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Abstract: This study explores the scalar and Dirac quasinormal modes pertaining to a class of black hole solutions

in the scalar-tensor-Gauss-Bonnet theory. The black hole metrics in question are novel analytic solutions recently de-

rived in the extended version of the theory, which effectively follows at the level of the action of string theory. Ow-

ing to the existence of a nonlinear electromagnetic field, the black hole solution possesses a nonvanishing magnetic

charge. In particular, the metric is capable of describing black holes with distinct characteristics by assuming differ-

ent values of the ADM mass and the magnetic charge. This study investigates the scalar and Dirac perturbations in

these black hole spacetimes; in particular, we focus on two different types of solutions, based on distinct horizon

structures. The properties of the complex frequencies of the obtained dissipative oscillations are investigated, and the

stability of the metric is subsequently addressed. We also elaborate on the possible implications of this study.
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I. INTRODUCTION

The modified theories of gravity were motivated by
the theoretical complications at the high and low
curvature regions of Einstein's theory of general relativ-
ity. Existing theories in literature largely utilize one of
two approaches. The first approach introduces modifica-
tions to the classical theory of gravity, by incorporating
either further corrections to the curvature sector or addi-
tional degrees of freedom to the original Einstein-Hilbert
action. For example, the former consists of the Gauss-
Bonnet and Lovelock [1], f(R) [2], f(T) [3], and f(R,T)
[4] theories, while the latter includes the scalar-tensor [5]
and scalar-tensor-vector [6, 7] theories, along with others.
The second approach involves deriving the theory as an
effective action from a more fundamental framework,
such as string theory. A notable example of such a theory
is Hofava-Lifshitz gravity [8-10]. The scalar-tensor theor-

ies are characterized by a scalar field coupled to the
curvature sector. The crucial aspect of the theory is that it
must evade a variety of no-hair theorems, which poten-
tially rule out any regular hair. The latter is most relevant
in asymptotically flat spacetimes [11, 12]. Known ex-
amples of the successful "implant" of a scalar field in-
clude the inclusion of the nonlinear electromagnetic field
[13], derivative coupling [14], or the coupling to the high-
er curvature invariants. The extended scalar-tensor-
Gauss-Bonnet gravity (STGB) belongs to the last scen-
ario, which also can be viewed, from the Einstein frame,
as an effective action of string theory [15]. Moreover, the
theory accommodates spontaneous scalarization [16-20].
Specifically, the presence of the Gauss-Bonnet term acts
as a catalyst for the scalar hair to emerge [21]. The result-
ant scalarization was shown to be regular and thermody-
namically favorable with respect to its counterparts in
general relativity. Interestingly, the resultant hairy black
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hole metrics in STGB gravity often feature discrete famil-
ies of solutions, which differ from each other by the num-
ber of nodes in the scalar hair.

More recently, the STGB theory was further general-
ized to consider Born-Infeld nonlinear electromagnetic
fields [22, 23], and a class of analytic black hole solu-
tions was obtained [24]. Characterized by a nonzero mag-
netic charge g, many new properties were observed for
the derived metrics. They describe black holes with dif-
ferent structures featuring two bifurcation points, gov-
erned by the specific model parameters ¢ and ADM mass
m. Specifically, the resultant black holes behave mostly
like the Schwarzschild metric, for m >0 and ¢ >0. For
m>0 and ¢ <0, the solutions are reminiscent of that of
the Reissner-Nordstrom solution, while for m=0, a
purely magnetic black hole is obtained.

