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Abstract: In this study, we investigate formulas of the number of states with a given total spin / and isospin T for n

nucleons in a single-j shell denoted by D;7(j,n). Talmi's recursion formulas for the number of states with a given z-

axis projection of total spin are generalized by further considering the isospin couplings and are applied to derive ex-

plicit formulas of D;r(j,n).
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I. INTRODUCTION

Determining the number of states with a given spin /
for identical nucleons in a single-j shell [denoted by
D;(j,n)] is a common practice in nuclear structure theory
and atomic physics. In the nuclear shell model, D;(j,n) is
usually tabulated for relatively small j and »n. In cases
with larger j or n, D;(j,n) might be obtained by subtract-
ing the number of states with total angular momentum
projection M =1+1 from that with M =1 [1], where M
equals m; +my+---+m,, and m; [i=1,2,---,n] is the pro-
jection of j on the z-axis for the i-th nucleon. Other re-
cipes to extract D;(j,n) include Racha's formulas in terms
of the seniority scheme [2] and generating function meth-
od studied extensively by Katriel ef al. [3] and Sunko and
collaborators [4—6].

The first explicit and compact formula of D;(j,n) was
obtained specifically for /=0 and n=4 by Ginocchio
and Haxton while studying the fractional quantum Hall
effect [7]. In Ref. [8], D;(j,n) was constructed empiric-
ally for n=3 and 4, and for a few 7 values with n=5.
The formulas for n =3 was soon proved by Talmi, who
introduced his recursive formulas [9]. These formulas
were later derived based on the reduction rule from SU(4)
to SO(3) group [10]; the formula for n = 4 was derived by
the reduction rule from SU(5) to the SO(3) group [11],
with a demonstration that D;(j,n) can be actually derived
based on the reduction rule from SU(n+1) to SO(3) group.
The Ginocchio-Haxton formula of Dy(j,4) was also revis-
ited by Zamick and Escuderos [12]. An explicit recursion
formula from n—1 particles to # particles was obtained in
Ref. [13] by introducing "pseudo" particles which allow

fermions take integer spins. In Refs. [14, 15], the number
of states, denoted by D;(j,n), was applied to derive sum
rules of six-j and nine-j symbols, some of which were
also revisited in Ref. [ 16]. In the last decade, Pain and
collaborators extensively studied the odd-even stagger-
ing of D;(j,n) [17, 18], and compact formulas of D,(j,n)
for n = 3,4, and 5 [19]. The enumeration of the number of
states with given spin was also extended to boson sys-
tems in Ref. [20]. The study of D;(j,n) motivated a num-
ber of studies related to a single-j shell; here, we mention
Refs. [21-34] without providing further details for com-
pleteness.

Given that the nuclear shell model Hamiltonian re-
spects the isospin symmetry, it is natural to generalize the
enumeration of D,(j,n) to the number of states with giv-
en spin / and isospin 7, denoted by D,r(j,n), for nucle-
ons in a single-j shell. In Ref. [35], Zamick and Escuder-
os found a few simple relations between D;r(j,4) with
T =0 and D,;r(j,4) with T =2. In Ref. [36], compact and
explicit formulas of D;r(j,n) for n=3 and 4 were de-
rived in terms of sum rules of six-j and nine-j symbols in-
volving the expression of D,(j,n) given in Ref. [11].

Similar to the enumeration of D;(j,n), D;r(j,n) can be
obtained in terms of the number of states with given spin
projection M and isospin projection M. This number is
denoted by Ny, (j,n). For n fermions in a single-j shell,

Dir(jsn) =[ Ny=1.01,=1(js ) = Np=r+1,01,=1(jo 1) |
—[ Nu=1.m,=1+1(j, ) = Npg=r1,m,=1+1(j, 1) |
=Ny=1,M,=1 (o) + Nyp=1:1,m,=7+1(j, )

= Ny=111,M, =7, ) = Ny=1.m,=1+1(j, ). (1
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In this study, we investigate D;r(j,n) in terms of
Num, (j,n), which is obtained by generalizing Talmi's re-
cursion formula of Ny (j,n), in which isospin is not con-
sidered. Compact formulas of D;7(j,n) are derived for
n =73 as an exemplification. The rest of this paper is or-
ganized as follows. In Sec. II, we generalize Talmi's for-
mulas for Ny, (j,n) by further considering the isospin sym-
metry, and present recursion formulas of Ny, . In Sec.
111, we apply our generalized recursion formulas of Ny,
and extract Ny, (n, j) for n=3. In Sec. IV, Dir(j,3) is
derived by using Eq. (1). In Sec. V, we summarize our
study. In Appendix A, we provide an alternative mathem-
atical proof of our generalized Talmi's recursion formula
by using the generating function method. In Appendix B,
we tabulate D;7(j,n) with n=3 and 4, j=5/2,7/2, and
9/2.

