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nonfactorizable  contributions.  After  determining  strong  interaction  phases  and  obtaining  factorizable  contributions
from  spectator-quark  diagrams  for Nc=3,  we  determine  nonfactorizable  isospin  amplitudes  from  the  experimental
data for these modes. Our results support the universality of the ratio of nonfactorizable isospin reduced amplitudes
for these decays within experimental errors. To demonstrate that these systematics are not coincidental, we also plot
our results w. r. t. this ratio.
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I.  INTRODUCTION

D→ K̄π
a1 ≈ c1 = 1.26, a2 ≈ c2 = −0.51,

D+→ K̄0π+,

Nc→∞

1/Nc,

Experimental  measurements  for  the  weak  decays  of
charm and bottom mesons have inspired several  theoret-
ical  studies  exploring  their  dynamics  [1– 8]. The  phe-
nomenological analyses of the two-body hadronic decays
of  heavy  flavor  mesons  have  indicated  the  presence  of
significant nonfactorizable contributions. In the naïve fac-
torization  scheme,  two  QCD  related  coefficients, a1 and
a2, are treated as parameters to be fixed from the experi-
mental data  while  ignoring  the  nonfactorizable  contribu-
tion  to  decay  amplitudes  [9– 11].  Initially,  data  on  the
branching fractions of  decays seemed to require

 leading to destructive in-
terference  between  color-favored  (CF)  and  color-sup-
pressed (CS) processes for  thereby implying
the  limit [12, 13]. This limit, which was thought
to be justified with the hope that the nonfactorizable part
relative  to  the  factorizable  amplitude  is  of  the  order  of

 was expected to perform even better for B- meson
decays, where  the  final  state  particles  carry  larger  mo-
menta than those of charm meson decays.

B̄→ Dπ

a1 ≈ 1.03, a2 ≈ 0.23,
a2

Nc

However, the measurement of  meson decays
did  not  later  favor  this  result  empirically  because  these
decays  require  and i.e.,  a  positive
value of , in sharp contrast to the expectations based on
the large  limit. Thus, B- meson decays, revealing con-

B−→ π−D0, Nc = 3

a1 a2

D→ K̄π/K̄ρ/K̄∗π

An f
1/2, An f

3/2,

An f
1/2

An f
3/2

D→ K̄a1/πK̄1/

πK̄−1/πK̄0/K̄a2

structive  interference  between  the  CF  and  CS  diagrams
for  seem to favor  (real value). Even in
the D-meson sector, the choice of the universal paramet-
ers  and  proved to be problematic when more accur-
ate  measurements  were  obtained  for  other  decay  modes
of D-mesons,  even  after  including  final  state  interaction
(FSI)  effects  [14, 15]. Consequently,  charm  meson  de-
cays  have  been  thoroughly  reinvestigated  to  explicitly
study  the  nonfactorization  contributions.  Using  the
isospin  analysis  for  the  decay  modes
[16–19], these contributions are expressed in terms of two
reduced matrix elements  and systematics were
recognized.  It  was  observed  that  in  all  these  decays,  the
nonfactorizable  isospin  reduced  amplitude  not  only
has  the  same  sign  but  also  bears  the  same  ratio
(-1.12) as the  reduced amplitude, within the experi-
mental  errors.  It  is  worth  noting  that  these  systematics
were also found to be consistent with those of the p-wave
meson emitting decays of charm mesons, 

 [18].
Extensive work has also been conducted to study non-

factorization contributions in charmed hadronic B-decays
over the past two decades. Nonfactorizable terms may ap-
pear  for  several  reasons,  such as  FSI  rescattering effects
and soft-gluon exchange around a basic weak vertex. The
rescattering  effects  on  the  outgoing  mesons  have  been
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studied  in  detail  for  bottom  meson  decays  [20, 21].
Moreover,  flavor SU(3)  symmetry  and  the  factorization
assisted topological  (FAT)  approach  have  been  em-
ployed for  the  study  of  such  nonfactorizable  contribu-
tions because they have the advantage of absorbing vari-
ous  types  of  contributions  lump-sum  in  terms  of  a  few
parameters, which are to be fixed empirically [22, 23].

B̄→ πD/ρD/πD∗

B̄→ πD/ρD/πD∗

I = 1/2 3/2.

A1/2, A3/2

Nc = 3,

B̄→ πD/B̄→ ρD B̄→ πD∗.

