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Abstract: The main aim of this study is to explore the existence and salient features of spherically symmetric re-
lativistic quark stars in the background of massive Brans-Dicke gravity. The exact solutions to the modified Einstein
field equations are derived for specific forms of coupling and scalar field functions using the equation of state relat-
ing to the strange quark matter that stimulates the phenomenological MIT-Bag model as a free Fermi gas of quarks.
We use a well-behaved function along with the Karmarkar condition for class-one embedding as well as junction
conditions to determine the unknown metric tensors. The radii of strange compact stars viz., PSR J1416-2230, PSR
J1903+327, 4U 1820-30, CenX-3, and EXO1785-248, are predicted via their observed mass for different values of
the massive Brans-Dicke parameters. We explore the influences of the mass of scalar field mg, coupling parameter
wBD, and bag constant B on state determinants and perform several tests on the viability and stability of the con-
structed stellar model. Conclusively, we find that our stellar system is physically viable and stable as it satisfies all
the energy conditions and necessary stability criteria under the influence of a gravitational scalar field.
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I. INTRODUCTION

The general relativity theory (GRT) is without any
doubt the best theory of gravitational interaction. Al-
though its predictions have been tested to very high preci-
sion [1], there are still open questions that make the GRT
incomplete. Such questions arise at short distances and
small time scales viz., black hole and cosmological singu-
larities, respectively, for which any predictability is lost.
However, the observational prediction of cosmic mi-
crowave background radiation (CMBR) and the forma-
tion of primordial light elements (Big Bang nucleosyn-
thesis) undoubtedly represent the greatest success of
GRT. Although these are fundamental results, deviations
from GRT (hence from the action of Einstein-Hilbert
(EH) on which GRT is based) are necessary, and new in-
gredients, such as dark matter and dark energy [2, 3], are
needed for fitting the current picture of our Universe. In
this respect, alternative or modified theories of gravity

have aroused great interest. Compact stellar structures,
such as quark stars, dark stars, gravastars, neutron stars,
and black holes, were well-considered in various general-
izations of the GRT, and astrophysical implications were
contemplated that can impose restraint on these theories
(for a review, see [4]). Well-accepted gravitational tests
of gravity include the strong and weak field regime tests.
Regarding these tests, the strong-field regime tests are
considered to be more significant for analyzing the cor-
rect gravity theory. This is because in the strong-field, the
gravity given by the modified theories diverts widely
from that given by GRT, whereas in the weak-field, it is
compatible with that given by GRT [5-11]. In this regard,
scalar-tensor gravity theories as modified gravity theor-
ies have been proven to be effective in explaining several
noticeable problems such as the late and early behavior of
the Universe, inflation, cosmic acceleration, and coincid-
ence problem [12-14]. Brans and Dicke [15] proposed a
scalar-tensor generalization of GRT by substituting a
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time-modifying gravitational constant viz., G(¢) = 1/®(s),
and through a scalar field interaction with a geometry
well-known as the Brans-Dicke (BD) gravity theory. This
theory of gravity is one of the most interesting scalar-
tensor theories owing to its immense cosmological im-
plications [12-14]. Moreover, Mach's principle, agree-
ment with the weak equivalence principle, Dirac's large
number hypothesis, the varying gravitational constant,
and the non-minimal coupling between the scalar field
and geometry are some dominant aspects of this scalar-
tensor theory [15, 16]. The authors [17, 18] used local
gravity tests and showed that the general dimensionless
BD-parameter wpp ought to be extremely huge, i.e.,
wpp > 4x10*, to be compatible with close solar system
experiment bounds. The bounds on the value of the BD-
parameter wpp are obtained by including a massive scal-
ar field ®@ as well as a potential function V(®) generated
in the background of self-interacting BD theory [19]. Re-
garding the self-interacting BD gravity, all values of the
BD-parameter wpp greater than —3/2 are allowable. This
theory of gravity transforms into GRT if the scalar field is
constant, and the BD-parameter wpp goes to infinity
(wpp — ). Generally, it has been indicated [20, 21]
that the BD theory is reducible to GRT only if the trace of
stress-energy tensor 7™ does not disappear, i.e.,
Tmatt + 0.

It is worth mentioning that over the past decade, sev-
eral models of astrophysical objects viz., stars and galax-
ies, among others, have been investigated in various man-
ners, in addition to the cosmic evolution of the Universe
in the BD theory, which contributes significantly to the
discovery and understanding of different relativistic phe-
nomena. In this context, Yazadjiev et al. [22, 23] ex-
plored the dynamics of slowly and rapidly rotating com-
pact structures, specifically neutron stars within the sight
of a massive scalar field, and deduced that deviations
from GRT can be large because of the moment of inertia,
which is crucial. Moreover, Koyama in [24] has sup-
posed that the Vainshtein mechanism of the Sun does not
influence the scalar field profile produced by a distant
compact stellar structure and showed that the scalar
memory effect supplies a powerful method to test BD
gravity with the Vainshtein mechanism.