From an empirical point of view, such hairy black
holes may lead to distinct observable implications, such
as the strongly lensing effect of electrodynamic signals,
including chaotic lensing [25] and cuspy shadows [26,
27]. Additionally, gravitational waves, quasinormal
modes [28, 29], and echoes [30] are also important topics.
The distinctive complex frequencies of the characteristic
dissipative oscillations of black hole quasinormal modes
are understood to carry intrinsic information about the
black hole spacetime. Furthermore, the black hole echoes
are expected to be strongly associated with the spacetime
curvature of the strong-field region in the vicinity of the
horizon. However, it has been pointed out the possible
perturbations to spacetime configurations due to external
fields, referred to as "dirty" black holes, might substan-
tially affect the quasinormal spectra [31, 32] as well as
the echo patterns [33]. The former has been recently fur-
ther explored in terms of the stability of the quasinormal
modes [31, 34] using hyperboloidal coordinates [35].
Therefore, one might expect to detect the presence of the
scalar hair in the underlying theories from such pertinent
distinctive features. Subsequently, this study was motiv-
ated to investigate the scalar and Dirac quasinormal
modes in the extended STGB theory.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the analytic black hole solu-
tions that are explored in this study. We show that differ-
ent metrics can be classified in terms of their respective
horizon structures, from which two specific cases are fur-
ther explored. In Sec. III, the master equations for the
scalar and Dirac perturbations are derived. The numeric-
al calculations are presented in Sec. IV, where we em-
ploy both the WKB approximation and finite difference
method. The last section is devoted to further discussions
and concluding remarks.

II. THE BLACK HOLE SOLUTION IN THE EX-
TENTED SCALAR-TENSOR-GAUSS-BONNET
THEORY

Recently, Cafiate and Bergliaffa proposed the follow-
ing novel analytic magnetic black hole solution in the ex-
tended STGB theory [24]:

2
ds® = —f(r)d* + J% +r2 (d92 +sin’ Gd(pz) , (1)

where

2 3
fr=1-"2_1 @)
r 14

Based on the properties of horizons which are governed
by f(r) =0, in this study, we elaborate on two distinct
cases.

For the first case (Case 1), there is only one positive
real root, giving the event horizon r,, and two complex
roots, so that

oA o

72

where A and B are two real parameters that satisfy
A? < 4B. Moreover, by comparing Eq. (3) to the metric
Eq. (1), we have

3 3 r 3
A=t p=L, w=2-L. O
U rp 2r;

For the second case (Case 2), there are two positive
real roots, giving the event horizon r, and inner horizon
ri=Cr,, and one negative real root r=-D <0, and we
have

po-(-E0-c) ) o

r

where 0 < C <1, which becomes an extreme black hole
when C =1, and

3 Crp
T1+C

m:(1+C+C2)rp

2(1+0)

2/3
C/rp

D =- .
(1+C)13

(6)

It seems plausible to consider a third case where one
has one positive real root as the event horizon r, as well
as two negative roots, namely, r = —FE <0 and r = —F <0.
However, it can be shown that this is not a physically rel-
evant scenario, as the above horizon structure implies that
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B rp rp F
so=(i-2)ies2)045) o)
where
_Er, _(E*-E+Dr,  E»r,
Eer T aaen o CEoon ®

As the mass of the black hole is positive definite, the rela-
tion between m and E implies that 0 < E < 1, which in
turn means F < O0; this contradicts our assumption. By
employing similar arguments, one can also show that the
solution of three positive roots must be excluded. In the
following sections, we explore the quasinormal perturba-
tions in the background metrics determined by Case 1 and
Case 2.

III. THE MASTER EQUATIONS FOR THE
SCALAR AND DIRAC PERTURBATIONS

In this section, we derive the relevant master equa-
tions for the scalar and Dirac perturbations. In curved
spacetime, the equation of motion for massless scalar per-
turbations satisfies

0 (V=28"'9,0) =0. )

We note that here the field @ is not the scalar degree of
freedom of the STGB theory, but an external scalar field
that is minimally coupled to the background metric,
which is introduced to probe the stability of the metric.
To proceed, one further assumes that ® = e /'Y (8, 0)p(r),
where Y(6,¢) are the spherical harmonics. By separating
the variables, the resulting radial component reads

2
d ‘f +(W? = V(r)p =0, (10)
T
where
V(r) = JL;)(L2+L+rf’(r)), (11)
I

and r, = f dr/ f(r) is the tortoise coordinate.
Then, the Dirac equation in curved spacetime is

Yei(0u+T) ¥ =0, (12)

where

=g [ esel
e/‘j =diag(\/?,1/\/]_‘,r,rsin9), (13)

and y* is the gamma matrix in flat spacetime. To pro-
ceed, one introduces the ansatz proposed by Cho [36]

v

. -1/4 ( iG*(r)¢* (6,
i f®) ( ()65 "")] (14)

r | Pr08,0.0)

where one assumes the form of a stationary state and fo-
cuses on the definite angular quantum number, namely,

