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Abstract: Extensive dynamical  calculations are conducted in the study of  channel low energy  scat-
terings, based on various phenomenological model inputs of left cuts at the tree level. The subtleties of the singular
behavior of the partial wave amplitude, at the origin of the complex  plane, are analysed in detail. Furthermore, it is
found that the dispersion representation for the phase shift, , must be modified in the case of  scatterings. An ad-
ditional contribution from the dispersion integral exists, which approximately cancels the contribution of the two vir-
tual poles located near the end points of the segment cut, induced by  channel nucleon exchanges. With limited reli-
ance on the details of the dynamical inputs, the subthreshold resonance  survives.
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I.  INTRODUCTION
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In  recent  literature  [1-3],  it  has  been  suggested  that
there exists a sub-threshold  nucleon resonance hid-
den  in  the  channel  of  scatterings,  with  a  pole
mass  GeV. The res-
ult  was  obtained  by  using  the  production  representation
(PKU representation) for partial wave amplitudes [4-8]. It
was later found that the  pole may also be gener-
ated from a conventional and simple -matrix fit, though
the latter suffers from the existence of spurious poles on
the  first  Riemann sheet  of  the  complex  plane  [9].  The
properties  of  were  also  investigated,  such  as  its
coupling  to  and  [10, 11].  It  was  found  that  its
coupling  to  is  considerably  larger  than  that  of

, while its coupling to  is comparable to that
of .  The  coupling  results  are  reasonable  and
within  expectations,  providing  further  evidence  for  the
existence of .

However,  firmly  establishing  the  existence  of  such  a
subthreshold  resonance  remains  a  difficult  task.  Besides
dispersion  relations,  the  most  frequently  used  tools  are
perturbation  chiral  amplitudes  and  their  unitarizations
(for a recent review, see Ref. [12]) or (unitarized) reson-
ance models. However, these unitarization techniques are
imperfect when used in the study of low energy strong in-

s = 0
s

s→ 0

s = 0

teraction physics,  with particular difficulties encountered
in their  application  to  partial  wave  amplitudes  with  un-
equal  mass  scatterings,  as  will  be  discussed  in  detail  in
this  paper.  The  major  difficulties  arise  at  the  point
in  the  plane,  where  chiral  expansions  break  down,  as
chiral  expansions  and  partial  wave  projections  do  not
commute when . The expected decoupling property
of heavy resonances, when their masses are set to infinity,
is also violated in partial wave amplitudes at ,  for a
purely  kinematical  reason,  in  partial  wave  projections
with unequal  mass  scatterings.  The main aim of  this  pa-
per  is  to  show  how  the  subthreshold  resonance  persists,
irrespective  of  the  various  difficulties  and  uncertainties
that remain in the input quantity – the left part of the scat-
tering amplitude.
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This paper  provides  further  evidence  for  the  exist-
ence of , by directly finding a pole in the  mat-
rix element, calculated from the  method. Early stud-
ies on low energy  scatterings using the  method
can be found in Ref. [13]. Nevertheless, to the best of our
knowledge, no  study on  the  possible  existence  of  a  sub-
threshold  resonance  exists  in  the  literature.  In  our

 calculations,  no  spurious  poles  were  found  on  the
first  Riemann  sheet.  Also,  an  calculation  faithfully
reproduces  all  input  dynamics,  as  well  as  kinematical
branch point singularities. We therefore believe the 
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N/D
method to be reliable. However, the calculations in exist-
ing  studies  do  generate  spurious  branch  cuts  and
spurious poles on the second sheet, due to the truncation
of  numerical  integrations.  Nevertheless,  their  effects  can
be evaluated to verify that the sum of hazardous contribu-
tions is negligible in many cases.
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π

u

s = 0

T (s) s→ 0

This remainder of this paper is organized as follows:
In Sec. II, a brief introduction to the  method is giv-
en, with a solvable toy model calculation. Also in Sec. II,
we  provide  a  review  on  the  production  representation,
which is helpful for understanding the complexity of the

 calculations. A subtlety occurs when using the pro-
duction representation in dealing with N scatterings: the
dispersion representation  for  the  background  contribu-
tion to the phase shift must be modified and an additional
contribution  emerges,  which  is  approximately  canceled
by  the  contributions  from  the  two  virtual  poles  located
near the end points of the cut, caused by  channel nucle-
on pole exchanges. A detailed discussion of this subtlety
is included in Appendix A. Sec. III focuses on the singu-
larity  structure  of  partial  wave  amplitudes  at , in-
cluding  the  discussion  on  chiral  expansion  break  down
and how high energy contributions enter through an ana-
lysis  on  regge  asymptotic  behavior  of  when .
Sec. IV is  devoted  to  numerical  analyses  on  how a  sub-
threshold resonance  may  emerge  under  various  phe-
nomenological inputs. 

N/DII.  THE  METHOD, A PRELUDE
 

N/DA.    Brief introduction to the  method
TThe partial wave  matrix element is expressed as 

T = N/D , (1)

D s
R N

l.h.c. L R = [sR,+∞) L
R

where  contains only the -channel unitarity cut or the
right  hand cut ,  whereas  only  contains  the  left  hand
cut ( ) or . In Fig. 1, , whereas  repres-
ents  all  branch  cuts  except .  In  Sec.  III.B,  we  will
briefly  review  the  determination  of  the  cut  structure,  as

shown in Fig. 1 [14].
The partial wave unitarity in the single channel is ap-

proximated as 

ImRT (s) = ρ(s)
∣∣∣T (s)

∣∣∣2 , (2)

where 

ρ =
√

(s− sL)(s− sR)/s, (3)

sL = (mN −mπ)2 sR = (mN +mπ)2with , ,  which leads to the
following relations: 

ImR[D(s)] = −ρ(s)N(s) , ImL[N(s)] = D(s)ImL[T (s)] , (4)

N/Dand subsequent  equations 

D(s) =1− s− s0

π

∫
R

ρ(s′)N(s′)
(s′− s)(s′− s0)

ds′ ,

N(s) =N(s0)+
s− s0

π

∫
L

D(s′)ImL[T (s′)]
(s′− s)(s′− s0)

ds′ . (5)

T s

disc[N(s)] = D(s)disc[T (s)]

L ImL[T (s)]
1
2i

disc[T (s)]

s
s

Notice  that  when  a  circular  cut  appears  in  on  the 
plane,  as  shown  in Fig.  1,  the  second  part  of  Eq.  (4)
should  be  written  as .  Also,  in
the second part of Eq. (5), when integration is performed
on the circular cut belonging to a subset of , 

should be replaced by . After obtaining a nu-
merical solution for Eq. (5), analytical continuation to the
complex plane is straightforward: taking  to be complex
while  evaluating  the  integration  in  Eq.  (5),  when  is  in
the first sheet, and taking 

DII(s) = D(s)+2iρN(s) , NII(s) = N(s) , (6)

s
T ImLT

ImLT

t ρ
s L

L = (−∞,0]∪ [cL,cR]
l.h.c.

when  lies on the second sheet. In Eq. (5), the left cut of
the  partial  wave  matrix  element, ,  is  an  input
quantity.  Throughout  this  paper,  we  only  discuss 
extracted from tree level amplitudes. Hence, with the ex-
ception  of  the  case  with -channel  exchange (as  dis-
cussed in Sec. IV.B), with an arc cut in the  plane,  is
always on the real  axis.  For  example,  for  pure tree level
chiral amplitudes, . We will provide a
detailed discussion on how to determine s in Sec. III.B.