For a physically viable spherical object, it is import-
ant to add some extra condition on the geometry and mat-
ter variables or offer a particular type of state equation. In
an entirely different scenario, a 4-D (D = dimensional)
curved space-time was implanted into a larger-D flat vari-
ety to establish various suitable stellar systems [25]. It
should be noted that the n-D pseudo-Riemannian space
V, can be implanted into m-D pseudo-Euclidean variety
Vi, where Vp provides an implanting class of the least
number of additional P given that P must be less than
[n—m] or equivalent to [(n>—n)/2]. The implanting class
of the interior Schwarzschild solution and usual FRW
space-time is one, whereas the exterior entails class-two

implanting. This concept of implanting gives a basic ex-
tra relation to connecting both gravitational potential
components viz., radial and temporal of the space-time,
named as the "Karmarkar condition" [26, 27]. We can in-
fer the implanting class-one solution using this require-
ment in the background of static spherically symmetric
geometry. In [28, 29], the physical plausibility of the im-
planting class-one anisotropic stellar configuration mod-
els was analyzed, and the compatibility of the physical
parameters with the necessary stellar comportment was
concluded. The same authors constructed new solutions
by determining various potential candidates. They also
determined the generalized form of an anisotropic stellar
structure employing the Karmarkar requirement. Singh et
al. [30-32] established anisotropic spherically symmetric
stellar structure models with the Karmarkar condition
comprising the implanting class-one solution and ana-
lyzed the outcomes via theoretical stellar configuration
systems. Errehymy and his collaborators [33] implanted
the curved structure into 5-D Euclidean space-time to dis-
cover the implanted class-one stellar bodies. The authors
[34, 35] investigated various anisotropic stellar objects
free from any physical or geometrical singularities using
the Karmarkar condition.

Based on the aforementioned information, the coup-
ling functions of the BD theory with a massive scalar
field, which are permitted by observation, may vary im-
portantly from those in the massless case. This phe-
nomenon normally leads us to conclude that the aniso-
tropic compact stellar structures with a massive scalar
field could generally have slightly extraordinary config-
urations and attributes compared with their homologs in
the massless case. Accordingly, by taking into account
this motivation, in this study, we embed a spherically
symmetric static metric in Schwarzschild coordinates in-
to a 5-D flat space for compact stellar objects in massive
Brans-Dicke (MBD) gravity, to explore the possibility of
providing exact solutions for viable anisotropic stellar
systems through the modified Einstein field equations.
The paper is organized as follows: following an exhaust-
ive introduction in Sect. I, the appropriate BD theory un-
der the embedding approach is laid down in Sect. II. In
the same section, the basic stellar equations with the MIT
bag model is constructed. In Sect. III, we provide the ne-
cessary conditions for a singularity-free matching on the
boundary of the stellar configuration. In Sect. IV, we give
the physical properties of the anisotropic stellar structure
in MBD gravity via several physical and mathematical
tests. Finally, in Sect. V, concluding remarks are repor-
ted.

II. THE BACKGROUND OF MBD GRAVITY
THEORY AND MATTER VARIABLES

The action of scalar-tensor theories can be addressed
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in two conformally linked frames namely, the Jordan and
Einstein frames. In the Jordan frame, the MBD scalar
field acts as a spin-zero component of gravity while it be-
haves as a matter source in the conformally redefined
frame. The Jordan formularization results in an unstable
system because of the non-positive energy density of the
scalar field. However, the non-minimal coupling of the
scalar field to normal matter prompts non-geodesic ways
for test particles in the Einstein frame [36]. Nevertheless,
the violation in the Einstein frame is trivial and the frame
remains consistent with the tests of the equivalence prin-
ciple. The action of MBD gravity in the Jordan frame
[19] with relativistic units 87 = G = ¢ = 1 is characterized
as

f\/_ RCD——V“V - £(®)+£m) x, (D)

where g =|gql, R , and L, are the determinant of the
metric tensor, the Ricci scalar, and the matter Lagrangian,
respectively, @ is a scalar field, and wpp is a dimension-
less BD coupling constant. Here, the function £(®) com-
pletely specifies the scalar-tensor theory. For the present
study, we define

ﬂ(cb):Exp[ ]L(CD) —mq)CDz )

Quws +3)1/2

where mg is the mass of the scalar field. For the form of
scalar field function expressed in (2), the two rapidly and
slowly turning NSs have effectively been investigated by
Doneva et al. [37] and Yazadjiev et al. [22]. The scalar
field ® and metric .5 can be obtained for the Einstein
frame by means of the transformations @ = A2(D) and
8op = A2(®)gas. The MBD field equations and evolu-
tion equation, through the variation of action (1) with re-
spect to g.s and @, are given explicitly as follows:

1
Gop =Rop— EgaﬂR

1
_ (matt) )
=3 [Taﬁ + Ty,

1
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where T;;"") describes the stress-energy tensor in the

Einstein frame and 70 is its trace, with O being the
d'Alembertian operator. The stress-energy tensor in Ein-
stein frame is linked to its conformal counterpart f(,ﬁ
through T, = AX(D)Tap.

We suppose that the interior space-time line element
for a static and spherically symmetric is represented by
the following form

ds? = e"™dr? — e dr? — r2(d6? + sin® 6dg?), (5)
where 7(r) and &(r) are the unknown metric potentials
that have functional dependence on the radial coordinate,
r, only. Heavenly systems are defined by anisotropic
pressure and inhomogeneous energy density, which take
a dominant part in their development. In this regard, we
argue that the physical features (energy density (p), radi-
al (p,)/transverse (p;) pressure)) of cosmic bodies with an
anisotropic distribution are specified via the following
stress-energy tensor

T = POSess (6

(o + pr)ualt = pigap + (Pr =
here u, = (e%,0,0,0) and sﬁz(O,—eg,0,0) represent the
four-speed of a comoving observer and the radial four-
vector, respectively. Further, p, p,, and p, denote the en-
ergy density, radial, and transverse pressures, respect-
ively. Employing Egs. (3)—(6), the field equations are ac-
quired as

