotically  flat  [21, 25, 26].
Moreover, the temporal profile for massive perturbations
might be qualitatively different from their massless coun-
terparts. For  insignificant  mass,  Hod  and  Piran  dis-
covered that the time-domain profile at the intermediate-
late time  in  Reissner-Nordström  spacetime  has  an  oscil-
latory tail with a decay rate of  [27], where
μ is the  mass  of  the  field.  Moreover,  Koyama  and  To-
mimatsu  analytically  showed  that  the  asymptotical  late-
time  tail  in  the  Schwarzschild  spacetime  is 
[28, 29].  For  some specific  cases,  the  asymptotical  form
was  recenetly  reported  to  also  be  [30]  in  the
limit  of  vanishing  scalar  mass.  In  all  the  massive  cases,
the branch cut  can be conveniently selected to be on the
real  axis  in  a  finite  interval  determined  by  the  scalar
mass.  It  is  also worth noting that  such a decay rate does
not depend on the angular momentum l. In addition to the
power-law form, the exponential tails have also been ob-
served in asymptotically de Sitter spacetimes for various
types of fields [31–33].  Notably,  the Dirac perturbations
eventually  decay  to  a  non-zero  constant  [23, 34].  These
distinctive  characteristics  have  significantly  enriched  the
physical content regarding the late-time waveforms. More
recently,  Cardoso et  al. proposed  [35]  that  the  late-time
ringdown may serve to probe the horizon and discrimin-
ate  between  different  gravitational  systems,  inclusively,
the exotic  compact  objects  such  as  gravastar  and  worm-
hole.  Based on this,  black hole echoes [36], and particu-
larly, their connections with the QNMs and late-time tail
[37, 38] have also attracted much interest.

104 ∼ 108

The magnetic field is another indispensable assembly
piece of the universe.  Experimentally,  employing the ro-
tation measures, information on the magnetic field in the
disk  of  galaxies  can  be  extracted  for  a  large  number  of
pulsars [39]. In particular, strong magnetic fields, as high
as  G, have been observed in the vicinity of stel-
lar-mass or supermassive black holes [40]. Therefore, rel-
evant studies  on  black  hole  metrics,  including  their  per-
turbations,  have to be placed in the context of a realistic
astrophysical  environment.  A  stationary  axisymmetric
black hole solution with a uniform magnetic field placed
along the symmetry axis was first derived by Wald [41].
The solution  for  the  Kerr-Newman  black  hole  was  sub-
sequently obtained by Ernst and Wild [42]. Among many
important developments,  the  magnetic  field  was  ob-
served to have an essential role in the stability of the dy-
namic system. The latter encompass the superradiance in-
stability  [43]  and black hole  QNMs [44, 45]. In  particu-
lar,  the  Zeeman  effect  was  recently  uncovered  in  the
QNM spectrum of charged scalar perturbations in a mag-
netized Schwarzschild black hole [44]. Moreover, the in-
stability of  the  metric  can  be  triggered  by  tuning  the  ef-
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fective scalar mass,  which is  modified by the interaction
between the charge and magnetic field.

As  an  alternative  theory  of  general  relativity,  Rastall
gravity was formulated based on the possible breaking of
the  conservation  law  of  the  stress  energy-momentum
tensor  [46]. The  theory  aims  at  addressing  several  un-
settled problems in general relativity regarding the largest
scale  when  compared  with  cosmological  observation.  In
the  literature,  various  intriguing  aspects  of  the  theory
have  been  explored,  which  include  black  hole  physics
[47–50] and cosmology [51–55]. Among others, the the-
ory  inherently  results  in  a  particle  creation  mechanism,
which  naturally  supplies  an  alternative  implementation
for dark energy [56]. It is meaningful to further investig-
ate  the impact  of  the magnetic  field in  Rastall  theory on
spacetime stability.

This  paper  is  motivated by the above considerations.
We investigate  the  QNMs and  late-time  tails  of  charged
massless scalar perturbations of a magnetized black hole
solution  derived  from  generalized  Rastall  gravity.  First,
we  generalize  the  black  hole  solution  in  Rastall  gravity
into  a  more  realistic  context  by  including  the  magnetic
field. We then analyze the effect of the magnetic field on
the spacetime stability in the context of Rastall gravity by
exploring the quasinormal oscillations. For this, the study
of massless  scalar  perturbations  is  sufficient  for  the  pur-
pose.  For  stable  spacetime  configurations,  we  know that
massless and massive scalar fields behave distinctively in
the late-time evolution.  Therefore,  it  would be rather  in-
teresting to  investigate  the  implications  for  Rastall's  the-
ory  with  the  presence  of  a  magnetic  field.  In  particular,
we  observe  that  the  exponent  of  the  power-law  tail  is
modified. This can be attributed to the fact that the effect-
ive mass of the field is "dressed up" owing to the interac-
tion between the magnetic field and charge.

The remainder of the paper is organized as follows. In
the  Sec.  II,  we present  the  metric  of  a  magnetized black
hole investigated in this study. The QNMs are explored in
Sec.  III  by  employing  the  Wentzel-Kramers-Brillouin
(WKB) approximation,  matrix  method,  and  finite  differ-
ence method. In Sec. IV, we analyze the late-time tail of
the  massless  scalar  perturbations  and  the  effect  of  the
magnetic  field.  Both  the  Green's  function  and  the  finite
difference  method  are  utilized.  Further  discussions  and
concluding remarks are provided in the final section. 

II.  POWER-MAXWELL CHARGED BLACK
HOLE SOLUTIONS IN RASTALL GRAVITY

According to Rastall's recipe [46], the breaking of the
conservation law of the stress energy-momentum tensor is 

T v
µ;v = λR,µ , (1)

where λ is  the  Rastall  coupling  parameter,  and R is  the

λ = 0Ricci scalar. If , the stress energy-momentum tensor
is conserved and Rastall  gravity falls back to general re-
lativity.  Moreover,  the  corresponding  field  equation  can
be expressed as 

Rµν+
(
κλ− 1

2

)
gµνR = κTµν, (2)

κwhere  is a constant related to the trace anomaly of the
energy momentum tensor in Rastall gravity.