L+1/2+mYm_1/2
\/_ L 1
Gim = 2L+1 forj=L+=,
/L+1/2—mym+1/2 2
2L+1 L

¢L+1/2—mYm_1/2
2L+1 - forj:L—l
_ L+l/2+mYm+]/2 2
NV 20.+1 L (15)

which are eigenfunctions of the total angular momentum
J2.
The resultant radial equation reads

Pim =

d ([ F* KeT 0 F*
o5l )5
_ Ft
{£38)
where
-(j+1/2), j=L+1/2
K(+)={ . . . (17)
j+1/2, j=L-1/2

From Eq. (16), one derives the decoupled equations
for F* and G*

szi 2 v, +
g +(w? = V) F* =0,
d’G* 2 B +
g +(w?-V.)G* =0, (18)
where
_ d A d
V. =&+WE, Vi=—£+wi,
dr. = dr. =
K+
We== NITO) (19)

As the two effective potentials with plus and minus
signs are related to each other through the Darboux trans-
formation [36, 37], in what follows, we omit the super-
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script and present the result in terms of the amplitude
F=F*.
The quasinormal modes can be evaluated by solving

: - ¢ . L q w (sixth-order) w (third-order)
these master equations with physically appropriate : _
o . . 0.1 0.2210-0.2019i 0.2093 - 0.2308i
boundary conditions. Specifically, the wave function
must be outgoing at infinity and ingoing at the event hori- 0 02 0.2214-0.2040i 0.2097-0.2334i
zon. By taking into account that the effective potentials V, 0.3 0.2224-0.2105i 0.2102 - 0.2408i
V, and V vanish at infinity and the event horizon, the 01 0.5861 —0.1958i 0.5825 —0.1963i
asymptotic forms of the wave functions are o e“™ at in-
ymp —ior . 1 0.2 0.5883 - 0.1976i 0.5847-0.1981i
finity and oc e™“" at the horizon.
0.3 0.5941 - 0.2025i 0.5903 - 0.2032i
. . 2 0.2 0.9715-0.1956i 0.9706-0.1957i
In this study, we solve for the quasinormal frequen- _ ‘
cies by employing two methods, the WKB approxima- 0.3 0-9814-0.2004i 09806 -0.2006i
tion [38-40] and the finite difference method [41]. 0.1 1.3515-0.1933i 1.3511-0.1933i
The WKB approximation is a semi-analytic approach 3 0.2 1.3567 —0.1950i 1.3564 — 0.1950i
that 1s reminiscent of .solvmg for the scattering  reson- 03 13707 0.1999i 13704 —0.1999i
ances in a one-dimensional quantum mechanical scatter-
ing problem near the peak of a potential barrier. Accord- ) )
Table 2. The lowest lying scalar quasinormal modes ob-

ing to this method, the eigenvalues of the complex fre-
quencies are given by

Table 1.

The lowest lying scalar quasinormal modes ob-

tained using the WKB approximation for Case 1 with r, = 1.

tained using the WKB approximation for non-extreme black

holes in Case 2 with r, = 1.

i(a)Z -V( r)) 1 L c w (sixth-order) w (third-order)
Nz mnEg T Z;A Ajy (20) 0 0.2209-0.2016i 0.2093 - 0.2304i
- =

= . 0.25 0.2170-0.1899i 0.2041 -0.2120i
where xg is the coordinate of the maximum of the poten- 03 0-2139-0.1420i 0-1795-0.1764i
tial V, and A; are the correction terms owing to the WKB 0.75 0.1780-0.1178i 0.1523 -0.1515i
method. The resultant quasinormal frequencies evaluated 0 0.5858 - 0.1955i 0.5822 - 0.1960i
using the third and sixth order approaches are given in 0.25 0.5701 — 0.1830i 0.5666—0.1831i
Tables 1-6. : 0.5 0.5319-0.1565i 0.5276 - 0.1563i
From the results presented in Tables 1-6, we find that ' R R
the obtained quasinormal frequencies are strongly de- 0.75 0.4793 - 0.1306i 0.4751 -0.1306i
pendent on the black hole parameters. In other words, if 0 0.9673 - 0.1935i 0.9664 —0.1936i
such compl.ex. fre':quenm.es can be extracted fr'o‘m the 025 0.9407 —0.1812i 0.9398 —0.1812i
measured dissipative oscillations, they can be utilized to 2 . .
Sy . . . 0.5 0.8771 -0.1556i 0.8761 - 0.1555i