1 (1 ¢\ 1
_ S S 0

e (rz r)-q)(PJrTo ); @)
1 (1 g\ 1

- 13 T _7ld
S te (r2+r)—q)(pr %), (®)

. 17 12t 77/_5/ _l _ 720
1 (277 =S 2= )—(D(pt 757, )

Further, the prime symbol indicates differentiation with
respect to the radial coordinate, 7, and the expressions of
T3®, T|®, and T3® are given as

[ 2 ®
T =€ cb"+(——%)cp' “;‘jl‘:@ ef—ﬂ2 )}, (10)
r
(2 7\., wsp., L(D)
TI® = e (;+%)q> —%qﬂ—e‘fT)], (11)
[ l ’ ’ q)
T2 = ¢~¢ (I)”+(——%+%)CD %@'2—&#].
r
(12)
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The wave equation expressed in (4) turns out to be

ob=-e™ [(% - % + %,)d)'(r) +(D"(r)]
1 A (D) 1 dL(®)
——ef| " . — ="
_26 (3+2wBD)1/2(l) pr 2p1) 2 d(l) :| (13)

It was demonstrated that if a symmetric tensor beg
fulfills the Gauss-Codazi equations defined as

Ropyw = 2€baubyip and  bojgy — @ bog + 'y e = 0,
(14)

the (n+ 1)— dimensional space can be incorporated in an
(n+2)— dimensional pseudo-Euclidean space [38]. Fur-
ther, bop are the coefficients of second differential form
and e = 1, Ry, indicates the curvature tensor. From the
relationship expressed in (14), a necessary and sufficient
condition for a class-one embedding was obtained by
Eiesland [39] as follows

Ro101R2323 — R1212R0303 — R1202R1303 = 0, (15)

which prompts the accompanying differential equation
for the considered metric gravitational potential

& —nm'e +2(1 -’ +n* = 0. (16)

The solution corresponding to the equation expressed
in (16) turns out to be

&(r) = In(1+ Dn?e™), (17)

where D is an integration constant. To solve the stellar
system of field equations, we choose g, component of the
space-time as

n(r)=4In(B"*(1+Ar)), (18)

where 4 and B are positive constants. Using this gravita-
tional potential n(r) in Eq. (17), we obtain

&) =In(1+ACr(1+Ar)?), (19)

where C = 64ABD is a constant.

NSs with M >3M ) might turn into QSs which hold
up (u), down (d), and strange (s) quark flavors. In this
context, the matter variables viz., density and pressure
representing the interior configuration of these relativist-
ic stars, obey the Massachusetts Institute of Technology
(MIT) bag equation of state (EoS). Moreover, we sup-

pose that non-interacting and massless quarks occur with-
in the stellar geometries. According to the MIT bag mod-
el, the quark pressure p, may be cast as

pr=>p-8 f=uds (20)
7

where p/ represents the individual pressure of each quark
flavor which is neutralized by the bag constant B), also
known as total external bag pressure. The total energy
density of the deconfined quarks is stated by the MIT bag
model as

p=>p+8 1)
f

where the matter density of each flavor p/ is connected to
the corresponding pressure as p/ =3p/. The simplified
MIT bag EoS for strange stars is concluded from Egs.
(20) and (21) as

1

pr=3p-4B). (22)

It is noteworthy that this simplified form of EoS was
applied with pure GR and modified gravity theories to de-
scribe the stellar systems made of the strange quark mat-
ter distribution. In the current study, the numerical solu-
tions of the stellar system were obtained by setting B
equal to 75.007 MeV/fm?, which is within the allowed
range [40]. The overall mass of the uncharged fluid
sphere is determined via the Misner-Sharp formula as

m= %(l —g“ﬁr,arﬁ). (23)

III. MATCHING CONDITIONS

The set of parameters viz., 4, B, C, D representing the
geometry as well as physical properties (for example
mass and radius) of anisotropic compact stellar configura-
tions may be settled across the smooth matching of inner
and outer spacetimes at the pressure-free boundary (X).
The outer spacetime is considered to be the Schwarz-
schild spacetime given by,

2M 1
ds? = (1 - _)d;2 - dr* = r(dF* +sin 6de?),
r (1 _ ZM)
r

24

where M denotes the total mass. To corroborate continu-
ity and smoothness of geometry at the surface layers of
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the star, the following conditions should be fulfilled at the
pressure-free boundary ¥ (f =r—R=0, where R is the
constant radius)

(ds?)z =(ds?)z.
(Kij))s =(Kij)s, (25)

(@(r)-)z = (@(r)+)s,
(D' (r)-)z = (@' (14 )s. (26)

Here, K;; means curvature while subscripts - and + de-
note the interior and exterior spacetimes, respectively.
The continuity of the first fundamental form viz.,
[ds?]z = 0 gives us

[Fls=F(r—>R")-F(r—>R)=Fj—-Fp, (27)

for any function F(r). This fundamental condition gives
us g,(R) =g(R) and g,,(R) = g}(R). In addition, the con-
tinuity of the second fundamental form (Kj;;)is equival-
ent to the O'Brien and Synge [41] matching conditions,
stated as

[Gopr’1s =0, (28)

where r, denotes a unit radial vector. Using the field
equations (7) —(9) along with the Eq. (28) inferred
[Taﬁrﬁ]z = 0 which says that radial pressure becomes zero
at the boundary surface, i.e., p,(R) =0. Also, the scalar
field relating to the vacuum Schwarzschild solution is de-
termined utilizing the strategy in [42], and it becomes
® =e-"). We indicate the inner and outer zones by =~
and X%, respectively.
The hypersurface is characterized by the line element

ds? = dr* — R*(d6* + sin® 6d¢?), (29)

here 7 describes the proper time on the stellar surface.
Furthermore, the extrinsic curvature of X is defined by

oo P L, 00X
ij aaninj @™ Bu ,9,71' 3,11"