In  this  paper,  we  consider  a  spherically  symmetric
black  hole  solution  surrounded  by  a  quintessence  fluid
and  power-Maxwell  field  first  derived  in  [57]. Specific-
ally, the metric of a static, spherically symmetric four-di-
mensional spacetime is expressed as 

ds2 = − f (r)dt2+ f (r)−1dr2+ r2dθ2+ r2sin2θdϕ2. (3)

The action  for  the  electromagnetic  sector  is  of  a  nonlin-
ear form, which can be expressed as [58] 

LF = −(−ξF )s, (4)

F = FµνFµv Fµν

s = 1
where ,  is the Faraday tensor, and s and ξ
are  constants.  corresponds  to  the  case  of  a  linear
electromagnetic field. Owing to the presence of the elec-
tromagnetic field and quintessence fluid, the resulting en-
ergy momentum tensor has the form 

T µ
v = Eµ

v +T ∗µv , (5)

Eµ
vwhere the electromagnetic part, , is given by 

Ev
µ = −(−ξ)s(F )s−1

(
2sFσµFσv− 1

2
δv
µF

)
. (6)

T ∗µv
p = wρ

 is  the  energy-momentum  tensor  of  the  quintessence
field. If we assume a barotropic equation of state ,
it can be expressed as 

T ∗tt = T ∗rr = −ρ(r), T ∗θθ = T ∗φφ =
1
2
ρ(r)(3w+1). (7)

By substituting the energy momentum tensor into the
field  equation  Eq.  (2),  we  can  show  that  the  black  hole
metric is [57] 

f (r) =1− 2M
r
+

Q2r
2

1−2s (−1+2s)
3−2s
1−2s

(3−2s)s

+
Car

1−6κλ+w(3−6κλ)
−1+3(1+w)κλ × (1−3(1+w)κλ)2

3(−1+4κλ)(κλ+w(−1+ κλ))
, (8)
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Cawhere  is a constant of integration, and M is related to
the mass of the black hole.

s = 1

Q = 0

For this study, we will focus on the case of the linear
electromagnetic field with  and the sole presence of
a  constant  magnetic  field,  namely,  the  electric  charge
vanishes, . When black hole is in the magnetic field,
as  a  good  approximation1),  the  vector  potential  of  the
electromagnetic field can be expressed as 

Aµ =
1
2

Br2sin2θ(0,0,0,1). (9)

 

III.  QUASINORMAL MODES OF CHARGED
MASSLESS SCALAR PERTURBATIONS

The  temporal  evolution  of  a  massless  charged  scalar
field is  governed  by  the  Klein-Gordon  equation,  as  fol-
lows: 

gµν
(
∇µ− iqAµ

)
(∇ν− iqAν)Φ = 0. (10)

∇αAα = 0

q2B2≪ 1

To  simplify  the  above  equation,  we  introduce  some
reasonable  assumptions  [45].  First,  we  obtain 
by selecting the Lorentz gauge. Additionally, we assume
that  by  considering  the  scenario  in  which  the
coupling between the scalar and electromagnetic fields is
sufficiently weak. Under these conditions, Eq. (10) can be
rewritten as 

1
r2

∂

∂r

(
r2 f

∂Φ

∂r

)
−

(
L2

r2 −qBLz

)
Φ− 1

f
∂2Φ

∂t2 = 0, (11)

where 

L2 = −
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2θ

∂2

∂ϕ2

]
(12)

and 

Lz = −i
∂

∂ϕ
. (13)

Now,  we  may  employ  the  method  of  separation  of
variables by expressing the wave function as 

Φ(t,r, θ,ϕ) =
1

2π

∫
dωe−iωt

∑
l

Rlm(r,ω)
r

Ylm(θ,ϕ), (14)

Yℓm(θ,ϕ)where  are the spherical harmonics, and the radi-

Rℓm(r,ω)al part of the wave function  satisfies (
d2

dr∗2
+ω2−Veff(r)

)
Rlm(r,ω) = 0, (15)

where the effective potential is given by 

Veff(r) = f (r)
[
l(l+1)

r2 +
f ′(r)

r
−mqB

]
, (16)

r∗ dr∗ =
dr
f (r)

Veff = −mqB r→∞
and  is  the  tortoise  coordinate  defined  by .
We note that  as .

s = 1 Q = 0

w = −10
9

κ = 1
Ca = −9 λ = −16

In  the  following,  we  evaluate  the  QNMs  using  the
sixth  order  WKB  approximation  [59– 64]  and  matrix
method [15–18]. Additionally, the temporal evolutions of
the perturbation  are  investigated  using  the  finite  differ-
ence  method  [20, 65].  We  also  study  the  dependence  of
the  resulting  quasinormal  frequencies  on  the  spacetime
configurations. Moreover, we use the Prony method [66,
67] to extract the complex frequencies and compare them
to those obtained using the WKB approximation and mat-
rix  method.  The  matrix  method  discretizes  the  master
equation and approximates it using a matrix equation that
can eventually be solved by a  nonlinear  equation solver.
Of course, the QNMs can also be investigated using oth-
er well-known approaches, such as the continued fraction
method [13].  Specifically,  the  parameterization  given  by
Eq. (17) is analytic; therefore, we expect that we can de-
rive a three-term recurrence relation and apply the meth-
od. However, for this study, we focus on the three meth-
ods  discussed  above.  Regarding  the  QNM  frequencies,
we are interested in the role of the magnetic field. In ad-
dition to the choice of  and  as discussed earli-
er, we consider a simplied form of the metric by assum-
ing  the  following  metric  parameters: , ,