DTo solve the integral equations,  may be substituted
into the second part of Eq. (5) to get 

N(s) = N(s0)+ B̃(s, s0)+
s− s0

π

∫
R

B̃(s′, s)ρ(s′)N(s′)
(s′− s0)(s′− s)

ds′ ,

(7)

with 

 

π

cL = (m2
N −m2

π)
2/m2

N cR = m2
N +2m2

π

Fig.  1.    (color online) Branch  cuts  (thick  blue  lines)  of  par-
tial  wave N elastic  scattering  amplitudes,  where

, .
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B̃(s′, s) =
s′− s
2πi

∫
L

discT (s̃)
(s̃− s)(s̃− s′)

ds̃ , (8)

s0 = 1 2

sR

and use the inverse matrix method to obtain a numerical
solution.  Throughout  this  paper,  we  set  GeV ,  a
value slightly below the elastic threshold .

s = 0
t→ +∞

As will  become evident  later  in  this  paper,  there  ex-
ists a subtlety when using Eq. (5) to discuss unequal mass
scatterings.  The  problem  comes  from  a  singularity  at

 in  the  partial  wave  amplitude  and  in  its  left  cut,
which stems from the high energy region  through
the  partial  wave  projections,  and  also  from  relativistic
spin kinematics. However, before dealing with this prob-
lem, we are more interested in finding a solution for Eq.
(5)  in  a  simplified  toy  model,  outlined  in  the  following
subsection. 

B.    Toy model calculation
N/D ImL T

N/D
ImL T δ

In  the  method,  the  input  quantity  is .  Let
us  begin  with  a  simple  version  of  an  study, by  as-
suming  is simulated by a set of Dirac  functions,
or equivalently, 

N =
∑

i

γi

s− si
, (9)

T
Case s1 = 0

Case s1 = −m2
N

γ1
s

which is to be used in the first part of Eq. (5). Therefore,
there is no need for a subtraction in the second part of Eq.
(5). The  matrix, in such a situation, is analytically solv-
able. We (arbitrarily) set  I as one pole at  and

 II  as  one  pole  at  and fit  to  the  data  ob-
tained  from  the  solutions  of  the  Roy  Steiner  equations
[15] by tuning the parameter ; then, we search for poles
on the -plane. Both cases provide a good fit to the data,
and a sub-threshold pole emerges in each case, with a loc-
ation  listed  in Table  1. The  phase  shift  and  its  PKU de-
composition [4, 5] are plotted in Fig.  2.  In the left  panel
of Fig. 2, we see the familiar picture that the background
cut contribution  to  the  phase  shift  is  concave and negat-
ive,  while  the  subthreshold  resonance  pole  provides  a

S

positive  and  convex  phase  shift  above  the  threshold  to
counterbalance  the  former  contribution.  The  sum  of  the
two reproduces the steadily rising phase shift data. In or-
der to  better  understand  this  phenomenon,  a  brief  intro-
duction  to  the  production  representation  of  the  partial
wave elastic scattering  matrix element is needed. 

C.    PKU representation
The "spectral" function in the r.h.s of Fig. 2 is defined

as 

f (s) =
s

2iπ

∫
L

ds′
discL f (s′)/s′

(s′− s)

+
s

2iπ

∫
R

ds′
discR f (s′)/s′

(s′− s)
, (10)

 

discL,R f (s) = discL,R

(
lnS (s)
2iρ(s)

)
, (11)

S S = 1+2iρT
ρ

R = [(mN +mπ)2,+∞)

R
S

where  the  partial  wave  matrix  element ,
and  is the kinematic factor. In Eq. (10), the integration
domain is depicted in Fig. 1, where ,
but the integrand actually disappears in the elastic region,
meaning that  starts from first inelastic threshold. Elast-
ic  partial  wave  matrix  elements  satisfy  a  production
representation of 

S =
∏

i

S i× e2iρ(s) f (s) . (12)

Detailed  discussions  on  how  to  obtain  Eq.  (12)  can  be

Table 1.    Subthreshold pole locations using input Eq. (9).

Case I Case II

s1 0 −m2
N

γ1/GeV2 0.79 1.34
√spole/GeV 0.810 - 0.125i 0.788 - 0.185i

S 11 π Case

ImL f (s)/s Case s = 0 Case

ρ(s)

Fig. 2.    (color online) (left) Fit to the  channel N scattering phase shift data, taking  II as an example (data from Ref. [15]);
(right) the spectral function  of  I and II. Notice that the singularity at  in  II is due to the kinematical singular-
ity in  defined in Eq. (3), rather than being dynamical. For the definition of different contributions to the phase shift, refer to Sec.
II.C.
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found  in  Refs.  [4, 5]. The  production  representation  ex-
hibits some beneficial  features for our analyses.  One ad-
vantage is that the phase shifts from different sources are
additive, i.e., 

δ(s) =
∑

i

δi+δcut , (13)

δi i
S i z0

z∗0

where  comes  from  the -th pole  contribution,  de-
scribed  by  in  Eq.  (12).  For  a  resonance  located  at 
( ) its contribution is 

δres = arctan
[
ρ(s)sG[z0]
M2(z0)− s

]
(S R = e2iδR ) , (14)

G(z0) = Im[z0]/Re[z0ρ(z0)] M2(z0) = Re[z0]+
Im[z0]Im[z0ρ(z0)]/Re[z0ρ(z0)]
s0 sL < s0 < sR

with  and 
. For a virtual state located at

 ( ), its contribution is 

δv = arctan
[
ρ(s)s
s− sL

√
s0− sL

sRs0

]
(S v = e2iδv ) . (15)

δb = −δv S b = e2iδb

For a bound state, the above expression changes sign, i.e.,
 ( ).  The  last  contribution  in  Eq.  (13),

i.e., the background contribution to the phase shift, is 

δcut = ρ(s) f (s) , (16)

f (s)with the function  defined in Eq. (10).

π

δb.g.
u

δb.g.

cL cR
u

The above  description  of  the  production  representa-
tion is in agreement with what has been established in the
literature. In our study of N scatterings, however, an un-
expected  new  phenomenon  occurs.  Essentially,  the  cut
structure  of  the  background  phase  shift, ,  must  be
modified,  due  to  the  presence  of  the -channel  nucleon
exchange1). As a result, an additional contribution exists in
the  expression  of ,  which  is  approximately  canceled
by  the  contributions  from  the  two  newly  found  virtual
poles, located near the end points (i.e.,  and  defined
in Fig.  1)  of  the  segment  cut,  induced  by  the  channel
nucleon  exchange.  A  more  detailed  explanation  is
provided in Appendix A.

ImL f (s)/s

t
u

The additive property of the phase shift contributions
is vital in tracing the physical origin of the phase shift. As
has  been  stressed  repeatedly,  the  positive  value  of

 guarantees that the background contribution to
the phase shift  will  be negative and concave,  and hence,
an  isolated  singularity  on  the  second  sheet  is  needed  to
manage the steady rise of  the near  threshold phase shift.
The  circular  cut  caused  by -channel  exchanges  and  the

-channel  cut  (combined  with  effects  of  two  virtual
poles)  are  not  considered  here;  nevertheless,  they  are

(−∞, sL]

ImL f (s)/s s = 0
ImL f (s)/s

s = 0
s = 0 T (s)

s→ 0 Case
T (0) ∼ constant

Case T (s) ∼ O(s−1)
s→ 0

S ImL f (s) s
− ln |S (s)|/2ρ(s) = − ln [1−4ρ(s)

ImLT (s)+4ρ(s)2|T |2]/4ρ(s) T (s)
s→ 0 ln |S (s)|

ρ(s) ∝ s−1

numerically smaller than the cut lying on  (previ-
ous  examples  can  be  found  in  Refs.  [1, 4, 9]).  Hence,  a
large and positive  at  is important, as sug-
gested in Fig. 2. The strong enhancement of  at

 is  due  to  two  reasons:  the  kinematic  singularity  at
 from  Eq.  (3)  and  the  possible  singularity  in 

when .  An example for the former is fit  II  in
Sec. II.B, where , while the latter example
is  provided  by  fit  I  where ,  when

. In general, making use of the property of real ana-
lyticity for  matrix elements,  is recast,  when 
lies  on  the  real  axis,  as 

. Hence, if  does not disap-
pear  when ,  then  diverges  logarithmically,
as  at  the  origin.  It  is  worth  stressing  that  the
singularities  caused  by  relativistic  kinematics  truly  exist
and bring physical consequences, as they enter the phys-
ical  equations,  such  as  Eq.  (2).  A  good  example  comes
from Fig. 5 and Eq. (55) of Ref. [7]: without the kinemat-
ical singularity,  the  data  curve  can  simply  not  be  ex-
plained.