identify the underlying spacetime metric. For Case 1,
when the parameter ¢ increases, the absolute values of the 0.75 0.7926-0.1301i 0.7916-0.1301i
real part |wgr| and imaginary part |wi| of the frequency 0 1.3507-0.1930i 1.3504 - 0.1930i
both increase. This indicates that, when compared with 025 13133 —0.1808i 1.3130 — 0.1808i
Schwarzschild black holes, the ESTGB black holes pos- 3 ) )
o . . . 0.5 1.2246 -0.1553i 1.2242 - 0.1553i

sess smaller oscillation periods with faster amplitude de-
cay. However, for Case 2, |wg| and |wi| both decrease as 075 1.1074-0.1230i 1.1070 —0.1300i

the parameter C increases. In turn, this implies that the

ESTGB black holes possess larger oscillation periods and Table 3. The lowest lying scalar quasinormal modes ob-

the dissipations occur at a lower rate when compared with

. i . tained using the WKB approximation for extreme black holes
the Schwarzschild case with two horizons.

in Case 2 with r, = 1.

Furthermore, it is of interest to investigate the scalar

and Dirac perturbations in a purely magnetic black hole. L @ (sixth-order) @ (third-order)
Such a spacetime configuration corresponds to a particu- 0 0.1557-0.1037i 0.1332-0.1334i
lar choice of metric so that the mass parameter of the res- 1 0.4242 — 0.1129 0.4205 —0.1129i
ulting black hole vanishes. To investigate such a scenario, ) 07027 —0.1123 07018 —0.1123i
we choose to tune one of the metric parameters while

3 0.9822-0.1122i 0.9819-0.1121i

keeping the others constant, so that the mass of the black
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Table 4. The lowest lying Dirac quasinormal modes ob-
tained using the WKB approximation for Case 1 with r, = 1.

Table 7. The lowest lying scalar quasinormal modes as the
mass of the black hole approaches that of a purely magnetic
one for Case 1 with r, = 1. Here, the mass parameter m — 0"
from above as ¢ — 1~ from below. The calculations were ob-
tained using the WKB approximation.

L q w (sixth-order) w (third-order)
0.01 0.3662 -0.1941i 0.3631 -0.1945i1
1 0.3 0.3708 —0.2014i 0.3682-0.2016i
0.6 0.3999 - 0.2535i 0.3977-0.2551i
0.01 0.7601 —0.1928i 0.7594 - 0.1929i
2 0.3 0.7710-0.1998i 0.7705 -0.1999i
0.6 0.8436-0.2518i 0.8434 -0.2521i
0.01 1.1482-0.19261 1.1479-0.1926i
3 0.3 1.1651 -0.1995i 1.1649 -0.1995i
0.6 1.2788 -0.2514i 1.2787—-0.2515i
Table 5. The lowest lying Dirac quasinormal modes ob-

tained using the WKB approximation for non-extreme black

holes in Case 2 with r, = 1.

L q w (sixth-order) w (third-order)
0.8 0.7021 -0.3751i 0.6845 —0.3481i

| 0.9 0.7499 - 0.45571 0.6997 - 0.4221i
0.95 0.7874 - 0.4887i 0.7037 - 0.4700i

1 0.8348 -0.5124i 0.7054 - 0.5275i

0.8 1.2108 - 0.3423i 1.2047 -0.3431i

0.9 1.2981 -0.4128i 1.2872-0.4118i

? 0.95 1.3452 - 0.45661 1.3313-0.4531i
1 1.3935-0.5075i 1.3764 —0.4992i

0.8 1.6997 -0.3411i 1.6979 -0.3416i

3 0.9 1.8293 —0.4093i 1.8257-0.4101i
0.95 1.9016 - 0.4503i 1.8965-0.4513i

1 1.9786 —0.4963i1 1.9715-0.4974i

Table 8. The lowest lying Dirac quasinormal modes as the

mass of the black hole approaches that of a purely magnetic
one for Case 1 with r, = 1. Here, the mass parameter m — 0"
from above as ¢ — 1= from below. The calculations were ob-
tained using the WKB approximation.