,  and .  The  resultant  metric  is  expressed
as 

f = 1− 2M
r
+

3
10r3 . (17)

meff = −mqB

meff

The  resultant  quasinormal  frequencies  are  presented
in Tables  1–2 and Figs.  1–4.  From Tables  1–2,  we first
conclude that  the  results  obtained  using  the  three  differ-
ent approaches are in reasonable agreement. In particular,
the results of the matrix method and sixth-order WKB ap-
proximation  are  mostly  consistent.  We  observe  that  the
term  functions as an effective "mass" of the
initially massless scalar field. For positive effective mass

,  as  the  effective  mass  increases,  the  real  part  of  the
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m = 0

quasinormal frequency increases, whereas the magnitude
of  the  imaginary  part  decreases.  This  indicates  that  the
period  of  the  dissipative  oscillations  decreases,  whereas
the  amplitude  decreases  slower  in  time.  At  vanishing
magnetic  quantum number , as  expected,  the  quas-

inormal frequencies are independent of the strength of the
magnetic field B.

These results are also in agreement with the temporal
evolution  calculated  using  the  finite  difference  method
shown in Fig. 1. In particular, as also shown in Fig. 2, as

l = 1 M = 1

Fig.  1.    (color  online)  Calculated  temporal  evolutions  of  charged  massless  scalar  perturbations  for  different  values  of  the  effective
mass. The results are obtained using the finite difference method using the paramters  and .

 

Table 1.    QNMs of the massless charged scalar field in the magnetized black hole metric in Rastall gravity. The sixth order WKB ap-
proximation and matrix method have been employed for the calculations, by assuming the metric given by Eq. (17).

l m
qB = 0 qB = 0.05 qB = 0.1 qB = 0.15

WKB Matrix method WKB Matrix method WKB Matrix method WKB Matrix method

1

1 0.298-0.096i 0.298-0.096i 0.277-0.108i 0.281-0.109i 0.256-0.120i 0.266-0.127i 0.236-0.130i 0.200-0.178i

0 0.298-0.096i 0.298-0.096i 0.298-0.096i 0.298-0.096i 0.298-0.096i 0.298-0.096i 0.298-0.096i 0.298-0.096i

−1 0.298-0.096i 0.298-0.096i 0.320-0.083i 0.320-0.085i 0.342-0.069i 0.343-0.069i 0.363-0.052i 0.363-0.053i

2

2 0.492-0.095i 0.492-0.095i 0.462-0.105i 0.464-0.104i 0.433-0.115i 0.438-0.115i 0.404-0.124i 0.438-0.115i

1 0.492-0.095i 0.492-0.095i 0.477-0.100i 0.477-0.100i 0.462-0.105i 0.464-0.104i 0.448-0.111i 0.451-0.108i

0 0.492-0.095i 0.492-0.095i 0.492-0.095i 0.492-0.095i 0.492-0.095i 0.492-0.095i 0.492-0.095i 0.492-0.095i

−1 0.492-0.095i 0.492-0.095i 0.508-0.090i 0.508-0.091i 0.523-0.085i 0.524-0.085i 0.539-0.080i 0.539-0.079i

−2 0.492-0.095i 0.492-0.095i 0.523-0.085i 0.524-0.085i 0.555-0.074i 0.555-0.073i 0.587-0.062i 0.587-0.063i

Table 2.    QNMs of the massless charged scalar field in the magnetized black hole metric in Rastall gravity obtained using the code of
Prony's method developed in [66].

l m qB = 0 qB = 0.05 qB = 0.1 qB = 0.15

1

1 0.293-0.098i 0.272-0.113i 0.247-0.108i 0.229-0.206i

0 0.293-0.098i 0.293-0.098i 0.293-0.098i 0.293-0.098i

−1 0.293-0.098i 0.316-0.084i 0.339-0.070i 0.370-0.051i

2

2 0.484-0.097i 0.453-0.108i 0.427-0.120i 0.377-0.114i

1 0.484-0.097i 0.468-0.102i 0.453-0.108i 0.438-0.113i

0 0.484-0.097i 0.484-0.097i 0.484-0.097i 0.484-0.097i

−1 0.484-0.097i 0.500-0.091i 0.516-0.086i 0.532-0.080i

−2 0.484-0.097i 0.516-0.086i 0.548-0.074i 0.581-0.061i
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meffthe value of  increases, the imaginary part eventually
becomes insignificant  as  the  envelope of  the  oscillations
tends to lie horizontally. It is depicted explicitly in Fig. 3,
where we calculate the quasinormal frequencies as func-
tions  of  the  effective  mass  using  the  matrix  method.  As
the effective increase, the real part of the quasinormal fre-
quency increases, and the imaginary part decreases to ap-
proach zero.  Subsequently,  the resulting temporal  evolu-
tions  are  featured  by  the  so-called  quasi-resonance  [68,
69]. When we further increase the effective mass until  it
exceeds  a  critical  value,  the  quasinormal  oscillation  will
disappear entirely. The latter is demonstrated in Fig. 3 as
the quasinormal spectrum approaches the real axis as the
magnetic field increases. As discussed in the next section,
such a configuration becomes favorable for investigating
the  properties  of  the  late-time  tail  in  a  more  transparent

fashion.
meff < 0For  negative ,  the  WKB  and  matrix  methods

fail to produce meaningful results, and we resort to the fi-
nite  difference  method  entirely.  This  is  signaled  by  the
fact that  the  corresponding  effective  potential  has  a  re-
gion of negative values, which indicates possible instabil-
ity. The  form  of  the  relevant  effective  potential,  gov-
erned by Eq. (16), is shown in Fig. 4. Similar to Ref. [45],
we observe that such a configuration indeed results in in-
stability by exploring the temporal evolution of the initial
perturbations. To further verify this instability, we use the
finite difference method to determine the temporal evolu-
tion  of  the  massless  charged  scalar  perturbations.  As
demonstrated  in Fig.  2,  as  we  gradually  decrease  the
value of the effective mass, the oscillation eventually be-
comes unstable. Moreover, note that there is a distinction

l = 1 M = 1

Fig. 2.    (color online) Calculated temporal evolutions of charged massless scalar perturbations, where instability is observed for a neg-
ative effective mass. The results are obtained using the finite difference method for the parameters  and .