|S (s)| = η < 1 η

N/D
sR,+∞)

[sR,Λ
2
R]

N/D

s = Λ2
R η

|S (s)|2 = [1−4ρ(s)ImRT (s)+4ρ(s)2|T |2] =
[1+4ρ(s)2|T |2] > 1 s > Λ2

R
ImRT = 0

N/D

Λ2
R

TL(s) s = Λ2
R
χ

Λ2
R = 1.48 2

N∗(890)

The inelastic right hand cut contribution to the phase
shift  in  Eq.  (10)  should always be positive  [3],  as  in  the
region ,  with  being the  inelasticity  para-
meter. In  calculations, a cutoff to the integral inter-
val  has  to  be  adopted,  i.e.,  [  is  replaced  by

.  In  this  situation,  it  is  simple  to  understand  that
the  truncated  integration  actually  violates  unitarity,
by  introducing  a  spurious  branch  cut  starting  from

,  in  the  sense  that  the  effective  parameter ex-
ceeds  unity: 

,  when ,  as a truncation actually
implies .  Therefore,  caution  should  be  adopted
when performing the  calculations, by monitoring to
what extent unitarity is violated. This may be fulfilled at a
quantitative level by, for example, calculating the contri-
bution  from  the  region  above  to  the  phase  shift,
through Eq. (10). It is found that, when performing calcu-
lations  in  this  paper,  the  violation  can  either  be  large  or
small,  depending  on  whether  or  not  the  input  quantity

 at  is  too  large  or  small.  For  the  former,  an
example  is  the PT  input,  which  is  no  longer  valid  at

 GeV , i.e., the value we choose in most of our
calculations. However,  exists with a rather stable
location, irrespective of the pollution of the truncation of
integration.

N/D
ImLT
χ

Encouraged  by  the  discussions  in  Sec.  II.B,  a  more
realistic  calculation will be performed in the follow-
ing section. Firstly, an input  should be selected that
is as realistic as possible. The PT outputs may be selec-
ted as an input here, as is adopted in Refs. [1-3]. A care-
ful analysis  reveals,  however,  that  the  partial  wave  pro-
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χ
s = 0

jection  of PT  amplitudes  encounters  a  rather  severe
problem  at .  The  following  section  is  dedicated  to
the study of this problem. 

III.  SINGULARITY STRUCTURE OF
T(s) AT s = 0

χ
ImLT

N(s) L = (−∞,0]
O(p3) ImLT

O(s−7/2) s→ 0 O(p2)
O(s−5/2)

s = 0

χ

As  suggested  in  the  previous  section,  to  achieve  a
more  realistic  calculation, PT  amplitudes  may  be  used
to extract  [3]. However, the results may not be dir-
ectly  applicable  to  Eq.  (5)  and  should  be  treated  with
great care. The integration interval for  is 
, for tree level estimation. The  level  behaves
as  when ,  and  at  the  level, it  be-
haves as . However, in general,  these strong sin-
gularities  at  are  not  physical  (discussed  further  in
Sec.  III.B).  Hence,  a  method is  required for  the removal
of the artifacts  caused by the partial  wave projections of

PT amplitudes.
 

T
s = 0

In general,  singularities  of  the partial  wave  matrix
element at  come from two sources:
 

O(pn) n ⩾ 2 χ
s−n−1/2 s→ 0

n

●  the  ( )  level PT  amplitudes  behave  as
 when  for unequal mass scatterings and after

partial  wave  projections.  The  integer  increases  when
the chiral order increases.
 

s = 0

t,u→∞

●  the  left-hand  cut  around  receives  a  singular
contribution from the high energy region of crossed chan-
nels, i.e., , through partial wave projections.
 

N/D

s = 0
Λ2

L
l.h.c.

f (s) s = 0

We  will  address  these  problems  in  detail  below.
However,  it  is  worth  noting  that  although  the  ap-
proach must deal with these problems cautiously, the cal-
culations made in Refs. [3] and [1] are fortunately insens-
itive to such problems. Though the background contribu-
tion to the phase shift will be enhanced incorrectly by the
contribution  in  the  vicinity  of ,  it  will  be  largely
compensated  by  tuning  the  cutoff  parameter  when
evaluating  the  integral.  Most  interestingly,  even
though the integral of  is enhanced near , its de-
rivatives behave very differently. For example, 

d f (s)
ds
= −1
π

∫
ds′

ln |S (s′)|/2ρ(s′)
(s′− s)2 . (17)

s′ = 0 ∼ s′ ln s′

Λ2
L

s = 0

Here, the integrand near  behaves like  and
the unwanted singularity is  removed. In Refs.  [1, 3], ex-
cept for the scattering length, which must be fitted by tun-
ing ,  the other quantities,  such as the curvature of the
phase shift curve, are unaffected from . 

χA.    Artificial singularities in partial wave PT

amplitudes

N(p,σ)+π(q)→ N(p′,σ′)+π(q′) p, q, p′, q′

σ, σ′

The  notation  for  this  process  is  given  as
,  where  are

the  momenta  and  are  the  spins.  The  Mandelstam
variables are
 

s =(p+q)2 = (p′+q′)2 ,

t =(p− p′)2 = (q−q′)2 ,

u =(p−q′)2 = (p′−q)2 . (18)

T
I = 1/2

The full amplitude, , can be decomposed as (the follow-
ing discussions apply to isospin  only)
 

T = ū(p′,σ′)
[
A(s, t)+

̸q+ ̸q′
2

B(s, t)
]
u(p,σ) . (19)

A, B

O(p2) χ 4
ππNN

C

The results of the scalar functions  are listed in Refs.
[1, 3]  (further  details  can  be  found  in  Refs.  [16-21]).
From  onwards,  the PT  lagrangian  contains -
point  contact terms, which contributes to the scal-
ar functions as (  refers to constants)
 

A
[O(p2)

] ⊃C(s−u)2 , A
[O(p3)

] ⊃C(s−u)3 . (20)

More explicitly,
 

O(p1)● at  (Born and contact diagrams),
 

A1 =
g2mN

F2 ,

B1 =
1−g2

F2 −
3m2

Ng2

F2(s−m2
N)
−

m2
Ng2

F2

1
u−m2

N

; (21)

O(p2)● at  (contact diagram only),
 

A2 =−
4c1m2

π

F2 +
c2(s−u)2

8m2
N F2

+
c3

F2 (2m2
π− t)− c4(s−u)

F2 ,

B2 =
4mNc4

F2 ; (22)

O(p3)● at  (Born diagram),
 

A3B =−
mNg
F2 ×4m2

π(d18−2d16) ,

B3B =
4m2
πg(d18−2d16)

F2 ×
su+m2

N(2u−3m2
N)

(s−m2
N)(u−m2

N)
; (23)

O(p3)● at  (contact diagram),
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A3C =−
(d14−d15)(s−u)2

4mN F2 +
(d1+d2)
mN F2 (s−u)(2m2

π− t)

+
d3

8m3
N F2

(s−u)3+
4m2
πd5

mN F2 (s−u) ,

B3C =
(d14−d15)(s−u)

F2 . (24)

g
F ci di

In  the  expressions  above,  is  the  axial-vector  coupling
constant,  is the pion decay constant, and  and  are
low-energy constants.