II. NUMBER OF STATES WITH GIVEN z-COM-
PONENT PROJECTIONS OF SPIN AND
ISOSPIN

We use the convention that the z-axis projection of
the isospin for a neutron and a proton equals 1/2 and
—1/2, respectively. For n nucleons in a single-j shell, we
denote the projections of total spin / and total isospin T,
respectively, as M and My. With this convention, the
neutron number equals n/2 + My, and the proton number
equals n/2—Mr. Let us denote the z-axis spin projec-
tions of neutrons and protons by using (m,, ,m,,,....,m,, )
and (my,,my,,...,my, ), respectively, with the convention
that j=m, >m, >..>m, =-j for neutrons and
J=mg >mg, > .. >my,  =-—j for protons. We define
ny, =1 (or n; =1) fori=1,..,2j+1 if the orbit of m,, (or
my,) is filled; otherwise, it equals zero.

According to the above conventions, we have

M =n, m,, +n,,m,, +..+n,, m,

+ g, My, +Np, My, + .+ Ny My s

and the maximum of / equals

Imax =Mimax = (j+ (= D+ ...+ (j=n/2= M7 +1))
+(j+G= D+ +(i=n/2+ M +1))
=n(2j+1)/2—n*/4— MF. )

We denote the number of states with given M and M7
for n nucleons in a single-j shell by using Ny, (j,n).
Clearly, we can divide the values of (n,,,n,,, .5z .nx,,,)
into sixteen cases, as tabulated in Table 1. Here, we ex-
emplify them by using ( n,, = 1,n,,, = 1,ng = 1L,n,, =1).
In this case, there are (n—4) nucleons distributed in or-
bits for which the absolute values of m; values equal or

Table 1.

values of ny,,ny,;, gy iy, -

Number of states corresponding to the available

ny, My N, oy Number of states

1 1 1 1 Nyump(j—1,n=4)

1 1 1 0 Nu-jmp-12(j—1,n=3)
1 1 0 1 Nu+jmp-172(j—1,n=3)
1 1 0 0 Numzr-1(j—1,n=-2)
1 0 1 1 Nu—jmp+172(j—1,n=3)
1 0 1 0 Ny-2jmp(j—1,n-2)
1 0 0 1 Numr(j=1,n=2)

1 0 0 0 Nu-jmp-12(=1,n=1)
0 1 1 1 Nu+jmp+172(j—1,n=3)
0 1 1 1 Ny (j—1,n=2)

0 1 0 1 Nu+2jmy (j—1,n-2)
0 1 0 0 Nu+jmp-12(—1,n=1)
0 0 1 1 Nymp+1(j—1,n=2)
0 0 1 0 Nu-jmp+12(—1,n=1)
0 0 0 1 Ny jmp+12(j—1L,n—=1)
0 0 0 0 Nyvmy (G—1,n)

are below (j—1). Consequently, the number of states
with given M and My, i.e., Ny, (j,n), equals the number
of states of the same M and M7, but with (n—4) nucle-
ons in a (j—1) shell, namely, Ny, (j—1,n—4). Accord-
ing to this classification, we are able to obtain Ny, (j,n)
by using the values of Ny, (j/,n"), where either j is
smaller than j, or »n’ is smaller than n, or both (;/,n") are
smaller than (j,n). In other words, from Table 1 we have

Ny, Gy =
{”w Mgjr oMy oMy }

N

p 1
M ](n"w My Rt n’fzju)’MT 3("V1+HV2,+1 T, n’fz/u)

(.]_ l’n_an _nvz,u _nﬂl _nﬂ2/+|)'

G3)

Here, the summation over {”v,,”w,mnm ,n,rw} refers to the
sixteen cases listed in Table 1. Note that the above for-
mula holds also for n =1,2,3,4, with the convention that
NMM,_(j,n) =0 if n<0 and NMMT(j,O) = 5M,06M,-,0‘ Note
also that Eq. (3) can be proved alternatively based on the
generating-function technique described in Ref. [3], as
presented in Appendix A.