 

l = 1,2 m = −1 n = 0

Fig. 3.    (color online) QNMs of different effective masses calculated using the matrix method for the massless charged scalar field
with , , and .
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between the quasinormal oscillation and the late-time tail
in  the  limit  when  the  magnetic  field  vanishes,  which  is
elaborated in the next section. 

IV.  LATE-TIME TAILS OF CHARGED MASS-
LESS SCALAR PERTURBATIONS

In  this  section,  we  explore  the  late-time  tails  of  the
charged  massless  scalar  perturbations  using  the  analytic
method proposed in Ref. [19] and the numerical integra-
tion.

In terms of the Green's function, the wave function of
the scalar field can be given by [70] 

ψ (r∗, t) =
∫

[G
(
r∗,r∗′; t

)
ψt

(
r∗′,0

)
+Gt

(
r∗,r∗′; t

)
ψ
(
r∗′,0

)
]dr∗′, (18)

ψ (r∗,0)
ψt ≡ ∂tψ(r∗,0) G (r∗,r∗′; t)
where  the  initial  conditions  are  encoded  in  and

,  and  the  Green's  function  is
defined by 

[
∂2

∂t2 −
∂2

∂r2
∗
+V

]
G

(
r∗,r∗′; t

)
= δ(t)δ

(
r∗− r∗′

)
, (19)

G̃ (r∗,r∗′;ω)When  is obtained,  the  evolution  of  an  arbit-
rary initial  perturbation  can  be  obtained  through  the  in-
tegration  given  by  Eq.  (18).  Indeed,  both  the  QNM  and
late-time tail can be understood in terms of the singularit-
ies  and  branch  cuts  of  the  Fourier  transform  of  the
Green's function. 

G̃
(
r∗,r∗′;ω

)
=

∫ +∞

0−
G

(
r∗,r∗′; t

)
eiωtdt, (20)

whose inverse transform is given by 

G
(
r∗,r∗′; t

)
= − 1

2π

∫ ∞+ic

−∞+ic
G̃

(
r∗,r∗′;ω

)
e−iωtdω, (21)

where c is  a positive constant.  Therefore,  the analysis of
the properties of the Green's function becomes an essen-
tial task.

G̃ (r∗,r∗′;ω)It is well-known that the Green's function 
can be constructed using two independent solutions of the
corresponding homogeneous equation (

d2

dr2
∗
+ω2−V

)
ψ̃i = 0. (22)

ψ̃1 (r∗,ω) ψ̃2 (r∗,ω)These  two  solutions,  and ,  satisfy  the
appropriate boundary  condition  at  both  spatial  boundar-
ies [71], namely, 

ψ̃1 (r∗,ω) ∼
 e−iωr∗ r∗→−∞

A(ω)eiωr∗ +B(ω)e−iωr∗ r∗→ +∞
,

(23)
 

ψ̃2 (r∗,ω) ∼
 C(ω)eiωr∗ +D(ω)e−iωr∗ r∗→−∞

e+iωr∗ r∗→ +∞
.

(24)

We can easily show that  the following form satisfies
Eq. (19): 

G̃
(
r∗,r∗′;ω

)
= − 1

W(ω)

 ψ̃1 (r∗′,ω) ψ̃2 (r∗,ω), r∗′ > r∗

ψ̃1 (r∗,ω) ψ̃2 (r∗′,ω), r∗′ < r∗,
(25)

where 

W(ω) ≡ ψ̃1 (r∗,ω) ψ̃2,r∗ (r∗,ω)− ψ̃2 (r∗,ω) ψ̃1,r∗ (r∗,ω) (26)

Veff (r) l = 2Fig. 4.    (color online) Effective potentials  for  and different effective mass.
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ψ̃1 (r∗,ω) ψ̃2 (r∗,ω)is the Wronskian of  and .
Research  shows  [24] that  the  late-time  tails  of  quas-

inormal oscillations can be attributed to the branch cut of
the  Green's  function.  For  the  massless  scalar  field,  the
branch cut lies on the negative part of the imaginary axis
[21].  For  the  massive  scalar  field,  Hod  and  Piran  [27]
were  the  first  to  indicate  that  the  branch  cut  lies  on  the
real axis between the two branch points governed by the
mass. Using reasonable approximation, an appropriate es-
timation of  the  contribution  from  the  branch  cut  sub-
sequently  yields  the  main  characteristic  of  the  late-time
tail.  From  a  physical  perspective,  because  the  low-fre-
quency waveforms are more likely to be backscattered by
the curvature at the asymptotic infinity, the late-time tail
is primarily  dominated  by  the  low-frequency  contribu-
tions  [27].  Mathematically,  this  is  because  both  types  of
late-time tails  originate  from  the  branch  cut,  which  re-
mains closer to the real axis than any QNM pole.