The  partial  wave  projection  is  performed  on  helicity
amplitudes, 

T++ =
√

1+ zs

2
[
2mN A(s, t)+ (s−m2

π−m2
N)B(s, t)

]
,

T+− =
√

1− zs

2s
[
(s−m2

π+m2
N)A(s, t)

+mN(s+m2
π−m2

N)B(s, t)
]
, (25)

zs = cosθ θ T++

+1/2 T+−
−1/2

zs = cosθ

where , and  is the scattering angle.  indic-
ates that the helicities of the initial and final nucleon are
both , while  indicates that the final nucleon has
a  helicity  of . The  relations  between  the  Mandel-
stam variables and the scattering angle ( ) are 

t(s,zs) =2m2
π−

(s+m2
π−m2

N)2

2s

+
[s− (mπ+mN)2][s− (mπ−mN)2]

2s
zs , (26)

 

u(s,zs) =m2
π+m2

N −
s2− (m2

π−m2
N)2

2s

− [s− (mπ+mN)2][s− (mπ−mN)2]
2s

zs . (27)

S 11 J = 1/2The  amplitude  is  determined  from  partial
wave helicity amplitudes: 

T J
++ =

1
32π

∫ 1

−1
dzsT++(s, t(s,zs))dJ

1/2,1/2(zs) ,

T J
+− =

1
32π

∫ 1

−1
dzsT+−(s, t(s,zs))dJ

−1/2,1/2(zs) , (28)

d d S 11where  is the Wigner small-  matrix. For the  chan-
nel, 

T (S 11) = T J=1/2
++ +T J=1/2

+− . (29)

s = 0
s−1/2

s = 0
χ

s−u

From this formula,  the singularity at  is  obvious.  In
Eq. (25), the kinematic effects give an  factor, which
makes  a branch point. However, as seen in Eq. (24),
the  contact  terms  from PT expansions  lead  to  increas-
ingly higher order polynomials of : 

T [O(pn)
] ⊃C(s−u)n . (30)

u(s→ 0)→ s−1

n ⩾ 2
According  to  Eq.  (27), ;  therefore,  when
 

T [O(pn)
]
(s→ 0) ∼Cs−n−1/2 , (31)

−1/2

χ
s = 0

s→ 0
s→ 0

ImLT
N/D

where the extra factor  in the power comes from the
kinematic effects  of  the helicity basis.  Eq.  (31) indicates
that when higher order PT calculations are performed, a
stronger  singularity  will  occur  near ,  and  the  chiral
series will break down. This appears to be only an artifi-
cial problem caused by chiral expansions, as this contra-
dicts  the  genuine  singularity  structure  expected  when

, as discussed in Sec. III.B. The Froissart bound for-
bids a power behavior like Eq. (31) when . Ideally,
Eq.  (31)  would  not  appear  in  the  expression  of 
when using . 

B.    High energy contributions from crossed channels

t
A spectral  representation  of  the  partial  wave  amp-

litude [14], for the -channel, can be written as 

T ∼
∫ +∞

σt

dt′Σ(s, t′)
∫ 1

−1
dcosθ

R(cosθ)
t− t′

, (32)

Σ σt = 4m2
π

t R

d R
t = t′ R = R0+ (t− t′)R1+ · · ·

where  is the Mandelstam spectral function,  is
the threshold of the -channel process, and  is the basis
function of the partial wave projection (usually the linear
combinations of Wigner-  matrices). The function  can
be expanded as : , and only the
leading order causes singularities 

T ∝
∫ +∞

σt

dt′Σ(s, t′)β−1 ln
[
α+β

α−β

]
, (33)

with 

α =t′−2m2
π+

(s+m2
π−m2

N)2

2s
,

β =
[s− (mπ+mN)2][s− (mπ−mN)2]

2s
. (34)

Therefore, the left-hand cut is described by the equation 

α2 = β2 ; (35)
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which gives 

s±(t′) = m2
π+m2

N −
t′

2
± 1

2

√
(t′−4m2

π)(t′−4m2
N) . (36)

t′ σt +∞When  takes the value from  to , the trajectory of
this  solution  traces  out  the  left-hand  cut.  The  following
conclusions can be obtained:
 

t′ ∈ [4m2
π,4m2

N]
Res2+ Ims2 = (m2

N −m2
π)

2

s = m2
N −m2

π t′ = σt = 4m2
π

●  when ,  the  cut  appears  as  a  circle
,  and  the  endpoint  to  the  right

 corresponds to ;
 

t′ ∈ (4m2
N ,+∞) s−

(−∞,m2
π−m2

N) −∞ t′→ +∞
●  when ,  generates  the  cut

, and  corresponds to ;
 

t′ ∈ (4m2
N ,+∞) s+

(m2
π−m2

N ,0) 0 t′→ +∞
●  when ,  generates  the  cut

, and  corresponds to ;
 

uWhen  a  similar  analysis  is  performed  in  the -chan-
nel, the solution is 

s1(u′) =
(m2
π−m2

N)2

u′
, s2(u′) = 2(m2

π+m2
N)−u′ . (37)

u′ = m2
N

((m2
π−m2

N)2/m2
N ,2m2

π+m2
N) u′ > σu = (mπ+mN)2

s1 (0, (mN −mπ)2) s1→ 0 u′→ +∞
s2 (−∞, (mN −mπ)2) s2→−∞

u′→ +∞

There  is  a  nucleon  pole ,  giving  a  segment  cut
.  When ,

 gives  and  only  when ,
while  generates  with  when

.

T (s, t) ∼ O(tn) t→∞ s
T (s) ∼ O(s−n)

s→ 0
|T (t,cosθs = 1)| < t ln2 t

s
s = 0 T (s) ∼

O(s−1)

s→ 0−
t→ +∞

t ππ→ NN̄
∆(1232)

α∆(0) ≃ 0.19

It was pointed out in Ref. [5] that for meson – meson
scatterings,  if  when  for  a  fixed ,
then the partial wave amplitude behaves as 
when .  Considering  the  Froissart  bound  in  the
crossed channel , it is expected that
the  proper  singularity  behavior  for  the -channel  partial
wave amplitude near  is no more singular than 

 (given  logarithmic  corrections).  This  estimation
can  be  further  improved.  It  can  be  seen  from  the  above
discussions that as , there is a high energy contri-
bution  from  the  region.  In  this  region,  the  full
amplitude  is  governed  by -channel  ( )  reggeon
exchanges. The leading Regge trajectory is  with
the intercept  parameter  [22],  which leads to
a weak singularity, 

T ∼ s−α∆(0) , (38)

s→ 0− s→ 0+for the partial wave amplitude, when . The 
limit is the same as the example in Ref. [22].

l.h.c.

l.h.c.
(−∞,0] √

s

The discussions in this  section cover how to determ-
ine the s generated dynamically, which are cuts ori-
ginated  from  physical  absorptive  singularities  from
crossed  channels.  Besides  these  dynamical s,  there
exists an additional cut  for pure kinematical reas-
ons:  the  nucleon  spinor  wave  function  provides  a 
branch  cut,  which  is  present  in  the  second  part  of  Eq.
(28). The effect of branch cut singularity from relativistic
kinematics is evident, as has been addressed in Sec. III.C. 

N/DIV.  NUMERICAL ANALYSES OF  METHOD

χ
ImLT

χ
s = 0

χ
O(p2)

O(p3) χ

O(p1)
O(p1) N/D

√
s = 1.08− i0.23

√
s = 1.16

From the above section, it is clear that using PT in-
puts  of  presents  the  problem that  the  partial  wave
projections of PT amplitudes lead to a strong but incor-
rect  singularity  at ,  by  violating  what  is  expected
from  the  general  constraints  of  quantum  field  theory.
Nevertheless, it  is not yet clear to what extent the use of

PT results may distort the physical output. This section
is devoted to the study of this problem by invoking 
and  (tree  level  amplitude  only) PT results,  since
in  the  case,  no  free  parameter  is  available  to  fit
with the data.  Nevertheless,  the   unitarization
can still be performed and compared with the data, which
results  in  a  pole  location  GeV  and  a
steadily rising phase shift  that  is  larger than that  data by
approximately 5 degrees at  GeV. 