L C w (sixth-order) w (third-order)
0 0.3662 -0.1941i 0.3631 —-0.19451

0.25 0.3571 -0.1809i 0.3531-0.1818i

: 0.5 0.3327 -0.1529i 0.3277-0.1555i
0.75 0.2962 -0.1278i 0.2933 - 0.1306i

0 0.7601 —0.1928i 0.7594 - 0.1929i

) 0.25 0.7394 - 0.18051 0.7386 —0.18061
0.5 0.6896 —0.1547i 0.6884 —0.1549i

0.75 0.6227 -0.1292i 0.6214 -0.12951

0 1.1482 -0.19261 1.1479 -0.19261

3 0.25 1.1165-0.1804i 1.1162 -0.1804i
0.5 1.0412 - 0.1549i 1.0407 —0.1549i

0.75 0.9414 - 0.12961 0.9409 —0.12961

Table 6. The lowest lying Dirac quasinormal modes ob-

tained using the WKB approximation for extreme black holes

in Case 2 with r, = 1.

L w (sixth-order) w (third-order)
1 0.2609-0.1111i 0.2590-0.1134i
2 0.5518-0.1116i 0.5506—-0.1119i
3 0.8349-0.1118i 0.8344-0.11191

hole approaches that of a purely magnetic black hole. The
results of the calculations for Case 1, where the horizon is
chosen as r, = 1, are presented in Tables 7 and 8 for the
scalar and Dirac perturbations, respectively, for various
angular momentum states. For this specific case, the mass
parameter m — 0 from above as ¢ — 1 from below. For
scalar perturbations, it is observed that the magnitudes of
both the real and imaginary parts of the quasinormal fre-
quencies increase when the metric becomes that of a

L q w (sixth-order) w (third-order)
0.8 0.4345-0.3401i 0.4262—-0.3467i
0.9 0.4536 —0.4055i 0.4383-0.4181i
0.95 0.4629 — 0.4444i 0.4429-0.4618i
1 0.4717-0.48751 0.4463-0.5113i
0.8 0.9443 —0.3409i 0.9433-0.3414i
5 0.9 1.0096 — 0.40891 1.0074 - 0.4099i
0.95 1.0454 —0.4498i 1.0423-0.4511i
1 1.0831 - 0.4956i 1.0788 —0.4973i
0.8 1.4408 — 0.3403i 1.4405 —0.3405i
0.9 1.5484 —0.4083i 1.5477-0.40871
0.95 1.6083 —0.4491i 1.6073 — 0.4496i

1.6718 —0.4948i

1.6705 - 0.4954i

purely magnetic black hole. For Dirac perturbations, sim-
ilar behavior is observed as one approaches the limit of
the purely magnetic metric. Moreover, for both cases, it is
found that the quasinormal frequency changes smoothly
as the metric approaches this limit.

Now, we proceed to evaluate the time-domain evolu-
tion of the scalar and Dirac perturbations using the finite
difference method [41]. The method is implemented by
introducing the following light-cone coordinate trans-
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formation u =¢—r. and v =t+r,. Subsequently, the spa-
tial boundary of the problem is properly transfered in the
new coordinate system, and the perturbation equation of
the wavefunction R with potential / becomes

2

&R
- 21
46u6v + V()R =0. (21)

One may then discretize the above equation to obtain

Ru+A,v+A)=R(u,v+A)+R(u+A,v)—R(u,v)

A2
- ZV(r)R(u, V) +0(eb). (22)
The initial and boundary conditions are given by

R(u = up,v) = ef%, R(u,v=v9) =0, (23)

L=0

where ug, vo, 0, v, are chosen for the specific form of the
initial Gaussion waveform and the boundary. We present
the resulting temporal evolutions of the perturbations in
Figs. 1-5.