To proceed, we introduce 

Rlm(r,ω) =
(
1− 2M

r
+ r−(2+a)

)−1/2

ψ̃. (27)

M
r

c
rα

α > 2

By further  referring to  Refs.  [27, 29, 72, 73], we as-
sume  that  the  initial  perturbation  and  observer  are  both
located away from the black hole. Subsequently, the mas-
ter  equation  can  be  simplified  by  expanding  Eq.  (15)  in

1).  Specifically,  we  ignore  the  terms  of  order  with
 and obtain 

[
d2

dr2 +ω
2+Bqm+

4Mω2+Bqm2M
r

− l (l+1)
r2

]
ψ̃ = 0. (28)

By further introducing 

ψ̃ =zl+1e−
z
2Φ(z),

z =2
√
−Bqm−ω2r ≡ 2ϖr,

λ =
M(−Bqm)

ϖ
−2Mϖ, (29)

we  can  express  two  relevant  solutions  for  homogeneous
equation Eq. (22) as follows 

ψ̃1 = A′Mλ,(l+ 1
2
)(2ϖr), ψ̃2 = B′Wλ,(l+ 1

2
)(2ϖr), (30)

A′ =C′ϖ−(l+1) B′,C′

Mk,m Wk,m

M(a,b,z) U(a,b,z)

where  and  are some one-valued even
functions  of ϖ.  and  are the  Whittaker  func-
tions, which can be expressed in terms of the solutions of
Kummer's  equation  and ,  namely,  the

confluent hypergeometric functions [74], 

Mλ,(l+ 1
2
)(2ϖr) =e−ϖr(2ϖr)(l+ 1

2
)+ 1

2 M (l+1−λ,2l+2,2ϖr) ,

Wλ,(l+ 1
2
)(2ϖr) =e−ϖr(2ϖr)(l+ 1

2
)+ 1

2 U (l+1−λ,2l+2,2ϖr) .
(31)

C′

ψ̃1

ψ̃2

ψ̃2

Note  that  the  specific  choice  of  guarantees  the
proper in-going wave boundary condition at the horizon.
Moreover,  as  discussed  later,  satisfies  Eq.  (38)  as  it
does  not  contain  any  discontinuity  when  crossing  the
branch cut [29, 72, 73]. In contrast,  yields the outgo-
ing  wave  at  spatial  infinity  that  has  two  branch  points
and, subsequently, a branch cut joining them. As initially
proposed in [27], we may conveniently place the branch-
ing cut on the real axis of the ω-plane, as shown in Fig. 5.
In this context, the late-time tail is primarily governed by
the  properties  of .  Note  that  it  is  mandatory  to  show
that  the  branch  cut  is  in  the  lower  half  of  the  complex
plane. Moreover, for the result to be physically meaning-
ful,  the  specific  choice  of  the  branch cut's  location  must
also  be  irrelevant.  A  detailed  account  of  this  point  was
discussed recently in Ref. [30].

By using the explicit forms of Eqs. (30)–(31), we can
evaluate the contribution from the difference between the
two sides of the branch cut. Therefore, the inverse Fouri-
er transform Eq. (21) yields 

GC (
r∗,r′∗; t

)
=

1
2π

∫ √
−Bqm

−
√
−Bqm

F(ϖ)e−iωtdω, (32)

where 

F(ϖ) ≡
ψ̃1

(
r′∗,ϖeiπ

)
ψ̃2

(
r∗,ϖeiπ

)
W

(
ϖeiπ) − ψ̃1

(
r′∗,ϖ

)
ψ̃2 (r∗,ϖ)

W(ϖ)
.

(33)

Regarding the  integrand  in  Eq.  (32),  we  first  calcu-
late the  Wronskian in  the  denominator  using the  follow-
ing relations [74] 

Wλ,l+ 1
2
(2ϖr) =

Γ(−2l−1)
Γ(−l−λ)

Mλ,l+ 1
2
(2ϖr)

+
Γ(2l+1)
Γ(l+1−λ)

Mλ,−(l+ 1
2 )(2ϖr). (34)

and the  non-vanishing  Wronskian  between the  confluent
hypergeometric functions 

W
{
Mλ,l+ 1

2
(2ϖr),Mλ,−(l+ 1

2 )(2ϖr)
}
= −(2l+1)(2ϖ). (35)
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We observe that 

W(ϖ) = A′B′(−2l−1)(2ϖ)
Γ(2l+1)
Γ(l+1−λ)

. (36)

To  account  for  the  discontinuity  of  the  integrand
across the branch cut, we use 

M±λ,l+ 1
2

(
eiπ2ϖr

)
= e(l+1)iπM∓λ,l+ 1

2
(2ϖr), (37)

ψ̃1,2
(
r∗,ϖeiπ

)
to evaluate  as follows:
 

ψ̃1
(
r∗,ϖeiπ

)
= ψ̃1 (r∗,ϖ) , (38)

 

ψ̃2
(
r∗,ϖeiπ

)
=B′

[
e(l+1)iπ Γ(−2l−1)

Γ (−l+λ)
Mλ,l+ 1

2
(2ϖr∗)

+ e(−l)iπ Γ(2l+1)
Γ (l+1+λ)

Mλ,−(l+ 1
2
)(2ϖr∗)

]
. (39)

In  the  above results,  note  that  the  subscripts λ of  the
Whittaker functions  remain  unchanged.  Eq.  (38)  mani-

ψ̃1festly indicates that  does not have any branch cut as it
is also a generic physical requirement [21, 27, 29]. Addi-
tionally, the Wronskian yields 

W
(
ϖeiπ

)
= A′B′(−2l−1)(2ϖ)

Γ(2l+1)
Γ(l+1+λ)

e(−l)iπ (40)

ϖ−(l+1)

A′ e−liπ

We note that  in deriving the above result,  we should
always  take  note  of  Eqs.  (38)  and  (39).  Specifically,  the
discontinuity  associated  with  the  factor  embeded
in  does not manifest itself, whereas the factor  on
the r.h.s. of Eq. (39) does.