N/D χA.     calculations using pure PT inputs
O(p2) ImLT s→ 0

O(s−2−1/2)
N/D

B̃
B̃(s, s0) = TL(s)−TL(s0) TL O(p1)

O(p2)
T J
+− O(p2) T J

++

N(s0)
T (s0)

The  singularity  of   when  behaves
as , which, as discussed previously, is not phys-
ical.  Nevertheless,  we  still  perform  the  calculation
to explore the results. In performing such a calculation, it
is noticed that the problematic singularity behavior makes
Eq.  (8)  invalid.  To  overcome  the  problem,  the  auxiliary
function  in Eqs. (7) and (8) can be formally written as

,  where  is  taken  as  the 
partial  wave  amplitude  (as  Eq.  (51))  plus  the  part
of  because, at the  level,  does not contrib-
ute  to  the  imaginary  part  on  the  l.h.s.  In  this  way,  we
avoid discussions on possible subtractions encountered at
the two endpoints of the integral defined in Eq. (8)1). The
subtraction  constant  that  appeared  in  Eq.  (7)  or

 serves as a free fit parameter.
O(p2)

ci i = 1, · · · ,4
ci

At  the  level, there  are  four  low  energy  con-
stants (LECs)  with . There are different sets
of  parameters found in the literature (e.g., Refs. [1, 13,
23-25]). For these LECs, certain bounds, i.e., the positiv-
ity constraints [26], are obeyed.

c1 = −0.40, c2 = 3.50,
c3 = −3.90, c4 = 2.17 N(s0) = 0.47

A  good  fit  is  obtained  with 
, , and  the  pole  is  loc-

ated at 
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T (s) = T̄ (s)/s2 T̄ (s) = N(s)/D(s) s = 01) One may redefine  and  to avoid the singularity in the integral in Eq. (8) at . The results are similar to analyses presented
in this manuscript.
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√
s = 1.01±0.19 GeV. (39)

ci

ci
c1 = −0.74±0.02, c2 = 1.81±0.03, c3 = −3.61±0.05, c4 =

2.17±0.03 −1

0.99−0.16i

√
s = 1.16 ◦

◦

O(p2) χ
Λ2

R = 1.48 2

s = Λ2
R

In  addition,  we  have  also  employed  different  sets  of ,
and the results change very little.  For instance, when we
take the central values of 's from Ref. [23] (NLO), i.e.,

 (in  units  of  GeV ),  the  pole  position  is
 GeV,  though  the  phase  shift  does  not  fit  the

data  very  well.  It  is  noticed  that  the  spurious  branch cut
becomes a problem here, contributing to the phase shift at

 GeV by approximately –6 . Nevertheless, this
spurious effect is far from dominant, as can be seen from
Fig.  3,  where  the  total  background  contribution  exceeds
–30 and  hence  is  not  a  problem.  At  this  stage,  it  is  not
fully understood why and under what situation the spuri-
ous branch cut becomes numerically visible. One conjec-
ture is that the  PT input itself becomes problemat-
ic  at  GeV ,  thus  amplifiying  the  contribution
of the  spurious  branch  cut.  Finally,  as  the  effect  gener-
ated from the cut at  is small, we still believe such
solutions  are  acceptable  for  the  evaluation  of  physics  at
lower energies.

ImL f (s)/s

l.h.c
O(p2) l.h.c

Case

s πN

s = Λ2
R

As a comparison, Fig. 3 plots the "spectral function,"
i.e., , obtained  here,  together  with  those  dis-
cussed  in  Sec.  II.B.  Comparing  Eq.  (39)  with  that  in
Table 1 and the different  contributions in Fig. 3, we
observe that the  calculation overestimates the 
contribution, compared with that of  II.  As a result,
the pole contribution to the phase shift must be increased,
and the  pole  location  moves  towards  to  the  right  direc-
tion in the  plane, closer to the  threshold. However,
such discussions are only meaningful under the condition
that the effects  of  the spurious branch cut  and the spuri-
ous pole around  cancel each other out.

If  all  the  spurious  contributions  are  ignored1),  this
presents a problem. The calculation here and that in Ref.

l.h.c.√
s = 0.86±0.05− i(0.13±0.08)

l.h.c.

sc ∞√
s = 0.91− i0.21

[3]  use  the  same  "data"  sample  and ,  while  in  Ref.
[3],  the  pole  locates  at 
GeV.  Compared  to  Eq.  (39),  there  exists  a  rather  large
systematic  error  in  determining  the  pole  location.  One
possible  reason  may  be  that  in  Ref.  [3]  a  truncation  of

 is  performed,  while  in  this  calculation,  there  is  no
truncation on the l.h.s; see Eq. (7). In fact, in the calcula-
tion in Table 4 of Ref. [3], it is found that when sending
the  cutoff  to  ,  the  pole  location moves  upwards  to

 GeV, i.e., closer to Eq. (39).
O(p3)

O(p2)

Finally,  we also tested the  inputs (at  tree level
only) and  found  that  the  outputs  are  similar  to  the  situ-
ation  found  in  the  case;  therefore,  the  results  are
not discussed in detail here. 

N/DB.     calculation using phenomenological models

χ l.h.c

π

ρ t
N∗ s u

s = 0

t ρ

In the above section,  we have discussed the problem
encountered when using PT results to estimate the .
The higher  order  terms  in  the  chiral  lagrangian  describ-
ing N interactions are obtained by integrating out heavy
degrees of freedom, such as the  meson in the -channel
and  resonances  in  the  and -channels2). The  prob-
lematic  singularities  at  in partial  wave  chiral  amp-
litudes are at least partly a result of integrating out heavy
degrees  of  freedom.  To  demonstrate  this  clearly,  let  us
consider  an  effective  interaction  lagrangian,  responsible
for -channel  meson exchange, 

Lt = gρρ⃗µ · (∂µπ⃗× π⃗)+gρN̄
1
2
τ⃗ ·

(
γµρ⃗µ+

κ

2mN
σµν∂µρ⃗ν

)
N ,

(40)

gρ κ τ⃗

ρ⃗µ π⃗ N ρ

S 11 ρ

where  and  are  resonance  coupling  constants,  are
Pauli matrices, and , , and  refer to  resonance, pi-
on, and nucleon, respectively. For the  channel, the 

N/D S 11 O(p2) χ Im f (s)/sFig. 3.    (color online) (left)  fit to the  phase shift with  PT input; (right) a comparison of different  in different
situations.
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s = Λ2
R1) Because of two excuses: firstly they cancel each other; secondly, they are from distant places as they are associated with the cutoff at  anyway. It is desir-

able to know the possible origin of spurious effects since it leaves the hope to isolate and to remove them. On the contrary, it is difficult to cure the similar problem in
Padé approximation [27].

O(p4)2) In the meson–meson scattering lagrangian, the LECs at  level are known to be saturated by heavy degrees of freedom [28]. In meson–baryon system, sys-
tematic studies on this point are not known to the authors.

023104-8



exchange  contribution  to  the  invariant  amplitude,  Eq.
(19), can be obtained: 

A =
g2
ρκ(u− s)

2mN(t−m2
ρ)
, B =

2g2
ρ(κ+1)

t−m2
ρ

. (41)

1/mρIf a  expansion is performed at the leading order, we
have 

A =
g2
ρκ(s−u)

2mNm2
ρ

, B = −
2g2
ρ(κ+1)

m2
ρ

. (42)

ρ
c4

c4
s−3/2

1/mρ

s−1/2 s = 0

t
ρ

Compared  to  Eq.  (22),  we  find  that  the  meson ex-
change  only  contributes  to  the  term  [29].  As  we
already  know  from  the  discussions  in  Sec.  III.A,  the 
term  will  cause  an  singularity  following  partial
wave projection. This is avoidable, if we do not perform a

 expansion  in  the  beginning.  It  can  be  seen  that  all
the resonance  exchange  amplitudes  contain  the  singular-
ity  of  type  at  most  when .  Therefore,  partial
wave projections and chiral expansions do not commute,
which  can  be  determined  directly  by  evaluating  the -
channel  exchange  contributions,  by  performing  partial
wave projections of Eqs. (25) and (28).

ρ
T (S 11) s = 0

We  perform  an  asymptotic  expansion  of  the  ex-
change contributions to  in the vicinity of  and
find that the two most singular terms are of type 

a+bs
√

s
, (43)

O(s−5/2)
ρ

u
s S 11

which are not of type  , which would be obtained
if  the  propagator  were  expanded  beforehand.  Similar
results are found if we introduce, for example, a -chan-
nel as well as an -channel  resonance exchange.