III. RECURSION FORMULA OF Ny, (7,3)

The value of Ny, (j,n) with n=1 or 2 is trivially de-
termined as follows. For M7;==x1/2 and |M|<],
Nym=1 (D) =15 otherwise, it equals zero. For n=2
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with My = +1, the highest value of M equals Mp. = Nut,=0(j,2) = 2j+1—|M|. (5)
2j—1 and for M7 =0, My =2j. For Mr=+1 and
M<2j-1, Otherwise, Ny, (j,2) = 0. With these results, we can con-
. struct explicit formulas of Ny, (j,3) by using Eq. (3).
. 2j+1-IM|
Nuym,=+10j,2) = — | 4)
A. Mr=1/2and j <M < M

where ”|”and ”]” means taking the largest integer W? first 41scuss Niw, (7:3) with t}.le requirement that
without exceeding the value inside; for My=0 and M7=z and j <M < Mmax. We recursively apply Eq. (3)
M<2j, to this term and obtain the value of Nyy, (j,n):

’
NMM" (]’ l’l) :NMM7 (‘] - l’ n) + Z NM—j(n‘,l TNy Tl Ty )’MT_%(n"l Ty Ty Ty )(] B 1’ T T nvz/” ~ nnz]“)

-1 ,
=Ny, G—=Lmy+ > >
=0 {nv1 Moy g My My }

Ny DIy =y #1101y VM= (1, sy, = = )(J —i=ln=ny, —ny, —ng - n”zw) ’ (6)

7241

’ . .
where Z denotes summations that exclude the case or equivalently,

{”vl My, N ,n,,w} ={0,0,0,0} and decouple the term
Ny, (j—1,n) [the last term in the summation of the six- =
teen terms of Table 1]; / is fixed with the requirement that
Nym, (j—1L,n)=0 while Nym, (j=1+1,n) #0, which

2j+1 n Mz+M

2 4 n

+1. (7)

For n =3 and M7 = 1/2, the value of / becomes

means that
M+1
M>n(2]+1)_n_ M%—ln, {J 3 3
2 4
M< n(2 12 +1) nZ ~M2—(-Dn, According to Eq. (6), with the conditions

Nym, (j—1,n) =0 and Nyy, (j—1+ 1,n) # 0, we have

Ny, = '(1»3)—2 Z Nyt—j-i(n, -

,,,,,,, N

1y, nz/])l i(n Ny, e N )(j_i_1’3_nvl_nV2f+l_nﬂl_nﬂzm)‘ )

Thajan 1

[
On the right hand side of the above formula, there are value of M+ (j—i) is larger than the maximum My, of
many terms that break the requirement of Eq. (2) for two nucleons in a single j—i—1 shell, i.e.,
n<2. Let us exemplify this by using two cases: Mpax =2j—-2i—2. Similarly, for {n,.n,,. 0.0, | =
{nv1 ny,, l,nn.,ﬂnz,ﬁ} ={0,0,0,1} and {1,1,1,0}. For the first {1,1,1,0}, the corresponding contribution on the right
case, nvl,nvw,nn],nnz#l} ={0,0,0,1}, the corresponding  hand side is Ny—(-im=0(j—i—1,0). Given that
contribution to Ny y,-1(j,3) on the right hand of Eq. (10) ~ M =(j=)>0, Ny—(j-im,=0(j—i=1,0) = 6y—(j-ipo = 0. As
1S Nuraj-ipm,=1(j —i—i,z). Given that M > j here, the a result, we obtain

-1
Ny, =1(),3) = Z (NM—(j—i),MT=0(j_ i—=1,2)+ Ny—j-inm, =1 == 1,2) + Nyo(joiym,=: G—i— 1, 1))

-1
_1-
+1)=(3j—1—M)l—3l(l + {3] 3 J+l. (10)
i=0

i
= (3j—3i—1—M+{%

. j—3i—-1-M| . . .
The summation of {%J is tedious but straightforward. One has
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2%k if when 3/ — M = 6k + 1,6k +2,6k+3, 5,6 can be obtained similarly, as follows:
1_1:{2k+1 if when 3j— M = 6k +4,6k+5,6k +6.