Inspired by  these  efforts,  we  investigate  nonfactoriz-
able contributions to the weak hadronic decays of bottom
mesons,  including  the  strong  interaction  phases  possibly
through FSI. It is well known that the strong phases of the
decay amplitude in B-decays are significant, and many re-
cent  analyses  of  decays  have  shown
large strong phases. Because non-pertubative nonfactoriz-
able contributions  cannot  be  calculated  from  first  prin-
ciples, we employ isospin symmetry, which is reliable for
hadronic interactions  to  gain  insight  into  these  contribu-
tions.  We  perform  isospin  analysis  to  study

 decay modes.  Our aim is to investigate
if such systematics, which were observed in charm meson
decays, is valid for these decay modes, because their de-
cay  products  also  involve  two  different  isospin  states

 and  We introduce  strong  phases,  which  af-
fect the interference between the isospin-1/2 and isospin-
3/2 amplitudes. Using the experimental measurements for
their branching fractions,  we first  obtain three free para-
meters the two isospin amplitudes , and their re-
lative  strong  phase. By  determining  the  factorizable  de-
cay  amplitudes  for  we estimate  the  nonfactoriz-
able  isospin  reduced  amplitudes  corresponding  to  these
isospin  states.  We  finally  observe  that  the  ratio  of  the
nonfactorizable reduced amplitude in these isospin chan-
nels also follows a universal value for both decay modes

 and  

II.  WEAK HAMILTONIAN

The  effective  weak  Hamiltonian  for  CKM  enhanced
B-meson decays is given by 

Hw =
GF√

2
VcbV∗ud

[
c1
(
du
)
(cb)+ c2 (cu)

(
db
)]
, (1)

q̄1q2 = q̄1γµ (1−γ5)q2where  denotes  the  color  singlet
V−A Dirac current, and the QCD coefficients [23, 24] on
the bottom mass scale are 

c1 = 1.132, c2 = −0.287. (2)

Because the current operators in the weak Hamiltoni-
an are expressed in terms of fundamental quark fields, it
is appropriate to have the Hamiltonian in a form such that
one of  these  currents  carries  the  same quantum numbers
as one of the mesons emitted in the final state of bottom

meson decays.  Consequently,  the  hadronic  matrix  ele-
ments  of  an  operator O receives  contributions  from  the
operator  itself  and  the  Fierz  transformation  of O,  which
generates  the  factorizable  and  nonfactorizable  parts
through the Fierz identity, 

(d̄u)(c̄b) =
1

Nc
(c̄u)(d̄b)

+
1
2
(
cλa u
) (

dλab
)
, (3)

q̄1λ
a q2 ≡ q̄1γµ (1−γ5 )λaq2

(cu)(db)

where  represents  the  color
octet current. Performing a similar treatment on the other
operator , the weak Hamiltonian becomes
 

HCF
w =

GF√
2

VcbV∗ud

[
a1
(
du
)

H
(cb)H + c2H8

w

]
, (4)

 

HCS
w =

GF√
2

VcbV∗ud

[
a2(cu)H

(
db
)

H
+ c1H̃8

w

]
, (5)

 

a1,2 = c1,2+
c2,1

Nc
, (6)

 

H8
w =

1
2

8∑
a=1

(
cλa u
) (

dλab
)
,

H̃8
w =

1
2

8∑
a=1

(
dλau

) (
cλa b
)
, (7)

which  describe  the  color-favored  (CF)  and  color-sup-
pressed (CS) processes, respectively. Here, the index H in
(4) and (5) indicates the change from the quark current to
hadron field operator [4]. The matrix elements of the first
terms in (4) and (5) lead to the factorizable contributions
[4], and  the  second  terms,  involving  the  color  octet  cur-
rents, generate nonfactorized contributions. 

III.  DECAY MODES
 

B̄→ πDA.     Decay mode
The  branching  fraction  for B-meson  decay  into  two

pseudoscalar  mesons is  related to  its  decay amplitude as
follows: 

B
(
B̄→ P1P2

)
=τB

∣∣∣∣∣∣GF√
2

VcbV∗ud

∣∣∣∣∣∣2 p
8πm2

B

×
∣∣∣∣A (B̄→ P1P2

)∣∣∣∣2, (8)

τBwhere  denotes  the  lifetime  of B-mesons  taken  from
[1], 
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τB̄0 = (1.519±0.004)×10−12 s,

τB− = (1.638±0.004)×10−12 s,

VudVcb  is  the  product  of  the  Cabibbo –Kobayashi –
Maskawa (CKM) matrix elements [1], 