N∗

c3 c4

s = 0
P11

In  this  situation,  it  can  be  proven that  expanding  the
 propagator in  the  full  amplitudes  presents  contribu-

tions to the  and  terms in Eq. (22). Avoiding a chiral
expansion beforehand,  the  resonance  exchange contribu-
tion  to  the  partial  wave  amplitude  can  be  expanded  at

 .  Similar results to Eq. (43) are again obtained, for
the  resonance exchange contributions.

a b
Explicit  expressions  for  resonance  contributions  to

parameters, e.g.,  and  defined in Eq. (43), are obtain-
able.  However,  another  significant  problem  occurs  here.
These coefficients depend on the mass parameters of the
exchanged resonances and do not disappear as the reson-
ance mass  increases,  which  contradicts  the  general  ex-
pectation from the decoupling theorem [30, 31]1). Without
a  deeper  understanding  of  this  problem,  it  should  be
noted  that  the  sign  of  the  contributions  from  different

t ρ

a
sources can be different. For example, the -channel  ex-
change contribution to parameter  is 

a(ρ) = −
g2
ρκ

(
m2

N −m2
π

)
64πmN

1
2

+

the  baryon exchange contribution is
 

a(N∗+) =
(gN∗ )2

(
−m2

N +m2
π

) (
3m2

N + (mN∗ )2
)

128πF2mN∗

1
2

−
whereas the  resonance exchange contribution is
 

a(N∗−) =
(gN∗ )2

(
m2

N −m2
π

) (
3m2

N + (mN∗ )2
)

128πF2mN∗

a T (s)
s = 0 O(p1) χ

ImLT

which is different in sign from that of the first two contri-
butions. Hence, a conspiracy theory of cancellation is as-
sumed to overcome the problem of large resonance con-
tributions  to  the  parameter ,  or  more  accurately, 
near .  In  practice,  we  therefore  use  the  PT
result  plus  a  polynomial  background  as  the  input ,
i.e., 

ImLT (s) = ImLT (1)(s)+ ImL

[
a+bs
√

s

]
, (44)

a b
N(s0) = 0.57

a = −2.39 b = −6.27 −1
√

s = 0.95−0.25i

where  and  are simply two free parameters, unrelated
to  resonance  parameters.  The  fit  gives ,

 GeV,  and  GeV ,  and  one  second
sheet  pole  is  found  with  GeV  without
sizable spurious branch cut contributions.

ρ

O(p1) χ ρ

As  the  mass  of  the  meson is  fixed,  we  also  ex-
plored the case of  PT results plus the  meson ex-
change term and a polynomial. That is, 

discT (s) = discT (1)(s)+discT ρ(s)+disc
[
a+bs
√

s

]
. (45)

ρ

s N(s0) = 0.61,
a = −7.88 b = −8.00 −1

In this case, the  meson exchange produces an extra arc
in  the  plane  [9];  see Fig.  4.  We  get 

 GeV,  and  GeV ,  and  one  second
sheet pole is found to be located at 

√
s = 0.90−0.20i GeV . (46)

These solutions  are  not  stable  –  there  exists  other  solu-
tions but with similar behaviours. In all cases, the contri-
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s→ 01) The reason behind this phenomenon is that as  the interval of partial wave integration diverges, make any "heavy" mass scale not heavy anymore and can-
not be naively integrated out.
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O(p2)
N∗(890)

t ρ
◦

√
s = 1.16

butions  from  the  spurious  branch  cuts  are  negligible,
compared  with  the  results  from  the  case,  and  the

 pole location remains stable. It is noticed that the
contribution  from  the  arc  cut  generated  by -channel 
exchange  is  very  small,  e.g.,  it  only  contributes  1.5  at

 GeV.
The "spectral" function in this case is plotted in Fig. 5.

Different contributions to the phase shift according to the
PKU decomposition are plotted in Fig. 6.

Λ2
R = 1.48 2

Λ2
R = 2.0,2.5 2

√
s = 0.897− i0.193

Before closing  the  discussions  on  the  numerical  cal-
culations,  it  should  be  stressed  that  the  major  physical
outputs  have limited reliance on the choice of  the cutoff
parameter  GeV .  For  example,  setting

 GeV  in model Eq. (45) results in almost the
same pole location at  GeV.

O(p3) χ

√
s = 1.16
◦

sc = 0.32 2 ◦ sc = −0.08 2

s = 0

sc = 0.32 2 l.h.c.

sc = −0.08
2

χ
N∗(890)

In the previous sections, we have presented extensive
and thorough analyses. However, there are inherent limit-
ations to  the  work  that  present  avenues  for  further  ana-
lyses,  which could  be  explored in  future  studies.  All  the
calculations  in  this  paper  are  performed at  the  tree  level
only. At the loop level, there are certainly dynamical cut
contributions, such as the circular cut. The latter is estim-
ated in Ref. [1] using the complete  PT input, and
it  is  found  that  the  sign  of  the  circular  cut  contribution
may vary depending on the choice of cutoff parameter but
always  remains  small  in  magnitude,  e.g.,  at 
GeV  its  contribution  to  the  phase  shift  is  0.2  when

 GeV , and –1.7  when  GeV . When
evaluating the circle, the problematic situation of  is
not  present;  therefore,  we  believe  that  this  estimation  of
the size of the circular cut contribution is at least qualitat-
ively  reasonable.  From Fig.  7,  the  cutoff  parameter

 GeV  corresponds  to  evaluating  the  re-
gion covered by the green dashed circle, which can be es-
timated by chiral perturbation theory; whereas 
GeV  corresponds to  the  region covered  by the  red  dot-
ted circle,  which  is  required  by  the  best  fit.  The  estima-
tions  made  in  Refs.  [1, 3]  determined  that  the  region
where the PT calculation can be safely used is not suff-
cient  to  generate 1), i.e.,  help  from  the  contribu-

s ∈ (−∞,0.32)
s = 0

tion in the region  is needed2). The singular-
ity in the "spectral" function at  seems to be helpful.
It is realized that the rescue task is easily fulfilled by ex-
amining Fig. 5. The fit Case II only contains a weak sin-

 

T (s) s = 0 O(s−5/2)

O(s−1/2) O(s0) O(p2) χ Case

Fig. 5.    (color online) Comparison among different "spectral"
functions. The singular behaviors of  at  are ,

,  and  for  PT,  model  Eq.  (45),  and 
II, respectively.

 

l.h.c. t ρ

u

cL cR d |d| = m2
N −m2

π

Fig. 4.    (color online) The  caused by -channel  meson
exchange (circular arc [9]); -channel exchange (line segment
from  to ). The branch point  satisfies  [9].

 

Fig. 6.    (color online) Fit  results using Eq. (45).  Phase shift
decomposition:  only  contributions  from physical  components
are  plotted  including  their  summation  "Total."  It  clearly
demonstrates  that  spurious  contributions  cancel  each  other
out;  otherwise,  the  curve  "Total"  cannot  move  closer  to  the
data.

 

l.h.c.

sc = 0.32 2

l.h.c.

sc = −0.08
2

Fig.  7.    (color online) Region  of  used  in  Ref.  [1].  The
cutoff parameter  GeV  corresponds to evaluating the

 region covered by the green dashed circle, which can be
estimated by the chiral perturbation theory, whereas 
GeV  corresponds  to  the  region  covered  by  the  red  dotted
circle, which is required by the best fit.
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sc = 0.32 2 N∗(890)1) More precisely, the pole position is not stable. For example when taking  GeV  the  degrades into two deep virtual poles.
sc = 0.32 22) Taking  GeV  will cause disasters in other channels as well [1].
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s = 0 T (0) ∝ const
(0.32, sL]

O(p2)

O(p2) χ
(0.32, sL)

(−Λ2
L,−ϵ)∪ (+ϵ,0.32) Λ2

L
R = m2

N −m2
π

ϵ ≃ 0.05 2

s = 0 s ∈ (−ϵ,+ϵ) N∗(890)√
s = 0.89−0.24i

gularity  at ,  i.e., ,  while  its  contribution
in  the  segment  is  much  weaker  than  those  of

but still affords a pole. The real situation should be
much  more  optimistic.  It  is  noticed  that  the  model  Eq.
(44)  behaves  similar  to  the  PT results  in  the  re-
gion , and it is expected to continue operating in
the region , where  is estimated to
be  approximately  for  example.  We  create  a
test by setting  GeV  and cut off the peak around

 in the "spectral" function, when .
emerges with a location  GeV.

l.h.c.