By  consolidating  all  the  pieces,  i.e.,  Eqs.  (38),  (39),
and (40), we observe that the integrand of Eq. (32) yields 

F(ϖ) =
1

(−2l−1)(2ϖ)A′2
ψ̃1

(
r′∗,ϖ

)
F̃(ϖ)ψ̃1 (r∗,ϖ) (41)

where 

F̃(ϖ) =e(2l+1)iπ Γ (−2l−1)Γ (l+1+λ)
Γ (−l+λ)Γ (2l+1)

− Γ (−2l−1)Γ (l+1−λ)
Γ (−l−λ)Γ (2l+1)

. (42)

ψ̃1 (r∗′,ϖ)
ψ̃2 (r∗,ϖ)

ψ̃1 (r∗,ϖ)

Here, owing to Eq. (38),  can be readily factor-
ized  out.  The  remaining  term, , can  be  simpli-
fied  by  removing  irrelevant  contributions  that  have  the
identical  discontinuity  of  the  Wronskian.  As  a  result,  a
second  can be removed.

M≪ r≪ t≪ M/(−qBmM2)

ϖ = O(
√√
−qBm/t)

λ≪ 1
1
r

λ≪ 1

For the  intermediate-late  time  scale,  which  corres-
ponds  to  the  range , the  fre-
quency  results in  a  major  contribu-
tion  to  the  integral,  which  implies  owing  to  Eq.
(29). In this case, the term proportional to  in Eq. (28),
which describes the backscattering due to the curvature of
asymptotic  infinity,  is  insignificant  [28, 29]. Sub-
sequently,  the  inverse  Fourier  transform  of  the  Green's
function at the limit  can be performed mostly ana-
lytically, which results in

GC (
r∗,r′∗; t

)
=

(
1− e(2l+1)iπ

)
Γ(−2l−1)Γ(l+1)Γ

(
l+

3
2

)
(−qBm)

2l+1
4
(
r′∗r∗

)l+1t−
2l+3

2

π(4l+2)2−3l− 5
2 Γ(2l+1)Γ(−l)

× cos
[ √
−qBmt−π

(
2l+3

4

)]
. (43)

In  other  words,  we  observe  that  at  the  intermediate-
late time, the tail is dominated by the form
 

t−l− 3
2 cos

[ √
−qBmt−π

(
l
2
+

3
4

)]
.

It  oscillates  while  decaying  through  a  power-law
form. In addition to the magnetic field, the intermediate-
late time tail depends on the multipole number l and azi-
muthal number m. In particular, the presence of the mag-
netic  field  results  in  an  effective  mass  that  significantly

 

Fig.  5.    Relevant  contour  of  the  integration  on  the  complex
frequency  plane  of  the  Green's  function.  The  inverse  Fourier
transform corresponds  to  the  integral  along the  upper  side  of
the  real  axis.  It  can  be  complemented  by  an  integral  along  a
large semicircle in the lower half of the complex plane, which
is subsequently deformed to go around the quasinormal poles
and brach cuts indicated in the plot.

Qusinormal oscillations and late-time tail of massless scalar perturbations of ... Chin. Phys. C 46, 105103 (2022)

105103-9



B→ 0

e−l− 3
2

e−2l−3

modifies the  properties  of  the  tail.  However,  if  we  re-
move the magnetic  field,  the tail  governed by taking the
limit  in  Eq.  (43)  does  not  simply  fall  back  to  its
massless counterpart.  Specifically,  while  the  synodal  os-
cillation is  suppressed,  the  remaining  power-law  expo-
nent becomes ,  which differs from the late-time tail

 observed for  a  massless  scalar  in  the  Schwarz-
schild  background.  Moreover,  as  discussed  later,  at  the
limit of  the  vanishing  magnetic  field,  the  power-law ex-
ponent  of  the  late-time  tail  does  not  match  that  of  its
massless counterpart. We postpone further discussions of
this intriguing characteristic to the end of this section.

√
−qBmt≫ 1/(

√
−qBmM)2

ψ̃1

Now, we discuss the asymptotic behavior of the late-
time  tails.  At  a  significant  time  scale

, the relevant terms in the mas-
ter equation behave differently from the case of interme-
diate-late time  tail.  The  backscattering  from  the  space-
time curvature at asymptotic infinity can no longer be ig-
nored for this scenario. Thus, because both the  factors
in Eq. (41) do not depend sensitively on the frequency ω,
we only require to focus on the term Eq. (42). By apply-
ing  the  above  approximation  and  using  the  asymptotical
forms of Γ functions [74], we obtain 

F̃(ϖ) ≈ Γ (−2l−1)
Γ (2l+1)

λ2l+1
[
e(2l+1)iπ− η+eiπλ+η−e−iπλ

η−eiπλ+η+e−iπλ

]
, (44)

where 

η± = ∓e±iπl. (45)

ϖ→ 0 λ→∞

The resulting  integral  of  the  inverse  Fourier  trans-
form is somewhat complicated, but its asymptotic proper-
ties are governed by the terms related to λ. At small fre-
quencies,  we  obtain  and .  Their  product,
which  appears  in  the  argument  of  the  Bessel  functions,
yields 

λϖ =

(
M(−Bqm)

ϖ
−2Mϖ

)
ϖ = M(−Bqm)+O(ϖ2),

ω→
√
−Bqm+ λ2l+1 e±iπλ

λ→∞

which is finite and varies gradually in the low-frequency
region  [72]. Both the terms  and 
of Eq. (44) oscillate significantly as ,  whereas the
latter  type  is  even  more  dramatic  compared  with  the
former. This  indicates  that  the  integral's  main  contribu-
tion results from these terms. In most cases, we may fol-
low  the  arguments  of  Koyama  and  Tomimatsu  [28]  that
the  main  contribution  of  the  integral  can  be  obtained  by
employing  the  method  of  steepest  descent.  The  strategy
of such a treatment involves isolating the part  that oscil-
lates significantly and then encountering the saddle point,
where the oscillations evolve the slowest. The remaining

part might be tedious in form but varies moderately. We
rewrite the integrand as 

F̃(ϖ)e−iωt ≈ Γ (−2l−1)
Γ (2l+1)