Vud = 0.975, Vcb = 0.041,

and p is the magnitude of the three-momentum of the fi-
nal  state  particles  in  the  rest  frame  of  the  parent B-
meson, 

p = |p1| = |p2| =
1

2mB

[{
m2

B− (m1+m2)2
}

×
{
m2

B− (m1−m2)2
}]1/2

. (9)

In  heavy  flavor  meson  decays,  it  has  been  observed
that long distance strong FSI rescattering [20–21] of out-
going mesons  significantly  affects  their  branching  frac-
tions. In general, such FSI phenomena can affect a decay
amplitude  in  two  ways:  The  decay  amplitude  may  itself
be  modulated  or  it  may  acquire  a  phase.  It  has  been
shown  by  Kamal  [25]  that,  in  the  weak  scattering  limit,
the  elastic  FSI  effect  is  mainly  used  to  obtain  a  phase
factor, i.e., 

AFSI = A eiδ. (10)

Consequently,  mixing  of  final  states  with  the  same

quantum numbers can take place. Initially,  it  was expec-
ted that bottom meson decays may not be affected by FSI
because  the  produced  particles  may  not  have  sufficient
time to interact,  and there are no meson resonances near
the B- meson mass  corresponding  to  the  quantum  num-
bers of the final state. However, experimental data do not
fulfill this naïve expectation [26].

B̄→ πD

δπD
1/2, δ

πD
3/2

To demonstrate  this,  we  employ  the  isospin  frame-
work,  in  which  decay amplitudes  are  represen-
ted in terms of isospin reduced amplitudes, including the
strong interaction phases  in the Isospin -1/2 and
3/2 final states, respectively, as 

A(B̄0→ π−D+) =
1
√

3

[
AπD

3/2eiδπD
3/2 +
√

2AπD
1/2eiδπD

1/2

]
,

A(B̄0→ π0D0) =
1
√

3

[√
2AπD

3/2eiδπD
3/2 −AπD

1/2eiδπD
1/2

]
,

A(B−→ π−D0) =
√

3AπD
3/2eiδπD

3/2 . (11)

These lead to the following relations: 

AπD
1/2 =

[∣∣∣A(B̄0→ π−D+)
∣∣∣2+ ∣∣∣A(B̄0→ π0D0)

∣∣∣2
−1

3

∣∣∣A(B−→ π−D0)
∣∣∣2]1/2 ,

AπD
3/2 =

√
1
3

∣∣∣A(B−→ π−D0)
∣∣∣ , (12)

δπD = δπD
1/2−δπD

3/2,and the relative phase difference,  is giv-
en by

CosδπD =
(3
∣∣∣A(B̄0→ π−D+)

∣∣∣2−6
∣∣∣A(B̄0→ π0D0)

∣∣∣2+ ∣∣∣A(B−→ π−D0)
∣∣∣2)

6
√

2
∣∣∣∣AπD

1/2

∣∣∣∣ ∣∣∣∣AπD
3/2

∣∣∣∣ .

(13)

AπD
1/2 AπD

3/2Thus,  and  can be treated as real quantities in the
following analysis:

Using the experimental values [1] 

B
(
B̄0→ π−D+

)
= (2.52±0.13)×10−3,

 

B
(
B̄0→ π0D0

)
= (2.63±0.14)×10−4,

 

B
(
B−→ π−D0

)
= (4.68±0.13)×10−3,

we obtain 

AπD
1/2

exp =± (1.273±0.065) GeV3,

AπD
3/2

exp =± (1.323±0.018) GeV3, (14)

and the phase difference 

δπD = (28±7) ◦, (15)

D→ K̄π δ = (86±7) ◦,

which  agrees  with  the  final  state  rescattering  analysis
[22].  Although this  phase difference is  relatively smaller
than  that  of  the  mode  it  certainly
indicates  the  presence of  non-vanishing strong phases  in
the B- meson sector.