(30)

where the coordinates on the X are defined by 7. In addi-
tion, the components of the 4-vector normal to the hyper-
surface viz., ni are defined in the coordinates i.e., x{ of
2* as
df df df |3
x_ | S S
=25l T

; G

with n,n® = 1. The unit normal vectors have the follow-

ing explicit form
: 2M\*
ny, =(0,e:,0,0), ng =(0,(1—T) ,0,0]. (32)

Regarding this, comparing the metrics (5) and (24)
with (29), it is easy to verify that

dr - 2M 2
[ELZ[‘*]*[(“T)

Employing Eq. (32), the non-zero components of
curvature are determined as

}, [rle=R. (33)
z

_ ety
w1 o
2 )
K = — Ko = [re!] (35)
27 Gn2@) 2 >
M 2M\*
Kgoz[—r—z(l—T) ] , (36)
)
1 IM\?
K= ——Kh=|rl1-22) | . 37
= K [( )] G7)

The junction conditions [K},]s = [K3,]s and [r]z =R
give

ER) 2M %
T al1-22) .
e ( - ) (38)

Substituting this last equation in the matching condi-
tion [K ]z = [K, ]z leads to

2M

TR = RR=2m)

(39)

Thus, the junction conditions expressed in Egs.
(33)—(39) supply the relations at the hypersurface in the
following forms

oM
™ = BAR* +1)* =1 - = (40)
e t® = ! =1- Z_M, (41)
1+ACR2(AR? + 1) R
2M
7' (R)e"™ = 8ABR(AR* + 1) = =—— (42)

R’
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The unknown parameters of the stellar system viz., 4,
B, C, D are determined by considering C = 64ABD in the
above equations, which are expressed in the following
forms

M
A=—— 43
R2(4R-9M)’ “3)
B= l(R—ZM) 8M - 4R\ (44)
"R OM—-4R)| ’
SM—4R\ ™
C:2(9M—4R) ’ 45)
R3
D=—. 46
U (46)

To fix the arbitrariness of the unknown parameters,
we contrast our solutions with the observational con-
straints from some measurements of the millisecond
pulsars and their corresponding mass-radius ratio. For the
gravitational potential functions expressed in Egs. (18)
and (19) along with Egs. (43)—(46), the state variables
viz., energy density and pressure components, are ex-
pressed in terms of total mass M and constant radius R as
follows:

) 12rfi
Ff3OMR? — Mr* —4R%)?
+ 2r2f5
16MR?(2M —R)
21M
M g6, (47)
f5
4rfifa
Pr

" HAOMR = M2 4Ry
16MR2(2M — R)

9Mrf1
/5

+ 2}’2f5

+

- B-2rfi®*(r), (48)

2.2 _
o :—4r2f18ﬂ4(<b)(1 _ 2MR*r*(2M R))

A
B 128 MR2r2(2M —R) B 12M7?
hLhif? f5
21312 (9M(? - R?) +4R°)

’ [I2=32MR22M -R)f; "

+6 /2 0(r)

-2f

(49)

where

3\ -1
_| 4

2Mr*(9M — 4R
o

o= (1+MP®RER-9M)) ",

fi=(1-MOM-4R")",

f1=3Mr* —9MR* +4R>,

fs = M(r* —9R*) +4R>.

It is worth mentioning here that we are able to ana-
lyze the salient physical characteristics of our stellar sys-
tem. In the next section, we will discuss these physical
features of compact stellar configurations.

IV. PHYSICAL FEATURES OF COMPACT STARS

The physical properties of strange stars can now be
analyzed in the presence of a massive scalar field along
with the coupling parameter across the energy density
and radial/transverse pressure components. For this pur-
pose, we have chosen the mass of the scalar field as
me = 0.3 , which is well-compatible with the restraint im-
posed by the Gravity Probe B experiment that supplies
the lower bound on the mass of scalar field, such as
me > 107 in dimensionless units [37, 43]. Numerical
stellar solutions have been obtained for wpp =05,
10, 15, 20, 25, 50 which are in agreement with the re-
straints imposed by the solar system observations [43].
The massive scalar field is determined by solving the
wave equation (13) numerically with the initial condi-
tions ®(0) = @, = constant and @’(0) =0. In this regard,
the numerical solution of the wave equation (13) is well
fitted (see Fig. 13) with the analytic solution given by
Bruckman and Kazes [42] by relying upon the relation-
ship between @ and g, for static spherically symmetric
space-time, as

O(r) = aExp[bn(r)], (50)

where a and b are two arbitrary constants. In this scen-
ario, Maurya and his colleagues [44] were the first ex-
plorers who applied this functional form of the scalar
field @ to find precise answers to charged compact astro-
physical objects by investigating new spherically sym-
metrical solutions of Einstein ’s field equations in the
background of BD gravity. In the same theory, the au-
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thors [45] have explored the existence of a new family of
uncharged compact stellar configuration solutions by em-
ploying the same functional form of the scalar field @ for
an anisotropic source of fluid. The values of @ and b com-
ing from the functional form of the scalar field expressed
in (50) depend on the boundary conditions imposed on
the scalar field @, viz., ®(0) = ®., ®’'(0) =0, which are
represented in Table 3 to find out the physical paramet-
ers of the compact stellar configurations. The constant @,
with respect to the selected values of the parameters
me, wep , and B are presented in Table 1. The subscripts
¢ and s denote that the quantity has been computed at the
center and surface of the stellar configuration, respect-
ively. All forthcoming stellar results have been illus-
trated graphically for U 1820-30 (M =1.58+0.06M,

[46]).