λ2l+1eiϕei(2πλ−ωt), (46)

where the phase can be defined by 

eiϕ = −η++η−e−2iπλ

η++η−e2iπλ . (47)

e2iπλ
As  shown  in  [30],  the  variation  in  the  phase ϕ pre-

cisely cancels that in the term . In this case, the integ-
ral cannot be evaluated using the method of steepest des-
cent. Nonetheless, we may still evaluate the most domin-
ant term of the integral and obtain 

GC (
r∗,r′∗; t

) ∼ t−1 sin(µt+φ), (48)

∼ t−1

where the phase shift φ contains some minor dependence
on t.  The  temporal  dependence  of  Eq.  (48)  implies  that
late-time  tail  evaluated  regarding  the  contribution  from
the saddle point is . Note that the obtained exponen-
tial  does  not  depend  on  either  the  angular  momentum
number or the strength of the magnetic field.

t−β

β = 2.5087±0.0020 β = 3.5015±0.0020
l = 1 l = 2 t−(l+3/2)

We present the numerical results in Figs. 6–9. To con-
firm the above analytical results,  we perform the numer-
ical calculations  using  numerical  integration.  The  result-
ant  temporal  evolutions  of  the  intermediate-late  time are
presented  in Figs.  6–7.  In Fig.  6,  we show the  temporal
evolutions at  the  intermediate-late  time  for  different  ef-
fective masses. For a given l, through Eq. (43),  the peri-
od of  the oscillations increases  as  the effective mass  de-
creases.  Moreover, Fig.  7 shows  that  when  the  effective
mass  is  fixed,  the  oscillating  frequency  largely  remains
unchanged for  different  values  of l. Furthermore,  the  at-
tenuation  becomes  more  significant  as l increases.  In
Fig.  7,  the  time  profiles  obtained  numerically  are  also
compared  against  the  analytic  ones  shown  in  dashed
curves  given  by  Eq.  (43).  The  extracted  exponent  from
the  envelope  of  the  oscillation  yields ,  where

 and  with  respect
to , . Therefore, the asymptotic form  for
the intermediate-late time agrees well with the numerical
results for different l values.

The  temporal  evolutions  of  the  late-time  tails  are
presented  in Fig.  8.  The  calculations  are  performed  for
different  effective  masses  and  angular  momenta.  Again,
by  comparing  the  two  plots  in Fig.  8,  as  the  effective
mass increases, we observe that the oscillation frequency
also increases, but the attenuation rate remains the same.
Moreover, as shown in the bottom plot of Fig. 8, neither
the attenuation rate nor the oscillation period depends on
the angular momentum l. We also show in dashed curves
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l = 1,2

Fig. 6.    (color online) Calculated intermediate-late time tail in the Green's function of charged massless scalar perturbations in a mag-
netized black hole in Rastall gravity. The results are obtained using numerical integration for different effective masses with .

 

l = 1,2

t−(l+3/2)

Fig. 7.    (color online) Calculated intermediate-late time tail in the Green's function of charged massless scalar perturbations in a mag-
netized black hole in Rastall  gravity.  The results  are obtained using numerical  integration for different  effective masses with .
The envelopes of dissipative oscillations shown in dashed curves are compared with the analytic ones  given in the text.
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t−β

β = 0.9978±0.0068
β = 0.9762±0.0082

t−1

the  nonlinear  fitting  to  the  envelope  of  the  oscillations.
The  extracted  exponents  from the  a  power-law form 
for  the  two  cases  are  and

,  respectively,  which  are  reasonably
consistent with the analytic result .

B→ 0

Finally, we elaborate on the specific role of the mag-
netic  field  in  this  study.  A  distinct  characteristic  of  the
present spacetime configuration is that the effective mass
is generated by the magnetic field; therefore, the effect on
the late-time  tail  is  dynamic.  In  particular,  we  are  al-
lowed to consider a process in which one gradually tunes
the magnetic field to approach the limit . Based on
the preceding  discussions,  although  the  quasinormal  fre-
quencies are observed to vary continuously, we conclude
that  the resultant  tail  would not  converge to  its  massless
counterpart.  This  phenomenon  is  manifestly  shown  in
Fig. 9.  The top plot of Fig. 9 shows that as the effective
mass  decreases,  the  dissipative  oscillations  converge  to
the case of massless perturbations. This is consistent with
the  numerical  results  obtained  in Table  3,  where  the
Prony  method  [66, 67] has  again  been  employed  to  ex-

tract  the  complex  frequencies  from  the  time  profiles.  In
contrast,  as  shown in the bottom plot  of Fig.  9,  the late-
time tail of massless perturbations is distinct from the re-
maining ones.  Specifically,  the  massless  perturbation  in-
dicated by the orange curve does oscillate at a finite peri-
od, whereas  the  oscillation  periods  of  massive  perturba-
tions  are  more  significant  (c.f.,  the  green  and  dark  red
curves).  Regarding the  attenuation rate,  all  the  curves  of
massive perturbations  are  essentially  parallel,  which  dif-
fers from that of the massless one. Quantitatively, the val-
ues extracted from the numerical fitting deviate from one
another, as indicated in the caption of the plot.

We now argue that  the case of  massless perturbation
corresponds  to  a  scenario  in  which  the  magnetic  field
does not exist in the first place. Such an interesting differ-
ence  is  somewhat  reminiscent  of  the  demagnetization
process  in  ferromagnetic  materials.  Mathematically,  this
can  be  understood  as  follows.  The  convergence  of  the
quasinormal frequencies can be understood as the analyt-
ic properties of the effective potential essentially remain-
ing unchanged as the effective mass varies continuously.

l = 1,2

M = 1 t−1

Fig. 8.    (color online) Calculated late-time tail in the Green's function of charged massless scalar perturbations in a magnetized black
hole in Rastall gravity. The results are obtained using numerical integration for different effective masses with the parameters 
and . The envelopes of dissipative oscillations shown in dashed curves are compared with the analytic ones  given in the text.