We express the decay amplitude as a sum of the fac-
torizable and nonfactorizable parts, 

A(B̄→ πD) = A f (B̄→ πD)+An f (B̄→ πD), (16)

arising from the respective terms of the weak Hamiltoni-
an given in (4) and (5).
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B̄→ πD

Using  the  factorization  scheme,  the  spectator-quark
parts of the decay amplitudes arising from W- emission1)

diagrams are derived for the following classes of 
decays:
 

(a) Class I: Color favored (CF) 

A f (B̄0→ π−D+) = a1 fπ
(
m2

B−m2
D

)
F B̄D

0

(
m2
π

)
, (17)

     (b) Class II: Color Suppressed (CS) 

A f (B̄0→ π0D0) = − 1
√

2
a2 fD

(
m2

B−m2
π

)
F B̄π

0

(
m2

D

)
, (18)

     (c) Class III : Interference of CF and CS 

A f (B−→ π−D0) =a1 fπ
(
m2

B−m2
D

)
F B̄D

0

(
m2
π

)
+a2 fD

(
m2

B−m2
π

)
F B̄π

0

(
m2

D

)
. (19)

Nc = 3
We calculate the values of the factorization contributions
for  (real  value)  using  numerical  inputs  for  decay
constants taken as 

fD = (0.207±0.009) GeV,

fπ = (0.131±0.002) GeV, (20)

from the leptonic decays of D and π mesons, respectively
[27].

Assuming nearest  pole  dominance,  momentum  de-
pendence  of  the  form-factors,  appearing  in  the  decay
amplitudes given in (17–19), is taken as 

F0
(
q2
)
=

F0 (0)(
1−q2/

m2
s

)n , (21)

F0 (0)

where the pole masses are given by the scalar meson car-
rying  the  quantum  number  of  the  corresponding  weak
current, which are ms = 5.78 GeV and ms = 6.80 GeV, and
n = 1 for the monopole formula. The form-factors  at
q2 =0 are taken from [28], as given below. 

F B̄π
0 (0) = (0.27±0.05) ,

F B̄D
0 (0) = (0.66±0.03) . (22)

We finally obtain 

A f (B̄0→ π−D+) = 2.180± 0.099 GeV3,

A f (B̄0→ π0D0) = −0.111± 0.021 GeV3,

A f (B−→ π−D0) = 2.339± 0.103 GeV3. (23)

Exploiting the following isospin relations: 

A f
1/2(B̄→ πD)=

1
√

3

{√
2A f (B̄0→ π−D+)−A f (B̄0→ π0D0)

}
,

A f
3/2(B̄→ πD)=

1
√

3

{
A f (B̄0→ π−D+)+

√
2A f (B̄0→ π0D0)

}
,

(24)

we obtain 

A f
1/2 = (1.845±0.082) GeV3,

A f
3/2 = (1.168±0.060) GeV3. (25)

B̄→ πD

Using  isospin  C.  G.  coefficients  with  the  convention
used  in  [17, 18],  the  nonfactorizable  part  of  the  decay
amplitudes  can  be  expressed  in  terms  of  the  scattering
amplitudes for the spurion +  process. 

An f (B̄0→π−D+)=
1
3

c2

(⟨
πD
∥∥∥H8

w

∥∥∥ B̄
⟩

3/2
+2
⟨
πD
∥∥∥H8

w

∥∥∥ B̄
⟩

1/2

)
,

An f (B̄0→π0D0)=

√
2

3
c1

(⟨
πD
∥∥∥ H̃8

w

∥∥∥ B̄
⟩

3/2
−
⟨
πD
∥∥∥ H̃8

w

∥∥∥ B̄
⟩

1/2

)
,

An f (B−→ π−D0)=c2
⟨
πD
∥∥∥H8

w

∥∥∥ B̄
⟩

3/2
+ c1
⟨
πD
∥∥∥ H̃8

w

∥∥∥ B̄
⟩

3/2
.

(26)

At present, there is no available technique to exactly cal-
culate these  quantities  from the theory of  strong interac-
tions. Therefore, by subtracting the factorizable part (25)
from the experimental decay amplitude (14), we determ-
ine the nonfactorizable isospin reduced amplitudes, 
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ΓW−exc/anni
Γspect

≈ |ψ(0)|2
m3 ≈ α3

s

(
mq
MQ

)3
,

B̄→ πD
FDπ

0 (m2
B) a2

1) In general, W- exchange, W- annihilation and W- loop diagrams may also contribute to the bottom meson decays. Note that W-annihilation and W-loop processes
do not appear for any of the decays considered in this work. W- exchange is usually suppressed due to helicity and color arguments, for which the partial decay rate de-
pends on the wave function at the origin, and in the relative ratio of its contribution to that of the spectator diagrams is given by

　　　　　　　　　　　　　　　　　　　　　　　　　

where mq and MQ represents masses of the light and heavy quark in the B-mesons, As the mass of heavy quark goes up, these become less and less important [4]. Partic-
ularly for  decays, it  has been categorically shown by Kamal and Pham [11] that W- exchange terms are highly suppressed due to smallness of the relevant
form-factor , and of the color factor . Recently, this observation has further been supported in the FAT based analysis of these decays [23], so contribution
of W- exchange diagram can be neglected specially in the presence of W-emission diagram.
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An f
1/2 =− (0.572±0.105) GeV3,

An f
3/2 =− (2.491±0.062) GeV3, (27)

An f
1/2

An f
3/2

by  choosing  positive  and  negative  values  for  and
, respectively. Their ratio is

 

α = An f
1/2/A

n f
3/2 = 0.229±0.042. (28)

There  are  several  calculations  for  form factors,  obtained

from different approaches in literature, which are given in
Table 1.