3k% +k if3j—M=6k+1,
When 3j— M = 6k + 1, the summation becomes 3k +2k if3j— M =6k+2,
S3j-3i-1-M| |[3K7+3k+1 if3j—M=6k+3,
lirj—&'—l—MJ:i(%_ZH[iJ) izi 2 J: I+ dk+1 if3j— M=6k+4,
py 2 Py 2 32 +5k+2 if3j—M=6k+5,
:i(3k—2i)+2§i+k=3k2+k. 3K +6k+3 if3j_M:6k+(6l'l)

i=0 i=0

This summation for the case 3j-M=06k+2,3,4,  Substituting these results into Eq. (10), we obtain

9> +6k+1  if3j—M=6k+1,

9> +9k+2  if3j-M=6k+2,

Ny 1y = {6 12 BT=M =03, Ly i vy, (12)
T 9> +15k+6  if3j—M=6k+4, 4 2

9> +18k+9  if3j—M =6k+5,

9> +21k+12 if3j—M=6k+6

1. .
where n(3j—-M) = (O, 4_1) if mod(3j—M,2) =(0,1), respectively.

B. T,=1/2and0<M<j

Let us now address Ny y,-:(j,3) with T, =1/2 and 0 <M < j. In this case, Eq. (3) is applied recursively for
j—M+1 times. As a result, we have

’
Ny, (o) =N, G = L)+ >
{n"l Moy oMy Py }

N

y 1
M_J(nV1 TNy Py Ty )’MT— 2 (”Vl Ty Tl Ty,

M ,
=NMMT(M—1,n)+Z Z
=0y,

)(.]_ l’n_nvl _an,u _n7T1 _nﬂ2/+|)

M jip oMy oMy }

j—i—1,n—n, —n, —n; —n ) 13
M_(j_i)(nvl T gy TNy )’MT_%(nw Fyy s Ty Ty )(] " Yo g a1 ( )

. 4 . . .
where, again, Z denotes summation among the sixteen sets of {nV, My, T, ,nﬂw} excluding
{nvl,nyw g, ,nﬂw} =1{0,0,0,0}. For M7 = 1 and n = 3, the above formula is reduced to

j-M

Ny, =1(1:3) =1+ Ny pg, =1 (M = 1,3) + Z (NM—(‘/'—i),MT:O(j_ i—1,2)+ Nyro(jipm,=0(j —i—1,2)
i=0

+Ny—(j—iyam,=1(G—i—=1,2) + Nypi(jmipm,=1 (j—i—1,2)
+Nyum, =1 (G=i= LD+ Ny ognm=(G=i=1L,D+Nyp,=:(G—i=1,1)

+ Nagaty=2 G=i= 1, D)+ Nygaaoipat,=: G == 1L, D+ Nagpg, =2 (i —i= 1, 1)

j-M j-M=-2
=l+NM,M1:%(M—1,3)+Z(j—i+M—1)+ Z (j—i-M-1)
i=0 i=0
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M
+
i=0

+

where the firstterm " 1" is given by Ny=o a1, =0(j—i—1,0) =
1 with {”vl Ny, >, s n,rw,} {1,1,1,0, j— M}; the second

term Ny, -:(M—1,3) is given in Eq. (12) with
j=M-1,ie.,
2 3
Nygp,=:(M—1,3) = M_2M+4_1' (15)

The summations in Eq. (14) equal zero when the up-
per limit of the given summation index is larger than its
lower limit. On the right hand side, the summations of

[#J and [#J are classified into two cases,
j—M =2k and 2k+ 1. For j— M =2k, we obtain

i M{ —1+M—1J i{2k—z+2M—lJ
i=0 0 2

; k—i+2M_1+FJ
2 2
- k-1
)+22i+k
i=0
1\ (j—-M
§)+( 2 )

The summation with j— M =2k+1 is obtained simil-
arly. The results of these two cases are unified as follows:

T

Il
[=}

i

2M
(k —i+
i=0

=(j—M+1)(M—

[}
~

j-M

2= s 5

i=0

0 ifmod(j—M,2) =0,
+ 1 (16)
- ifmod(j-M2)=1.
Following a similar procedure, we obtain
’iw j—i-M —1J _(j—M)z_j—M
Py 2 2
0 ifmod(j—M,2) =0,
+ 1 (17)
+4—1 ifmod(j—M,2)=1.