A. Evolution of metric functions

For a physically valid stellar solution, the gravitation-
al potential functions should be positive and well-com-
ported everywhere inside the stellar configurations to
guarantee a singularity-free geometry [47]. The metric
potentials are displayed in Fig. 1, which reveal that both
gravitational potential functions are positive, regular and
monotonically increasing functions of the radial coordin-
ate leading to a singularity free system.

B. Energy density and radial/transverse pressure
components

The physical variables such as energy density and
pressure play an important role in determining the com-
portment of highly dense strange stellar configurations.
The comportment of these matter variables against the ra-
dial coordinate should be positive and decrease monoton-
ically towards the stellar surface. Figs. 2 and 3 reveal that
the state determinants are maximum at the center which
exhibits that the core of compact configuration is highly
concentrated and decrease away from it for the selected
values of the parameters mge, wpp, and B. Hence, for the
chosen values of the bag constant viz., B, the existence of

quark stellar structures is guaranteed for L(®)=
1
Em(zbq)z

Table 1.

C. Anisotropy

The presence of radial and tangential components of
pressure leads to anisotropy inside the stellar system. The
pressure anisotropy, measured as A = p;— p,, 1S positive
when the transverse pressure exceeds the radial pressure
ie., p,>p, or A>0 and negative otherwise, i.e., when
pr<pr or A<O0. In addition, the particles are tightly
clustered jointly in dense stellar configurations which re-
stricts the particles' motion in the radial direction. There-
fore, the radial force or pressure is less than the trans-
verse force prompting a positive anisotropy. Along these
lines, the positive anisotropy produces an outward repuls-
ive force increasing the stability and compactness of the
stellar configurations stabilizing the system against grav-

— 77—
——- CenX-3

-—- 4U1820-30

PSR J1903+327

1.0 —— PSR J1416-2230

Metric Potential

EX01785-248

rin [km]

— 77—
——- CenX-3

-—- 4U1820-30

PSR J1903+327

250 PSR I1416-2230

Metric Potential

20f — EXO1785-248

rin [km]
Fig. 1.
and e vs. radial coordinates r for different experimental stat-
istics of compact stars.

(color online) Evolution of metric potentials viz., ef

Physical parameters of 4U 1820 - 30 with m, and 8 = 75.007 MeV/fm* for different values of wpp.

Values of wpp

Values of ¢,

Predicted radius /Km

peT/(gm/em?)

P /(gm/cm?)

pe/(dyne/em?)

2
R

z,

05
10
15
20
25
50

0.281
0.298
0.312
0.324
0.337
0.351

0271
8.458%:%%0

0.272
9.701% %7

0.253
10.059+0253

0245
10.4247 555

0231
109722555

0223
11.38125555

3.92059 x 1014
3.9855 x10'4
4.0186 x10'4
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0.267014
0.325797
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0.383656
0.401531

0.180115
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0.277615
0.308943
0.333542
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Fig. 2.  (color online) The matter density for 4U 1820-30

plotted against radial coordinate, » by taking ®.=0.3, my =
0.3, 8 =75.007 MeV/fm?® with different values of wgp.
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Fig. 3.  (color online) The radial/transverse pressure for 4U
1820-30 plotted against radial coordinate, » by taking ®. = 0.3,
mg = 0.3, B =75.007 MeV/fm* with different values of wpp.

ity. Using Eqgs. (48) and (49), we obtain the anisotropy in
the following form

1

 AHD) (fs/2=32MR22(2M - R) ff)2
X4V (- fs fs - SRECM = R PN-213 13
—32RX2M = R) 2+ 2.f 20" (1) (f3 £2
- 32MR’P2M - R)fD)]. (1)

A

The anisotropy of the current stellar configuration,
shown in Fig. 4, is positive throughout the stellar region
for the chosen values of the parameters mq, wpp, and B,
confirming that the selected stellar model is viable.

D. Energy conditions

The anisotropic configuration is said to be realistic or
physically feasible if it complies with five energy condi-
tions, i.e., null (NEC), weak (WEC), strong (SEC), dom-
inant (DEC), and trace (TEC). In the arena of MBD grav-
ity, these five constraints are evaluated in terms of fol-
lowing inequalities [48].

———

0000035 F — wpp=05 - — - wpp=20 ]
— DO0003E L s ]
‘
£
= 0.000025 F 4
g -—- wpp=15
8
£ 00002 f ]
=
20000015 F ]
g
2
Z 000001 ]
< A

5.x10° F ]

ok ) e
0 2 4 6 8 10
rin [km]
Fig. 4. (color online) The anisotropy factor for 4U 1820-30

plotted against radial coordinate, » by taking ®.=0.3, my =
0.3, 8 =75.007 MeV/fm? with different values of wgp.

NEC: p=>0, (52)
WEC: p+p,20, p+p:>0, (53)
SEC: p+p,+2p, =0, (54)
DEC: p-p,20, p-p =0, (55)
TEC: p-p,—2p;>0. (56)

The positive behavior of state determinants viz.,
p, pr, and p, displayed in Fig. 5 readily complies with
the first three inequalities i.e., NEC, WEC, and SEC. The
graphs corresponding to DEC and TEC in Fig. 5 exhibit
that DEC and TEC are positive at each point throughout
the stellar configuration. Consequently, all energy bounds
are fulfilled which confirm the stellar system for the con-
sidered values of mg, B, and wpp.