α

To observe the effect of form-factor variation on our
analysis, we give the ratio  in Table 2 for the maximum
and minimum values of the form-factors, which are con-
sistent with (28) within errors.

α

F B̄D
0 (0) F B̄π

0 (0) α

We  also  plot  the  dependence  of  on  form-factors
 and  in Fig.  1,  which  shows  that  is  not

quite sensitive to them.
 

B̄→ ρDB.     Decay mode

Using the branching fraction,
 

B
(
B̄→ PV

)
= τB

∣∣∣∣∣∣GF√
2

VcbV∗ud

∣∣∣∣∣∣2 p3

8πm2
V

∣∣∣∣A (B̄→ PV
)∣∣∣∣2. (29)

B̄→ ρD
B̄→ πD

Because  the  isospin  structure  of  decays is  ex-
actly the same as that of  decays,
 

A(B̄0→ ρ−D+) =
1
√

3

[
AρD

3/2eiδρD
3/2 +
√

2AρD
1/2eiδρD

1/2

]
,

A(B̄0→ ρ0D0) =
1
√

3

[√
2AρD

3/2eiδρD
3/2 −AρD

1/2eiδρD
1/2

]
,

A(B−→ ρ−D0) =
√

3AρD
3/2eiδρD

1/2 . (30)

We repeat the same procedure as before. Using the exper-
imental branching fractions 

B
(
B̄0→ ρ−D+

)
= (7.6±1.2)×10−3,

B
(
B̄0→ ρ0D0

)
= (3.21±0.21)×10−4,

B
(
B−→ ρ−D0

)
= (1.34±0.18)×10−2,

we obtain the total isospin reduced amplitudes 

AρD
1/2

exp = ± (0.143±0.025) GeV2,

AρD
3/2

exp = ± (0.149±0.010) GeV2, (31)

and the phase difference 

δρ D ≡ δρD
1/2−δ

ρD
3/2 =

(
8 +30
−8

)◦
. (32)

The  factorizable  decay  amplitudes  of  the  spectator-
quark diagrams can be expressed as 

A f (B̄0→ ρ−D+) = 2a1mρ fρF B̄D
1

(
m2
ρ

)
,

A f (B̄0→ ρ0D0) = −
√

2a2 fDmρAB̄ρ
0

(
m2

D

)
,

A f (B−→ ρ−D0) = a12mρ fρF B̄D
1

(
m2
ρ

)
+a2 fD2mρAB̄ρ

0

(
m2

D

)
.

(33)

It  has  been  noted  in  the  BSW II  model  [3] that  consist-

 

B̄→ D B̄→ πTable 1.    Form-factor of  and  transitions at maximum recoil (q2 =0).

Form-factor CLFQM [27] LQCD [28] LCSR [29] pQCD [30] pQCD [31] pQCD [32]

F B̄D
0 (0) 0.67±0.01 0.66±0.03 0.65±0.08 0.673±0.063 − −

F B̄π
0 (0) 0.25±0.01 0.27±0.05 0.21±0.07 − 0.26±0.05 0.27±0.05

α = An f
1/2/A

n f
3/2Table  2.    Ratio  for  maximum  and  minimum

values of form-factors.

F B̄D
0 (0) 0.69 0.69 0.63 0.63

F B̄π
0 (0) 0.32 0.22 0.32 0.22

α 0.262 0.249 0.207 0.195

 

α

F B̄D
0 (0) F B̄π

0 (0)
Fig.  1.    (color  online)  Variation  in  with  form  factors

 and .

B− B̄0Searching a systematics for nonfactorizable contribution to  and  hadronic decays Chin. Phys. C 46, 073105 (2022)

073105-5



F1(0) A0(0),
ency  with  heavy  quark  symmetry  requires  certain  form-
factors,  such  as  and  to  have  dipole q2 de-
pendence (n=2) in 

F1
(
q2
)
=

F1 (0)(
1−q2/

m2
V

)n , A0
(
q2
)
=

A0 (0)(
1−q2/

m2
P

)n , (34)

where  the  vector V(1– )  meson  and  pseudoscalar P(0– )
meson pole masses are 6.34 and 5.27 GeV, respectively.