Substituting Egs. (15)—(17) into Eq. (14), we obtain
Nym,=:(j:3) with 0 < M < j in a compact form:

—1+M IJ =

-3 Jj-M-1
—i-M-1
{ ’ #3501, (14)
i=0
3, 1 M?
Ny m,=1 (],3)_—] +J+4_1_7' (18)

C. Mr=3/2and0<M

The results for Ny, (j,n) are reduced to Ny (j,n) for
identical particles, and Eq. (3) is reduced to Talmi's recur-
sion formula. For this case, Nym,=:(j:3) was obtained in
Ref. [19], which we cite for completeness. For
J <M < Mp,y, according to Egs. (2.11a)—(2.11b) in Ref.
[19],

. . .
Nata,=:(:3) = 75 Bj= M) +aGj-M), (19
where
1 11 1 1
3_M = 09__7__9_,__a__,
a(3j=M) 273373 12
for mod(3j-M,6)=0,1,2,3,4,5, respectively. For

0< M < j, according to Egs. (2.192)-(2.19b) in Ref. [19],

1 1
Nitwt,=2(j;3) = —]—8M2+ﬁ( 2), (20)
where
11 1
e L 11
BRj=M) 12’4 12

1 .
for mod(M — 5 3)=0,1,2, respectively.

IV. NUMBER OF STATES WITH GIVEN IAND T

Provided the results of Ny, (j,3), i.e., Egs. (12), (18),
(19), and (20), we can readily substitute them into Eq. (1)
to obtain the number of states with given / and 7, i.e.,

Dir(7,3).
We first consider the case 7 =1/2. When I > j and
T =1/2, we obtain

Dy7r-1(j;3) =Np1(j;3) + Ny 2 (,3)
= Np1,:(1.3) =Ny :(G.3). (21)

According to Egs. (12) and (19), the above formula is re-
duced to

114101-5



X.Yin, Y. M. Zhao

Chin. Phys. C 46, 114101 (2022)

SN P By .
Dir=i(i3) ==l +j+ 5 +03j~D=nGj~1-1)
+aBj-I1-D)-a@Bj-1)

0 ifmod(3j-1,3)=0,
2
1 : ; _
- _J4i+lz ifmod(3j-1,3) =1,
3 +J+ ?
3 ifmod(3j-1,3)=2
3j-1+2
|2zt e) (22)
3
For/I=jand T =1/2,
Dy 7=1(ji3) =Np 1 (j.3) + Nipr 2 (7.3)
~Np G =-Nis (3. (23)
By using Egs. (12), (18), (19), and (20), we have
D ('3)—2'+7+ 2j-1)-n2j-1)
17=\J, —3] 12 alzj n<Jj
— ._ 1
B\i-3
2, .
3 ifmod(2j,3) =1,
=§j+ 0 ifmod(2j,3) =3,
% ifmod(2j,3) =5
2j+2
= . 24
3 J (24)
Similarly, forO</< jand T =1/2,
Dy 7=1(j,3) =Ny 1(j,3) + Nps1,:(:3)
~Np G =N (25)

By using Egs. (18) and (20), the above formula is re-
duced to

2 1 1 1
Dyro1(i3)=37+3 +B(1+ —)—ﬁ(l— —)

2 2
2 2
§I+§ ifmod(21,3) =1,
2
2 1
§I+§ ifmod(27,3) =5
21+2
:{ o2 (26)

Eqgs. (24)—(26) can be rewritten as follows. For 7> j
and T =1/2,

. 3j-1+2
Dyr=1(j.3) = {]TJ , (27)
andforO</I<jand T =1/2,
. 21+2
D1,T:;(J,3) =173 J (28)

These results [Eqs. (27)—(28) in this paper] are con-
sistent with Eqgs. (25)—(26) in Ref. [ 36], which were ob-
tained in terms of sum rules of six-j symbols, except that
the formulas derived in this paper are expressed in a more
transparent and understandable form.

The T =3/2 case is much simpler than the 7 =1/2
case. One uses Talmi's recursion formulas for Ny=1,:(j;n)
and obtains D;7-:(j,3) straightforwardly. The resulting
formulas are consistent with those given in Ref. [ 8] and
Ref. [19]. We show them next for completeness. Accord-
ing to Eq. (1) in Ref. [ 8], for 0< /< jand T =3/2,

21+3
6

D1,T:g (,3)= { 5 29)

and according to Eq. (2) in Ref. [ 8], for /> and
T=3/2,

3j

-3-1
Dyr=:(j,3) = {TJ +0;. (30)

where

{0 if mod(3j-3-1,6)=1,
| =

1 otherwise.

In principle, one can follow the above procedure as
explained in Egs. (1)—(3) for larger n values. However,
this procedure becomes formidably tedious with lengthy
formulas and tables for larger n values. Instead of those
formulas, we calculate D;r(j,n) for n=3 and 4 and
j=5/2,7/2, and 9/2 and tabulate them in Table B1 and
Table B2 in Appendix B.