E. Effective mass, compactness and red-shift

Size and gravitational mass are two inter-related ob-
servable features that establish the structure and compact-
ness of compact stellar configurations. The effective mass
of a stellar configuration is measured in terms of radius
across Misner-Sharp definition as

-3
m(r) =%r[1 —R*(4R-9M) [8Mr2 (1 M )

" (9M —4R)

14 M7 2 R24R-9Mm)|” 57
X( +R2(4R—9M)) +RR-9M)| } D

which is subject to the radius of stellar configuration. Fig. 6
show that the gravitational mass is a monotonically in-
creasing function with the radial coordinate and positive
throughout the stellar configuration. In addition, the regu-
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Fig. 5. (color online) The energy conditions for 4U 1820-30

plotted against radial coordinate, » by taking ®.=0.3, my =
0.3, 8 =75.007 MeV/fm? with different values of wpp.
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Fig. 6. (color online) The mass function is plotted against
radial coordinate, r for different experimental statistics of
compact stars.

larity at the center of the celestial body is confirmed for
all chosen values of the parameters mg, 8, and wpp. The
compactness function is the ratio of mass to radius given
as

-3
u(r) =m£r) - %[1 R (4R -9M)[8MP (1 - —(QMAf 4R))
) 2
« (1 N M—r) +R2(4R—9M)]_1],
RP(4R—9M)

(58)

which must be less than 0.444 as proposed by Buchdal
[49] to ensure the stability of a compact cosmic body.
The maximum value of the compactness function at the
stellar surface is shown in Tables 1 and 2. In Fig. 7, we
show that the anisotropic stellar model satisfies the re-
quired criterion i.e., adheres to the upper limit — < 3
suggested by Buchdal [49] for all chosen values of
me, B, and wpp. Moreover, under the effect of the gravit-
ational field of a cosmic body, the electromagnetic radi-
ation forfeits part of its energy via an increase in its
wavelength, i.e., the radiation is red-shifted. The influ-
ence of the gravitational force can be measured from the
X-ray spectrum of the stellar configuration utilizing the
compactness factor through a gravitational red-shift para-
meter indicated as

1
ol ©9)

leading to the following explicit form

Z =|R*(4R-9M)
2 2 M B
x| R*(4R-9M) +8Mr (1—m)
M 2R

Figure 8 demonstrates the gravitational red-shift as an
increasing function with respect to radial coordinate. Not-
ably, the surface red-shift for the celestial candidate is in
good agreement with the limit for relativistic cosmic ob-
jects viz., Z < 5.211 [50].

F. Stability of stellar system
In this section, we study the stability of the anisotrop-

10777 = e e e s s S S S S S L A S S e S
——- CenX-3

- —- 4U1820-30
03

PSR 11903+327

02 — PSRII416-2230

Compatness Factor

—— EXO1785-248

00k

rin [km]

Fig. 7. (color online) The compactness function is plotted
against radial coordinate, » for different experimental statist-
ics of compact stars.
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Fig. 8.
against radial coordinate, » for different experimental statist-

(color online) The red-shift function is plotted

ics of compact stars.

ic cosmic configuration. It is crucial for a stable aniso-
tropic system that the propagation rate of sound waves
traveling via an anisotropic fluid distribution should be
less than that of electromagnetic radiation, i.e., 0 <v? < 1
and 0<v? <1, where v, and v, are the components of
sound speed expressed, respectively, as

dp
2_ r
v, = dp’

2 _dpy
Vv, = E (61)

This criterion is known as the causality condition [51]
and is employed to examine the stability of the stellar
system. The stability of a stellar model may also be ex-
amined via Herrera's cracking concept [52]. Cracking is
produced when inward-directed radial forces of a per-
turbed stellar model alter the direction for a certain value
of radial coordinates. Regarding this approach, the spher-
ical cosmic body is potentially stable if it adheres to Her-
rera's cracking criterion indicated as 0 < [v? —v2| < 1. One
of the intriguing characteristics of this scheme is that
cracking is carefully linked to changes in local aniso-
tropy. Figs. 9, 10, and 11 show that anisotropic distribu-
tion is in good concurrence with the causality condition
as well as the cracking concept in the background of
MBD theory.

The adiabatic index is also another widely employed
tool to check the stability of relativistic stellar systems.

— T
—— wpp=05 - — - wpp=20

0841 wpp=10 -~ wpp=25

co- w15 —— wgp=50

i 0.82F

0.78

rin [km]

Fig. 9. (color online) Variation of radial speed of sound for
4U 1820-30 plotted against radial coordinate, r by taking
®, =0.3, my =0.3, B=75.007 MeV/fm* with different values of

WRBD -

—T 77—

oxk — wpp=05 - —- wpp=20 v,z(r)

030 F wpp=10 - = - wpp=25

- wpp=15  —— wpp=50

022

020

rin [km]

Fig. 10. (color online) Variation of tangential speed of
sound for 4U 1820-30 plotted against radial coordinate, » by
taking ®. =03, my =03, B=75.007 MeV/fm® with different
values of wgp.