Decay constant values are taken from [27] as 

fD = (0.207±0.009) GeV,
fρ = (0.215±0.005) GeV, (35)

B̄→ Vand  form-factors  for  transitions  are  chosen  from
[33], 

AB̄ρ
0 (0) = 0.356±0.042, (36)

F B̄D
0 (0)where the  value is taken from Eq. (22).

 

F B̄D
1 (0) = F B̄D

0 (0) = 0.66±0.03. (37)

Thus,  we  calculate  the  factorizable  contributions  to  the
decay amplitudes, 

A f (B̄0→ ρ−D+) = (0.235±0.011) GeV2,

A f (B̄0→ ρ0D0) = − (0.010±0.001) GeV2,

A f (B−→ ρ−D0) = (0.248±0.011) GeV2, (38)

thereby  the  isospin  reduced  amplitudes  of  the  factorized
amplitudes are calculated as 

A f
1/2 = (0.197±0.009) GeV2,

A f
3/2 = (0.127±0.006) GeV2. (39)

B̄→ πDFollowing  the  procedure  discussed  for , we  de-
termine the nonfactorizable reduced isospin amplitudes 

An f
1/2 = − (0.054±0.026) GeV2,

An f
3/2 = − (0.277±0.012) GeV2,

(40)

which bear the following ratio: 

α =
An f

1/2

An f
3/2

= 0.200±0.096. (41)

AB̄ρ
0 (0)

α = An f
1/2/A

n f
3/2

There are also existing calculations for , which are
given  in Table  3.  To  show the  effect  of  form-factors  on
our  analysis,  we  obtain  the  ratio  for  the
maximum and minimum value of  the form factors given
in Table  4,  which are  consistent  with  (41)  within  errors.
This is also shown in Fig. 2.
 

B̄→ πD∗C.     Decay mode
Including the strong phases between the isospin I=1/2

and 3/2 states, the decay amplitudes are given by 

A(B̄0→ π−D∗+) =
1
√

3

[
AπD∗

3/2 eiδπD∗
3/2 +
√

2AπD∗
1/2 eiδπD∗

1/2

]
,

A(B̄0→ π0D∗0) =
1
√

3

[√
2AπD∗

3/2 eiδπD∗
3/2 −AπD∗

1/2 eiδπD∗
1/2

]
,

A(B−→ π−D∗0) =
√

3AπD∗
3/2 eiδπD∗

3/2 . (42)

Using the experimental values of branching fractions [1],
 

B̄→ ρTable  3.    Form-factor  of  transitions at  maximum re-
coil (q2 =0).

Form-
factor

CLFQM [27] LCSR [33] LCSR [34] CLFQM [35] PQCD [36]

AB̄ρ
0 (0) ±0.32 0.01 ±0.356 0.042 0.303 ±0.30 0.05 ±0.366 0.036

α = An f
1/2/A

n f
3/2Table  4.    Ratio  for  maximum  and  minimum

values of form-factors.

F B̄D
0 (0) 0.69 0.69 0.63 0.63

AB̄ρ
0 (0) 0.40 0.31 0.40 0.31

α 0.226 0.219 0.171 0.158

 

α

F B̄D
0 (0) F B̄ρ

0 (0)

Fig.  2.    (color  online)  Variation  in  with  form  factors
 and .
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B
(
B̄0→ π−D∗+

)
= (2.74±0.13)×10−3,

B
(
B̄0→ π0D∗0

)
= (2.20±0.60)×10−4,

B
(
B−→ π−D∗0

)
= (4.90±0.17)×10−3,

we calculate the total isospin reduced amplitudes 

AπD∗
1/2

exp = ± (0.226±0.042) GeV2,

AπD∗
3/2

exp = ± (0.231±0.040) GeV2, (43)

and the phase difference 

δπD∗ = (24±24)◦. (44)

B̄→ PVTherefore, the  decays also indicate the presence
of strong FSI phases, as also observed in [17, 18].