N∗(890)

Hence,  we  conclude  that  the  contributions  in
total  to  the  phase  shift  are  sizable,  based  on  which,

 survives with a rather stable pole location. Con-
sidering the level of accuracy of our calculations, statist-
ical error bars are not presented in this paper. 

V.  DISCUSSIONS AND CONCLUSIONS

s

s = 0

J = 0, I = 2 ππ

It may be bold to claim a new discovery in a field that
has been studied extensively for more than half a century.
However,  according to our studies,  a  subthreshold broad
resonance  exists  if  the -wave  phase  shift  steadily  rises
above  the  threshold  as  a  convex  curve.  The  discussion
presented in  the  previous  section  suggests  that  the  kin-
ematical  singularity  structure  at  plays a  rather  im-
portant  role.  This  is  not  surprising.  In  extreme  cases,
there  are  even  examples  where  a  pole  can  be  generated
for  purely  kinematic  reasons.  For  example,  in  the

 channel of  scatterings, there exists a virtu-
al pole which can be understood through purely kinemat-
ical  reasons,  which  presents  important  contributions  to
the phase shift [6] and can be proven to exist through rig-
orous testing [32]. Another example is the companionate
virtual  state of the nucleon, which can also be explained
through purely kinematical reasons [3].

N∗(890)
1/2−

N′

πN

N∗(890)

s

N∗(890) k

It  is  also  interesting  to  notice  that  the  state
may  be  related  to  the  lowest  lying  baryon  states,
first suggested by Azimov in 1970 [33] and named as ,
having  been  the  focus  of  many  studies  thereafter  [34].
Contrary  to  the  original  proposal  that  the  lowest  lying
nucleon  counterparts  lie  above  the  threshold,  or  at
least  lie  above  the  nucleon  mass  (on  the  first  sheet),  the
pole position named  determined in Refs. [1-3] as
well  as  in  this  paper  escapes  all  previously  defined
bounds and limits [34]. The mass (width) difference may
be explained by a familiar mechanism that when a strong
coupling is gradually formed, the pole will move from the
real axis above the threshold to the left of the  plane, off
the real axis. Nevertheless, it may also be possible for the

 "resonance"  to  be  a  virtual  pole  on the  plane,
as  suggested  in  Ref.  [3].  In  the  latter  situation,  the

N∗(890)

N′ N∗(890)

"width"  of  does  not  need  to  have  any  relations
with  particle  decays.  There  remains  a  significant  avenue
of work in identifying  and , to be explored in
future studies.

N/D

N/D
N∗(890)

T (s = 0)
s

The  calculations discussed in this paper are of a
complex dynamical  form.  However,  the  production  rep-
resentation  has  been  shown  to  be  useful  in  providing  a
simple and pictorial way of understanding the essence of
the  calculations:  the  evidence  for  the  existence  of

 seems to  be  partly  from the  peculiar  singularity
structure of the background integral, defined in Eq. (10).
If  does not disappear (or does not disappear fast
enough),  then  an -wave  subthreshold  resonance  exists,
in the most attractive channels1). This may even be a uni-
versal  phenomenon,  if  the  background  contributions  are
universally negative, as suggested by quantum scattering
theory  [36]  and  repeatedly  verified  by  calculations  in
quantum field theories. [4, 6, 7]

1/2−

1/2−

N∗(890)
f0(500) K(700)

QA

1/2−

N∗(1535)

N∗(890)

It is apparent that the existence of a light  nucle-
on state is crucial for the completion and establishment of
the lowest lying  octet baryons, as suggested in Ref.
[33], should it exist2). This will significantly improve our
understanding of strong interaction physics. For example,
the  state, should it exist, will force us to rethink
the possible physics behind  and . Another
question raised is  how to interpret  the breaking of  spon-
taneous  chiral  symmetry.  The  textbook  explanation  on
this point is that the axial charge  commutes with the
strong interaction hamiltonian, hence, if chiral symmetry
were  not  broken  then  parity  doublets  would  appear  in
nature.  However,  the  lowest  lying  nucleon ob-
served  is  and  the  non-degeneracy  of  its  mass,
compared with the nucleon mass, therefore indicates that
chiral symmetry  is  spontaneously  broken.  The  emer-
gence  of  may  also  bring  about  a  new  way  of
thinking about the related physics.

u [cL,cR]

Finally,  it  is  also  determined  in  this  paper  that  there
exists  two  virtual  poles  located  on  the  real  axis,  outside
but  very  close  to  the  channel  cut . Their  exist-
ence is  proven  relying  on  the  validity  of  chiral  expan-
sions up to all orders. 
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[cL, cR]
u

APPENDIX A: PHENOMENA OF THE CUT 
INDUCED BY  CHANNEL NUCLEON

EXCHANGES

u
∈ [cL,cR]

cL = (m2
N −m2

π)
2/m2

N cR = m2
N +2m2

π

s = cL zs = −1 u = m2
N s = cR

zs = +1 u = m2
N

cL cR

The  channel  nucleon  pole  exchange  diagram  will
contribute  to  the  partial  wave  amplitude  cut ,
with  and .  The  point

 is reached when  and , and  is
reached  when  and  (see  Eq.  (27)).  More
precisely, at branch points  and  , the leading term of
the partial wave amplitude is determined by 

s→ cL : T (s)→−
g2m4

N

16πF2
(
4m2

N −m2
π

) ln
s− cL

cL − cR
,

s→ cR : T (s)→
g2m2

N(m2
N +2m2

π)

πF2(4m2
N −m2

π)
ln

cR− cL

s− cR
, (A1)

uwhich  are  solely  from  the  channel  nucleon  pole  term
and are hence exact,  i.e.,  receiving no chiral  corrections.
Based on Eq. (47), 

s→ cL, S ≃ AcL
+BcL

ln
s− cL

cL − cR
,

s→ cR, S ≃ AcR
+BcR

ln
s− cR

cR− cL
, (A2)

in which the coefficients read 

AcL
=AcR

= 1+
g2mNmπ

8πF2 +O
(
m3
π

)
,

BcL
=BcR

=
g2mNmπ
16πF2 +O

(
m3
π

)
. (A3)

AcL
BcL

AcR
BcR

O(m3
π)

AcL
AcR

BcL
BcR

u

These equations are obtained from the Born term calcula-
tions,  where  ( )  and  ( )  differ  at  the 
level.  It  is  worth  emphasizing  that  and  may re-
ceive chiral corrections, but  and  do not, as the lat-
ter is related to the residue of the  channel nucleon pole.

S (cL),S (cR)→−∞

S = +1 sL sR
S (s) s ∈ (sL,cL)∪ (cR, sR)

S cL
cR

vL vR

One  important  conclusion  is  that 
which are exact (correct at least to any order of chiral ex-
pansions)  and  are  immune  to  any  loop  corrections.  It
should be remembered that  at  and  by defini-
tion,  and  is  real  when .  There
must  be  two  matrix  zeros:  one  below  and  another
above ,  on  the  real  axis1).  Their  locations  (denoted  by

 and ) are 

vL =cL − (cR− cL)e−AcL /BcL ,

vR =cR+ (cR− cL)e−AcR /BcR . (A4)

50◦
√

s = 1.16

Even  more  surprisingly,  these  two  virtual  poles  in  total
make  a  large  contribution  to  the  phase  shift,  as  they
provide  approximately  at  GeV,  which  is
not in agreement with the picture presented in Figs. 3 and
6. The solution to this apparent paradox is complex.