Chandrasekhar [53, 54, 55] investigated the dynamical
stability of relativistic stellar structures versus infinites-
imal radial adiabatic perturbation. Heintzmann and Hill-
ebrandt [56] established that an anisotropic compact cos-
mic body will reach stability if the adiabatic index is

4 . o .
greater than 3 at each point within the stellar object.

Moreover, if an increase in density generates an effective
increase in pressure, the stellar system obeys a stiff EoS.
A stellar geometry connected with a stiff EoS is harder to

Table 2. Physical parameters of the observed strange stars for my = 0.3, ¢. = 0.3, wpp = 15, and B="70 MeV/fm?3.

Strange stars Observed mass /Mg Predicted radius /km o /(gm/cm?) 0 /(gm/cm®) pel(dyne/cm?) QTM Zs
PSR J1416-2230 1.908+0.04[57] 11.589*024 441585% 1014 3.35559% 104  4.65545x 1034 0315046  0.238527
PSR J1903+327 1.667 £0.021[58] 10.948*0042 4.02739 X104 3.18909 x104 622257 x103*  0.303465  0.225854

4U 1820-30 1.58 £0.06[59] 1071349133 3.92059 x10'4  3.13871 x10'%  7.05291 x10%* 0297835  0.219853

Cen X-3 1.49 £0.08[60] 10.483*0170 3.81935 X104 3.08859 x10'4  8.05473 x10%  0.291452  0.213172
EXO 1785-248 1.3 +0.2[61] 10.195*04%3 3.62795 x104  2.98667 x10'4 1.07471 x103° 0276186  0.197693
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(color online) Variation of v2 —v2 &v2—v? for 4U

squeeze and more stable in contrast with a stellar config-
uration with a soft EoS. The EoS stiffness is evaluated
through the adiabatic index given as

_Petpdpr _prip s

r r
pr do p;

(62)

The value of this adiabatic index is more than % for

all considered values of the parameters mg, 8 and wpp
which is in good accordance with the restraint [56].
Hence, the stellar configuration is potentially stable for
the chosen values of MBD parameters.

Finally, we verified the stability conditions for the
prototype anisotropic celestial system employing three
approaches: causality condition, Herrera's cracking ap-
proach, and adiabatic index. All these criteria imply the
stability of the stellar model coupled to a massive scalar
field.

V. CONCLUDING REMARKS

Astrophysicists have investigated the dynamics of
heavenly setups and their remainders to acquire insight
into the cosmos mechanism. One of the hypothesized re-
mainders are the QSs that arise from the collapse of NSs

and are composed of up (u), down (d), and strange (s)
quark flavors. The interaction amongst component quarks
of these dense stellar configurations is described by the
MIT bag model. These stellar configurations are highly
dense compact stars whose constructions rely upon cent-
ral and surface densities. In this study, we investigated
the existence and stability of hypothetical objects, spe-
cifically, QSs in the context of MBD gravity. For this
purpose, we constructed the field equations in the Jordan
2
frame 1 by Qom +3)]/2],
L(®) = -mi®? me =03, and wgp =05, 10, 15, 20, 25,
50. Additionally, we generated a solution to the field
equations by supposing a well-behaved metric potential
and embedding a class-one approach with the MIT bag
model. The unknown constraints appearing in the aniso-
tropic stellar model were determined by matching the in-
ner spacetime to outer Schwarzschild spacetime. All the
obtained results, viz., the behavior of matter variables as
well as viability and stability of the resulting stellar mod-
el in the presence of a massive scalar field were explored
and can be summarized as follows:

choosing  A(D) = Exp[

e The evolution of the gravitational metric compon-
ents of the spherically symmetric space-time, viz.,
¢t = g, and e’ = g,;, with the fundamental conditions i.e.,
et =g, l=0 =1 and e’ = g,|,—o # 0, are presented in Fig. 1.
It can be seen that both gravitational coefficients are pos-
itive, regular and monotonically increasing functions of
the radial coordinate, », which confirms that our stellar
model is free from any physical and geometrical singular-
ities.

e The evolution of the matter variables viz., energy
density, and components of stresses i.e., p,, p;, against
the radial coordinate r, can be observed in Figs. 2 and 3,
respectively. We find that the energy density and stress
components have maximum values at the core, decreas-
ing progressively to attain the minimum values at the stel-
lar surface as well as to confirm the physical acceptabil-
ity of the obtained solutions. From Figs. 2 and 3, we em-
phasize again that our model is free from any physical or
geometrical singularities for all selected parametric val-
ues of mg, wpp, and B. Moreover, for the chosen values
of the Bag constant viz., 8, the existence of quark stellar

configurations is ensured for £(®) = Emfpd)z.

e The behavior of the anisotropy viz., A=p,—p,
versus radial coordinate », is shown in Fig. 4. It can be
seen in this figure that both the stress components, p, and
p:, are equal at the center i.e., p,(r=0)= p,(r=0), and
afterwards, both the radial and transverse pressures differ
from the center to the stellar surface, the transverse pres-
sure stays positive, whereas the radial pressure vanishes
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at the boundary of the stellar configuration; this indicates
that the pressure anisotropic function consistently stays
positive all through the cosmic object. The graphical
nature of pressure anisotropic function can be verified
from the Fig. 4, which is positive with a concave upward
growth pattern and is directed outwards.

e The five kinds of energy conditions viz., NEC,
WEC, SEC, DEC, and TEC, have been established which
satisfied the considered values of the parameters as well
as the bag constant. However, their graphic behavior can
be observed from the Fig. 5, which also affirms that the
interior of the stellar configuration consists of realistic or
normal matter in our study.