The factorizable amplitudes for this mode are 

A f (B̄0→ π−D∗+) =2a1mD∗ fπAB̄D∗
0

(
m2
π

)
,

A f (B̄0→ π0D∗0) =−
√

2a2 fD∗mD∗F B̄π
1

(
m2

D∗
)
,

A f (B−→ π−D∗0) =a12mD∗ fπAB̄D∗
0

(
m2
π

)
+a2 fD∗2mD∗F B̄π

1

(
m2

D∗
)
. (45)

Using the decay constant values [27] 

fD∗ = (0.245±0.034) GeV,
fπ = (0.131±0.002) GeV, (46)

and the form-factor 

AB̄D∗
0 (0) = (0.68±0.04) , (47)

V(1−) = 5.32
P(0−) = 6.28 q2
taken from [27], with pole masses  GeV and

 GeV for -dependence (34), 

F B̄π
1 (0) = F B̄π

0 (0) = (0.27±0.05),

we calculate the factorized amplitudes as 

A f (B̄0→ π−D∗+) = (0.371±0.022) GeV2,

A f (B̄0→ π0D∗0) = − (0.023±0.004) GeV2,

A f (B−→ π−D∗0) = (0.403±0.023) GeV2, (48)

which in turn yield the isospin reduced amplitudes 

A f
1/2 = (0.317±0.018) GeV2,

A f
3/2 = (0.196±0.013) GeV2. (49)

Subtracting the factorizable parts from the total exper-
imental amplitudes, we calculate 

An f
1/2 = − (0.090±0.046) GeV2,

An f
3/2 = − (0.426±0.042) GeV2, (50)

with the following ratio: 

α =
An f

1/2

An f
3/2

= 0.211±0.109. (51)

AB̄D∗
0 (0)

α

α

α F B̄π
0 (0)

AB̄D∗
0 (0)
α B̄→ πD/ρD/πD∗,

AB̄D∗
0 (0)

In  literature,  we  find  different  values  of  the 
form-factor,  as  shown in Table  5.  We calculate  the ratio

 for  the  maximum  and  minimum  values  of  the  form-
factors, as shown in Table 6, and plot the variation in  in
Fig.  3.  Although  remains  insensitive  to  the 
form-factor,  it  increases  slowly  for  large  values  of

. However, considering the near equality of the ra-
tio  for  we  expect  a  higher  value  of

 is less likely.
 

B̄→ D∗Table 5.    Form-factor of the  transitions at maximum
recoil (q2 =0).

Form-factor CLFQM [27] CLFQM [35] LQCD [37]

AB̄D∗
0 (0) 0.68±0.04 0.68±0.08 0.921±0.013

α = An f
1/2/A

n f
3/2Table  6.    Ratio  for  maximum  and  minimum

values of form-factors.

AB̄D∗
0 (0) 0.72 0.72 0.64 0.64

F B̄π
0 (0) 0.32 0.22 0.32 0.22

α 0.264 0.245 0.192 0.173

 

α

AB̄D∗
0 (0) F B̄π

0 (0)
Fig.  3.    (color  online)  Variation  in  with  form  factors

 and 
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IV.  RESULTS AND DISCUSSIONS

B̄→ πD B̄→ ρD/πD∗

Aexp
1/2

Aexp
3/2

An f
1/2 An f

3/2

The purpose of performing an isospin analysis on the
 and  decays is to search for system-

atics, which have previously been identified in the charm
sector [17, 18]. By choosing a positive sign for  and a
negative  sign  for  in  each  case,  we  obtain  the  same
value of the ratio of the corresponding nonfactorizable re-
duced matrix elements  and , i.e.,
 

An f
1/2(B̄→ πD)

An f
3/2(B̄→ πD)

=
An f

1/2(B̄→ ρD)

An f
3/2(B̄→ ρD)

=
An f

1/2(B̄→ πD∗)

An f
3/2(B̄→ πD∗)

,

0.229±0.042 0.200±0.096 0.211±0.109 (52)

An f
1/2and note that  has a negative sign for the cases

 

An f
1/2(B̄→ πD) = − (0.572±0.105) GeV3, (53)

 

An f
1/2(B̄→ ρD) = − (0.054±0.026) GeV2, (54)

 

An f
1/2(B̄→ πD∗) = − (0.090±0.046) GeV2. (55)

B̄0−
We can generically  predict  the  sum of  the  branching

fractions  of  the  meson  decays  in  the  respective
modes considered here as 

B−++B00

=
τB̄0

3τB−
B0−

1+
α+

(√
2−α

)
A f
−+−
(
1+
√

2α
)
A f

00

A0−


2 ,
(56)

α

B−
where  has been defined previously (27), and the experi-
mental decay amplitude of the  decays is 