V. SUMMARY

To summarize, in this paper we generalize Talmi's re-
cursion formula of the number of states with given spin /
by further consideration of the isospin symmetry. This
generalization is also proved alternatively based on the
generating function method. We also exemplify the gen-
eralized Talmi's recursion formulas obtained in this pa-
per by applying our generalized Talmi's recursion formu-
las in constructing the number of states with given spin
and isospin of three nucleons in a single-j shell.
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APPENDIX A: GENERATING-FUNCTION
TECHNIQUE

In this Appendix, we present an alternative proof of
the recursion formula presented in Eq. (3) based on the
generating-function method.

A generating function is a polynomial function for
which the expansion coefficients are related to the num-
ber of states with a given requirement. We define the gen-
erating function corresponding to N, (j,n), similar to
that in Ref. [17],

(o] [oe] (e8]

fey =Y >0 3T MM Ny, (o), (A1)

n=0 M=-oco My=—c0

which yields

fj(xy,Z) i i ZnMM,

n=0 M=—oco M,;=—co

2.

{nv1 sy M seeesMy }
(5n,m.+---+" O, Y+,

M.n, m, Fo gy My )

2j+1

—1_[ 1+zx’”

=fj-1(x,,2)8i(x,,2) (A2)

l+zx iy )

with

2j
Jitxy,2) = n(] +me"'y%)(1 +me"'y_%)
i=2

gi(x,y,2) =(1 +zx_jy5)(1 +zxjy%)
x(1+zx_jy_%)(l+zxjy_%). (A3)

The generating function is expanded in powers of z as
follows:

£, = D2 fin(x,) (A3)
n=0
with
Finley) == LAy »)|_,
=3 D) MG (a9
M=—c0 My=—c0

Using the Leibniz formula, one obtains

an—k
Finley) =— Z( ) ¢ o fir163.9)

6
PR (A6)

By using Egs. (A1), (A5), the above relation yields

00
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=— (k) Z Z Nym,(j—1,n=k)
i\ Y=o Moo

Bk
xMyMT X — P —gi(x,y, Z)'Z:O. (A7)

Given that g;(x,y,z) is a fourth-order polynomial, the

only derivatives that are nonzero correspond to

0

0
k=0: a_zogj(x’y’z)'z:o =

81 ; 1 . 1
—1- . =x"y2 Jy2
k=1: aZlg](x,y,z)‘zzo xJyr+xly
+x_jy_§ +xjy_%,
0 1 2j . 2j
_n. ) — - ~2j J
k=2: azzg](x,y,z)'zzo y+y  +x Y+ x

+1+1,
& S
—7. . =x"y2 Jy2
k 3'az3gf(x’y’Z)'z=o x Ty +xly

—7 -1 i1
+x 7y + Xy,

(94
k=4: 8—Z4g,~(x,y,z)}zzo - 1. (A8)

Eq. (A7) holds for any independent variables x and y;
therefore, the coefficients of homogeneous terms on both

sides are equal, which immediately leads to Eq. (3).

APPENDIX B: D;7(J,N) WITH J =3/2-9/2 AND
N=3-4

In this Appendix, we tabulate D;r(j,n) with j=3/2—

9/2 and n=3-4, for convenience.
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Table B1.  Dyr(j,n) for j=5/2-9/2, with n=3. I in this Table
represents that there are D states with spin / for the j* config-

Table B2. The same as Table B1 except for n=4.

PIO PIN NI RIS R Rn b |~

[STi-]

[T}

T °
02,23,31,43 51 62,8!

1 12,22,3%,42,52,6!,7!

2 0!,21,41

0 03,24,32,45,52,6°,72,83,9', 102, 12!

1 13,23,35,44,5°,6%,74,82,92,10', 11!

2 0',22,4%,5',6!,8!

0 03,20,32,47,54 67,74,
87,9%,10°,112,123,131,142, 16!

1 14,24,37,45 58 67 78,
86,90,10%,114,122,132,141,15!

2 02,22,31,43,51 63,7',82,9 10!, 12!

uration.
J r I
3 3 CANCINCINCIUNCINC IINC Ok
P2 EANCINEI
3 3 HLOLEGP. 32

(2 ELELEDL !
I3 CNCINEINCEINE SINC DL
3 3 HLAOLELGP. 3P (5,

G %L EALEAELELE)!
33 DLOLELELELELE)LEDLE!
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