e The growing behavior of the mass function and
compactness factor versus the radial coordinate adheres
to the Buchdahl criterion [49] for all considered values of
MBD parameters. Moreover, the gravitational redshift of
cosmic configuration increases with an increase in radial
coordinate indicating more redshift in light for dense stel-
lar structures compared with less dense celestial systems.
The values of mass function, compactness factor, and
gravitational redshift are in agreement with required
physical conditions as can be observed in Figs. 6, 7, and 8.

e The stability analysis of a compact cosmic body
study is also a crucial highlight. Concerning this, we ex-
amined the stability conditions for the prototype aniso-
tropic stellar system via three approaches viz., causality
condition, Herrera's cracking approach, and adiabatic in-
dex. All these criteria imply the stability of the cosmic
model coupled to a massive scalar field. Sound speeds
and Herrera's cracking concept are presented in Figs. 9,
10, and 11 against radial coordinates. Both the sound
speeds are within the stable range of compact cosmic
body ie., 0<v?<1 and 0<v? <1. Herrera's cracking
concept [52] 0 < w2 —v2| < 1 is also justified to guarantee
the potential stability of the stellar system. On the other
hand, Fig. 12 exhibits the stability of the system of cos-

L L 4.
mic objects under adiabatic index I' >T, = z the back-
ground of MBD theory.

e We generated the physical properties of 4U 1820-
30 due to different values of @ by tuning mg to 0.3 and B
to 75.007 MeV/fm? as shown in Table 1. In this Table, it
is indicated that all physical quantities viz., the surface

redshift Z;, the mass ratio ——, the central pressure p.,

the surface density ps, the central density p. are always
increasing when  increases progressively. Furthermore
in Table 2, we predicted several values of the physical

parameters of the strange configurations observed i.e., Z;,

2M .
= De»> Ps» Pe, the radius R, for mgp =0.3, w =15 and

—TTT7—T—T— 7T

60 -
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—— wpp=50

0k Te=4/3

20

Relativistic Adiabatic Index

rin [km]
Fig. 12.  (color online) The adiabatic index for 4U 1820-30

plotted against radial coordinate, » by taking ®.=0.3, my =
0.3, 8 =75.007 MeV/fm? with different values of wgp.
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Fig. 13. (color online) The scalar field @(r) is plotted against
radial coordinate, », by taking the values of a, b, 4, and B as
shown in Table 3 for five strange stars viz., PSR J1416-2230,
PSR J1903+327, 4U 1820-30, Cen X-3, and EXO 1785-248.

B =70MeV/fm>. In this regard, we affirm that the selec-
ted cosmic configurations are acceptable candidates for
the ultra-dense hypothetical strange configurations by the
results given in Tables 1 and 2. Similar to the values of
high redshift, their surface densities are greater than the
normal nuclear density as specified by Ruderman [62],
Glendenning [63], and Herzog & Ropke [64]. After-
wards, in Table 3, we derived the values of the constants
viz. 4, B, C, and D, owing to several cosmic body candid-
ates for the chosen values of the MBD parameters i.e.,
me =03, w=20 and B=75.007MeV/fm®> shown in
Table 3.

It is worth mentioning that our results can be com-
pared to phenomenological highlights inferred in other
modified gravity theories like f(R). Since then, f(R)
gravity theories were investigated by several researchers
who pointed out the possibility that modified gravity can
be used to resolve the problem of strange cosmic objects
over a wide range of years. Specifically, Nashed and Ca-
pozziello [65, 66] have explored the notable solutions for
anisotropic compact stellar configurations and charged
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Table 3.  Derived values of constants due to the different strange star candidates for mg =03, ¢.=03wpp =20 and B=
75.007 MeV/fm?.
Strange stars a b A B C D
PSR J1416-2230 0.29990070 —0.00059001 0.000324163 0.570736 1.70428 575.734
PSR J1903+327 0.29984981 -0.00058022 0.000947973 0.421993 1.53837 240.347
4U 1820-30 0.29985855 —0.00067321 0.000856794 0.496212 1.62754 239.259
Cen X-3 0.29989402 —0.00057885 0.000668899 0.542872 1.67689 288.619
EXO 1785-248 0.29990301 —0.00057609 0.000700616 0.570341 1.70390 266.507

spherically symmetric black holes in the background of
the f(R) gravity and their stability analysis. Taking into
account the f(R) gravity point of view for the secondary
component of the GW190814 event, strange configura-
tions possibilities are derived and also argued by As-
tashenok et al. in [67, 68]. In our study, we have chosen
to work in the BD formalism, since the BD theory [15] is
the prototypical alternative to GR and the most straight-
forward representative of scalar-tensor gravity [69-71].
Also in this formalism, the models are effectively viable
with solar system tests, and the interior stellar configura-
tion solution can match the exterior solution of the
Schwarzshild. Compared with the outcomes given in [65-
68], it is apparent that the f(R) theories are scalar-tensor

theories in disguise with vanishing BD coupling wgp and
furnished with a complicated potential for the scalar de-
gree of freedom f’(R) [69-71]. It is noteworthy that the
obtained solutions are coherent with the GR partner and
can be recovered for mg = 0 and wpp — .

Finally, it is worth mentioning that the solutions of
the modified Einstein field equations for the compact
configurations study in the presence of a massive scalar
field under BD gravity are obtained by the embedding ap-
proach, thereby describing an anisotropic stellar model
consisting of u, d, and s quark matter. Therefore, our an-
isotropic strange star model serves as a new path and in-
teresting field for researchers to investigate ultra-dense
compact stellar configurations.
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