 

Cai-Ying Shao, Yu-Jie Tan, Cheng-Gang Shao et al. Chin. Phys. C 46, 105103 (2022)

105103-12



However,  the  origin  of  a  massive  field's  late-time  tail  is
associated with the presence of two branch points on the
real axis and the absence of any branch point at infinity.
As  the  effective  mass  approaches  zero,  the  two  branch
points become degenerate, but a new branch cut will not
appear,  which  extends  to  infinity.  Moreover,  a  single

branch point will be located at the origin in the case of a
massless field. The branch cut on the negative imaginary
axis  connects  the  origin  with  the  second  branch  point  at
infinity. As  a  result,  the  relevant  structure  on  the  fre-
quency plane  due  to  a  massless  field  is  intrinsically  dif-
ferent  from  that  of  a  massive  perturbation,  although  the

l = 1 M = 1

t−l−3/2 t−2l−3

Fig. 9.    (color online) Calculated quasinormal oscillations and late-time tails of charged massless scalar perturbations in a magnetized
black  hole  in  Rastall  gravity.  The  calculations  aim to  explore  the  asymptotic  behavior  of  the  QNMs and  tails  as  the  effective  mass
gradually vanishes. The results are obtained using the parameters  and . Top: The quasinormal oscillations are shown to con-
verge to the case of massless perturbations as the effective mass approaches zero. Bottom: The envelopes of the tails are compared with
the analytic forms  and ,  respectively.  The results  indicate that  the tails'  asymptotic behavior does not fall  back to that  of
massless perturbations, as discussed in the text.

 

M = 1, l = 1
Table 3.    QNMs for the metric Eq. (17) are calculated by gradually reducing the effective mass. The Prony method, sixth order WKB
approximations, and matrix method are used for the calculations. The results are obtained for .

meff Prony WKB Matrix method

0 0.29861-0.09614i 0.29842-0.09636i 0.29845-0.09622i

0.00001 0.29861-0.09614i 0.29842-0.09636i 0.29845-0.09622i

0.0001 0.29865-0.09612i 0.29846-0.09634i 0.29849-0.09620i

0.001 0.29904-0.09590i 0.29885-0.09611i 0.29884-0.09600i

0.01 0.30288-0.09421i 0.30276-0.09384i 0.30246-0.09408i
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mass is  insignificant.  In other words,  if  we gradually re-
move  the  magnetic  field  from  a  magnetized  black  hole,
the perturbation  will  evolve  differently  from  the  space-
time configuration  in  which  the  magnetic  field  in  ques-
tion does not ever exist. We note that the above picture is
plausible only  when  the  time  scale  of  the  demagnetiza-
tion  process  is  significantly  smaller  than  the  inverse  of
the typical  distance  between  adjacent  quasinormal  fre-
quencies. This is because the resulting effective potential
is  now  a  function  of  time.  Therefore,  the  notion  that
QNMs correspond to the zeros of the Wronskian and sub-
sequently  the  poles  of  the  frequency  domain  Green's
function  [3] is  only  approximately  valid  when  the  pro-
cess can be considered quasistatic. In literature, the mas-
ter  equation  with  a  time-dependent  potential  is  mostly
treated numerically [75–77]. 

V.  CONCLUDING REMARKS

In this study, we investigate the QNMs and late-time
tails of  charged  massless  scalar  perturbations  in  a  mag-
netized  black  hole  in  Rastall  gravity.  We  show  that  the
magnetic field has a significant role in both aspects of the
resultant properties  of  the  scalar  perturbation.  Specific-
ally,  the  massless  scalar  acquires  an  effective  mass
through the magnetic field, which significantly affects the
temporal  evolution  of  the  initial  perturbations.  For  the
quasinormal oscillations, the complex frequencies are dis-
torted and might become either quasinormally resonant or
unstable for specific parameters. For the intermediate and
late-time tails, power-law forms are obtained analytically
and  numerically,  reminiscent  of  those  of  massive  scalar
perturbations. Moreover, owing to the dynamic nature of
the effective mass generated by the magnetic field, we ar-
gue that  it  has an interesting characteristic.  In particular,
as we gradually reduce the external magnetic field, while
the  quasinormal  frequencies  converge  to  its  massless
counterpart,  the  behavior  of  the  late-time  tail  deviates

from the latter. From a mathematical perspective, this can
be understood by analyzing the structure of branch points
and cuts on the complex frequency plane of the relevant
Green's function. 
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APPENDIX A: APPENDIX

s = 1

In  this  Appendix,  we  show  that  when  the  magnetic
field is small, the metric given by Eqs. (3)–(9) is a valid
approximation.  For  simplicity,  we  assume  that  the
strength of the magnetic field is insignificant and does not
consider the "backreaction" to the metric. First, we read-
ily  verify  that  Eq.  (9)  satisfies  the  Maxwell  equation for
linear electromagnetic field in Schwarzschild's solution of
Einstein  gravity.  For  the  Schwarzschild  solution  Eq.  (8)
of generalized Rastall gravity, we must ascertain that the
deviation  for  Eq.  (9)  as  linear  electromagnetic  field
( ) is of higher-order, consistent with the approxima-
tion performed  later.  To  show this,  we  rewrite  the  devi-
ation from Eq. (17) as 

f̃ = f +δ f , (A1)

δ fand solve the Maxwell equation for .
δ fEvidently,  satisfies 

2δ f +2rδ f ′ =
6

5r3 , (A2)

δ f ∼
O(r−3)
which  implies  the  magnitude  of  the  correction 

,  irrelevant  to  the  effective  potential  in  the  master
equation Eq. (28).
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