A0− =

√
B0−

τB− × (kinematic factor)
,

where  the  subscripts  -+,  00,  and  0-  denote  the  charge
states  of  the  non-charm  and  charm  mesons  emitted  in
each case. Taking the average value of α = 0.22, we pre-
dict 

B
(
B̄0→ π−D+

)
+B
(
B̄0→ π0D0

)
=(0.28±0.02)% Theo,

=(0.28±0.01)% Expt;
(57)

 

B
(
B̄0→ ρ−D+

)
+B
(
B̄0→ ρ0D0

)
=(0.76±0.13)% Theo,

=(0.79±0.12)% Expt;
(58)

 

B
(
B̄0→ π−D∗+

)
+B
(
B̄0→ π0D∗0

)
=(0.29±0.04)% Theo,

=(0.30±0.01)% Expt;

(59)

B̄0∑
B
(
B̄0→ decays

)
which  are  in  good  agreement  with  the  experiment.  To
show that this agreement is not coincidental and to study
the  sensitivity  of  the  sum  of  the  branching  fractions
with  the  ratio  α,  we  plot  against  α  by
treating  it  as  a  free  parameter  for  all  three  cases,  which
are  shown  in Figs.  4, 5,  and 6.  Clearly,  the  experiment
data  indicate  α  =  0.22  consistently.  The  broken  curves
represent  the  errors  due  to  the  decay  constant,  form
factors, and branching fractions. The horizontal lines cor-
respond to the experimental value of the sum, and its er-
rors are indicated by broken lines.

χC,E φC,E

B̄→ πD/ρD/πD∗

We wish to remark that similar observations have also
been made in the FAT approach [23] analysis used for B-
meson decays, which separates the factorizable and non-
factorizable contributions in each topological quark level
diagram.  The  most  important  result  in  this  approach  is
that  the  non-perturbative  parameters  and , rep-
resenting  the  nonfactorizable  contributions,  are  found  to
be universal for  all  the  decay  modes,
which is consistent with the systematics recognized in our
analysis. 

 

B
(
B̄0→ π−D+

)
B
(
B̄0→ π0D0

)
α = An f

1/2

/
An f

3/2.

Fig. 4.    (color online) Variation in the sum of 
and  with the ratio 

 

B
(
B̄0→ ρ−D+

)
B
(
B̄0→ ρ0D0

)
α = An f

1/2

/
An f

3/2.

Fig. 5.    (color online) Variation in the sum of 
and  with the ratio 
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V.  SUMMARY AND CONCLUSIONS

B̄→ πD/ρD/πD∗

An f
1/2 An f

3/2

We  perform  an  analysis  of  CKM-favored  two-body
hadronic  decays, ,  which  involve  two
isospin states in the decay products, by including nonfac-
torizable  contributions  arising  from the  part  of  the  weak
Hamiltonian  involving  colored  currents.  Because  non-
perturbated  nonfactorizable  contributions  are  difficult  to
calculate, from the theory of  strong interactions,  we em-
ploy the isospin formalism and find that  in all  the decay
modes,  the  nonfactorizable  isospin  reduced  amplitude

 consistently bears the same ratio, 0.22, as , with-

in the experimental errors, and maintains the same sign. It
is important to note that similar universality in nonfactor-
izable  contributions has  also been observed [23] in  a  re-
cent analysis of B- decays using the FAT approach.

B̄→ πD/ρD/πD∗

Because  similar  systematics  observed  for  charm
mesons  decaying  into  s-wave  mesons  [16]  have  been
found to be consistent  with those of their p-wave meson
emitting  decays  [18], we  further  expect  that  this  univer-
sality  of  nonfactorizable  terms  in  may
also  hold  true  for  the p-wave  meson  emitting  decays  of
bottom  mesons  and  can  be  used  to  make  predictions  of
the branching fractions, for which experimental measure-
ments are not yet available.

B

B̄0

The  present  experimental  data  for -decays  clearly
indicate the presence of FSI strong phase differences, and
our values agree with other analyses performed for these
decays  [20, 21].  We  also  wish  to  mention  that  we  are
aware  of  a  study  by  Sharma  and  Katoch  [38], who  as-
sumed  that  the  ratio  of  the  non-factorizable  amplitudes
was equal to -0.828 in the absence of experimental data at
that time  and  predicted  the  sum  of  the  branching  frac-
tions of -decays, which was not in agreement with the
latest experimental  measurements.  Moreover,  their  ap-
proach was different from ours because they did not con-
sider the final state interaction effects.
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