From the calculated temporal oscillations displayed in
Figs. 1-5, one observes that the results from the finite dif-
ference method support the results obtained using the
WKB approximation. The above conclusion can be
drawn by analyzing the oscillation periods and the rates
of amplitude dissipation, as well as their dependence on
the black hole parameters. Moreover, at significantly later
times for scalar perturbations, late-time tails can be ob-
served. We understand that the latter is due to the effect-
ive potential decaying fast enough at spatial infinity, lead-
ing to backscattering of the initial waveform [42, 43]. It is
also noted that, if the black hole possesses only one hori-
zon, the late-time tail occurs earlier than its Schwarz-
schild counterpart. However, when the black hole has two
horizons, the occurrence of the late-time tail is mostly

Log(F)

Log(F)

0 200 400 600 800 1000 0 200 400

t

Fig. 1.

600 800 1000 0 200 400 600 800 1000

(color online) The calculated temporal evolution of the scalar perturbations for Case 1 with r, = 1.

0 200 400 600 800 1000 0 200 400

t

Fig. 2.

600 800 1000 0 200 400 600 800 1000
t

(color online) The calculated temporal evolution of the scalar perturbations for non-extreme black holes of case 2 with r, = 1.

0 200 400 600 800 1000

t
Fig. 3.
Case 2 with r, = 1.

0 200 400 600 800 1000

(color online) The calculated temporal evolution of the scalar (left) and Dirac (right) perturbations for extreme black holes in
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postponed. Additionally, in Fig. 6 we investigate the scal-
ar and Dirac perturbations in a purely magnetic black
hole. Again, the calculations have been performed by tun-
ing one of the metric parameters so that the mass of the
black hole gradually vanishes. The results obtained by the
finite difference method are found to be consistent with
those obtained by the WKB approximation. In particular,
the quasinormal oscillations change gradually as the met-
ric approaches the limit of a purely magnetic black hole.
From both the employed approaches, the metrics are
shown to be stable against the perturbations investigated

L=2

in this study. Moreover, as the results are sensitive to the
black hole parameters, our numerical calculations indic-
ate the potential to utilize black hole quasinormal modes,
along with other approaches, to validate STGB gravity
when relevant astronomical observations become feas-
ible.

V. CONCLUDING REMARKS

To summarize, in this study we investigated the scal-
ar and Dirac quasinormal modes of the black hole solu-

L=3

Log(F)

Log(F)

50 100

t

150 50

Fig. 4.

(color online) The calculated temporal evolution of the Dirac perturbations for Case 1 with r, = 1.

L=3

100 200 300 400 500 0 100 200

t

n

Fig.

L=0

300

t

400 500 600 700 200 600 800

(color online) The calculated temporal evolution of the Dirac perturbations for non-extreme black holes in Case 2 with r, = 1.

Log(F)
Log(F)

200 400 600 800 1000 200 400

600 1000 0 700

Log(F)

Log(F)

— =08

g=1

50 100

t

Fig. 6.

t

150 200 50 100 200

t

(color online) The calculated temporal evolution of the scalar (top row) and Dirac (bottom row) perturbations as the mass of

the black hole approaches that of a purely magnetic one (m =0) for Case 1 with r, = 1. Here, the mass parameter m — 0* from above as

q — 17 from below.
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tions in the STGB theory. The calculations were carried
out using both the WKB approximation and the finite dif-
ference method. The black hole solution is relevant as it
is one of the first novel analytic solutions recently pro-
posed in extended STGB gravity. While possessing a
nonvanishing magnetic charge, the metric is capable of
describing black holes with distinct characteristics by as-
suming different values of the ADM mass and the mag-

netic charge. Our analyses were focused on two specific
types of metrics based on distinct features of their hori-
zon structures. Additionally, quasinormal modes for
purely magnetic black holes were investigated using a
vanishing black hole mass parameter. The properties of
the obtained complex frequencies were analyzed and
compared to their counterparts in general relativity, and
subsequently, the stability of the metric was addressed.
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