S cut = exp{2iρ(s) f (s)}
f (s) lnS cut

S cut lnS cut

S cut

O(p1)

In  the  derivation  of  the  production  representation,
Eqs. (10) and (12), it is generally assumed that the branch
cut  singularity  structures  of  ( )  and

 (or )  are  the  same.  This  is  not  always  true:
when  is  real  and  negative  at  a  certain  point, 
must  be  discontinuous  when  the  sign  of  the  imaginary
part  of  changes.  This  situation is  true in the present
case. Recall that at the  level, 

T (1) =−
g2

(
−2m2

Nm2
π−m2

N s−m2
πs+ s2

)
32πF2

(
s−m2

N

) +
−m2

N −m2
π+ s

32πF2

+
mN

(
−m2

N +m2
π+ s

)
32πF2 √s

−
g2mN

(
−m4

N +m2
Nm2
π+m2

N s+2m2
πs

)
32πF2

(
s−m2

N

) √
s

+
g2m2

N s2
(
−m2

N −m2
π+ s

)
16πF2 (s− cL)2 (s− cR)2

×
m2

N

s
(s− cL)

log
s− cL

s− cR
+ log

m2
N

s

− sρ(s)2


−
g2m3

N s2
(
−m2

N +m2
π+ s

)
16πF2 (s− cL)2 (s− cR)2 √s

×
(s− cR)

log
s− cL

s− cR
+ log

m2
N

s

− sρ(s)2
 .

(A5)

L ∈ (−∞,0)∪ (cL,cR)
T (s) s ∈ (−∞,0)√

s
s ∈ (cL,cR) ImT

u
(cL,cR) T (1)

It  is  determined  from  the  above  expressions  that  the
cut . There are two sources contribut-
ing  to  the  imaginary  part  of  when :  one
comes  from  the  kinematical  while  another  comes
from  the  logarithmic  function;  when  
comes solely from the  channel nucleon pole exchange.
On , the imaginary part of  reads 

ImT (1)(s) =
g2m2

N s2

16F2 (s− cL)2 (s− cR)2

×
m2

N

s
(s− cL)

(
−m2

N −m2
π+ s

)
−mN√

s
(s− cR)

(
−m2

N +m2
π+ s

)]
, (A6)

ImT (1)

s = sc ≃ m2
N −m4

π/2m2
N s

from which it is determined that  develops a zero at
 and  changes  sign  when  crosses

Qu-Zhi Li, Yao Ma, Wen-Qi Niu et al. Chin. Phys. C 46, 023104 (2022)

K S s = cL,cR1) In a -matrix unitarization, the  matrix no longer diverges at , the two virtual poles however still exist, and no major conclusions change.
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sc .  It is  important  to  realize  that  Eq.  (52)  is  immune  to
chiral perturbation corrections.

S cut sc m2
N

S cut

S cut

From Fig.  A1,  it  is  found  that  the  imaginary  part  of
 disappears  at  the  point  ,  which  is  close  to  ;

meanwhile,  the  real  part  of  is  negative.  In Fig.  A1
 is calculated by 

S cut =
S phys∏

p S p×S vL ×S vR
(A7)

S phys

O(p1)
s = sc lnS cut

sc
s N/D

S cut

lnS cut 2iπ

S cut

lnS cut

f

where  the  newly  found  virtual  poles  are  included,  and
 is approximated  by  both  the  unitary  amplitude  ob-

tained by fitting Eq. (44) and the pure  perturbation
amplitude1). From Fig. A1 , it is seen that at , 
must  develop  a  discontinuity,  and  hence,  a  branch  cut
emerges crossing . It is numerically verified that the cut
is an arc on the complex -plane in the  solutions. It
should be emphasized here that this unexpected addition-
al  cut  does  not  affect  the , as  across  the  cut  the  dis-
continuity  of  is  and  has  no  influence  on  the
value of  an  exponential.  Though  not  producing  any  is-
sues in the analyticity structure of , the additional cut
of , or the dispersive representation of the function

 defined in Eq. (10), must be changed as the integration
contour has to be modified.

The  problem  determined  above  is  significant  as  the
distorted  contour  may  depend  on  numerics,  hence  being
impossible  to  control.  However,  it  can  be  overcome  by
the following consideration. We define 

f̄ (s) =
ln−S cut

2iρ(s)
− π

2ρ̄(s)
(A8)

ρ̄(s) ρ(s)
∈ [sL, sR]

(−∞, sL]∪ [sR,+∞) ρ̄(s) ρ(s)
f̄ (s)

f (s) s
f̄

where the function  is the "deformed"  with its cut
,  while  the  cut  of  the  latter  is  defined

as .  Notice  that  and  are
identical  in  the  physical  region.  The  function  is
identical to  when  is also in the physical region but
differs in the cut alignment. Particularly,  no longer con-

f sc

f̄ f̄ ρ̄

f r.h.s.
[sL, sR]

s ∈ [cR, sR] f̄
[−∞,cR]

f [−∞, sL]∪ [cL,cR]
f̄

tains the arc cut of , as  is no longer a branch point of
 .  However,  contains an additional cut induced by ,

which is absent in .  Both the terms on the  of Eq.
(54) contain cuts on , but the two cuts cancel each
other out when . Hence, the left cut of  on the
real  axis  is  actually ,  compared with  the  left  cut
of  on  the  real  axis: .  The  dispersive
integral representation of  can be written as 

f̄ (s) =
s
π

∫
L

Im[ln−S cut(s′)/(2iρ(s′))]
s′(s′− s)

ds′

+
s
π

∫ cL

sL

Im[ln−S cut(s′)/(2iρ(s′))]
s′(s′− s)

ds′

−s
∫ cR

sL

Im[1/(2ρ̄(s′))]
s′(s′− s)

ds′ . (A9)

r.h.s.
L = (−∞, sL]∪ [cL,cR]

f
S cut

S phys (−∞, sL]
Im[ln−S cut/(2iρ)] = − ln |S cut|/(2ρ) |S cut| = |S phys|

[cL,cR]

In the first term on the  of the Eq. (A9), the integra-
tion domain , i.e., the same as that in
Eq. (10). Actually, the first term is identical to  defined
in  Eq.  (10),  as  in  the  integrand  can  be  replaced  by

.  To  prove  this,  firstly,  on ,
, and .

Secondly, the integral on  can be recast as 

s
π

∫ cR

cL

Im[ln−S cut(s′)/(2iρ(s′))]
s′(s′− s)

ds′

=
s

2iπ

∫ cR

cL

ln[S cut
+ /S

cut
− ]

2iρ(s′)s′(s′− s)
ds′

=
s

2iπ

∫ cR

cL

ln[S phys
+ /S

phys
− ]

2iρ(s′)s′(s′− s)
ds′

=
s
π

∫ cR

cL

Im[lnS phys(s′)/(2iρ(s′))]
s′(s′− s)

ds′ , (A10)

S ± ≡ S (s± iϵ)where . Hence, we complete the proof.

S cut [sL,cL]
The second integral in Eq. (A9) is analytically integ-

rable, once it is realized that  is positive along ,
and  the  third  integral  is  also  integrable.  The  sum  of  the

S cut(s) s (cL,cR)
O(p1) χ

Fig. A1.    (color online) Real (left) and imaginary (right) parts of  when  lies in . The dot-dashed line comes from the
N/D solution of Eq. (44); the yellow solid line is obtained from the  PT results.
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O(p1) S phys O(p1) S phys1) The '  calculation' in Fig. A1 is done via Eq. (A7) in the following way:  is calculated in , 'poles' are picked up by searching for zeros of ,
though they are actually not second sheet poles for lacking of unitarity.
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cL cR

10−3
√

s = 1.16

two  integrals  provides  a  contribution  to  the  phase  shift
that is exactly canceled by the contribution from the two
virtual poles, when their positions are taken at  and .
If the two virtual pole locations are fixed by Eq. (A4), the
net  effects of the sum of virtual  poles and the additional
cut  are  very  small  (e.g.,  of  order  of  degrees  at

 GeV). Therefore, the calculation using Eq. (10)
is still valid, with a high accuracy, when the existence of
the two virtual  poles  is  ignored.  Further,  it  is  worth  em-
phasizing that after such a calculation, there no longer ex-

lnS cut sc

lnS cut s

ists the unwanted cut in  crossing , as verified by
numerical  analyses.  Moreover,  it  should be noted that  in
numerical  analyses,  there  may  appear  additional  cuts  in

 as  well  on  the  plane  in  the  distance,  which  is
caused by  the  peculiar  analyticity  property  of  the  logar-
ithmic  function.  However,  it  is  simple  to  prove that  it  is
not hazardous and can simply be ignored.

The discussions  in  this  appendix  can  also  be  exten-
ded to higher partial waves, providing interesting results,
which will be presented in future studies.
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