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Abstract: We study the dynamical  chiral  symmetry breaking/restoration for  various numbers  of  light  quarks  fla-
vors  and  colors  using  the  Nambu-Jona-Lasinio  (NJL)  model  of  quarks  in  the  Schwinger-Dyson  equation
framework, dressed with a color-flavor dependence of effective coupling. For fixed  and varying , we ob-
serve that the dynamical chiral symmetry is broken when  exceeds its critical value . For a fixed 
and  varying ,  we  observe  that  the  dynamical  chiral  symmetry  is  restored  when  reaches  its  critical  value

. Strong interplay is observed between  and , i.e., larger values of  tend to strengthen the dynamical
generated quark mass and quark-antiquark condensate, while higher values of  suppress both parameters. We fur-
ther sketch the quantum chromodynamics (QCD) phase diagram at a finite temperature T and quark chemical poten-
tial μ for various  and . At finite T and μ, we observe that the critical number of colors  is enhanced, where-
as the critical number of flavors  is suppressed as T and μ increase. Consequently, the critical temperature , ,
and co-ordinates of the critical endpoint  in the QCD phase diagram are enhanced as  increases and sup-
pressed when  increases. Our findings agree with the lattice QCD and Schwinger-Dyson equations predictions.
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I.  INTRODUCTION
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Quantum  chromodynamics  (QCD)  is  a  well-estab-
lished  theory  of  strong  color  interaction  among  quarks
and gluons. Two major aspects of QCD are the asymptot-
ic freedom (ultraviolet regime) [1, 2] and quark confine-
ment  (infrared  regime)  [3].  In  asymptotic  freedom,  the
quarks interact weakly at a short distance inside the had-
rons.  In  contrast,  at  a  large  distance  (or  at  low  energy),
the quarks are confined and never exist in isolation. In ad-
dition  to  color  confinement,  dynamical  chiral  symmetry
breaking  is  another  important  property  of  low-energy
QCD, which is related to the dynamical mass generation
of quarks.  It  is  well  known  that  the  QCD  exhibits  con-
finement  and  chiral  symmetry  breaking  with  a  small
number  of  light  quark  flavors .  However,  for  larger

,  it  is  believed  that  a  critical  value  exists,  above
which  the  chiral  symmetry  restores  and  quarks  become
unconfined [4–6]. This  value must be smaller than the
upper limit  of  the  critical  value  where  asymptotic  free-
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dom appears to exist, i.e.,  [2]; for 
with  a  gauge  group ,  this  critical  number  is

.  Hence,  the  QCD  theory  is  considered  to  be
conformal  in  the  infrared,  guided  by  an  infrared  fixed
point  (i.e.,  a  point  at  which the β-functions for  the QCD
couplings vanish); see for example for details [7–12]. The
region  is  often  called  the  "conformal
zone" [4, 13]. At or near the upper end  of the
conformal  zone,  the  infrared  fixed  point  lies  in  the
weakly interacting  region  and  can  be  solved  using  per-
turbative  techniques  of  QCD.  In  contrast,  around  the
lower  end , the  infrared  fixed  point  shifts  to-
ward the strongly interacting region where the coupling is
sufficiently  strong  as  decreases;  thus,  the  system
enters  a  phase  in  which  the  chiral  symmetry  breaks  and
quarks become  confined.  In  this  scenario,  the  perturbat-
ive approaches to QCD are inconceivable; thus, the non-
perturbative  techniques  are  useful  tools.  Lattice  QCD
simulations  [5, 14– 17], as  well  as  the  continuum  meth-
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ods of QCD [6, 18–22], in the fundamental  repres-
entation  emphasize  that  the  chiral  symmetry  restoration
and  deconfinement  phases  occur  when  reaches  the
conformal  zone .  QCD  theory  with  a  larger
number  of  colors  in  the  fundamental  repres-
entation also has a significant role in the infrared domain.
Ref. [22] discussed that the chiral symmetry is dynamic-
ally  broken above  a  critical  value . The  increas-
ing  enhances the dynamical mass generation near and
above . A large  also effects the critical value of fla-
vors , that is,  shifts toward its higher values as 
increases.

Nc N f

Tc

T −µ

N f Nc

In addition to  and , the infrared domain of QCD
is also  affected  by  the  presence  of  heat  baths.  It  is  be-
lieved that at zero or low temperature T, the fundamental
degrees  of  freedom  of  low-energy  QCD  are  the  color-
singlet  (confined)  hadrons,  whereas  at  high T,  when T
reaches  its  critical  value ,  the  interaction  becomes
weaker,  thus  causing  hadrons  to  melt  into  a  new  phase,
where the quarks and gluons become the new degrees of
freedom. The chiral symmetry is restored and deconfine-
ment  of  quarks  occurs  in  this  new  phase.  Lattice  QCD
calculations  [23– 29],  the  Schwinger-Dyson  equation
[30–39], and other effective models of low-energy QCD
[40–46] indicate that the nature of this transition is a cros-
sover  in  the  presence  of  a  finite  current  quark  mass m.
Similarly, when the quark chemical potential μ increases,
the  same  physical  picture  prevails  but  the  nature  of  the
phase  transition  changes  from  crossover  to  first-order  at
some point, which is known as the critical endpoint in the
QCD phase diagram, often drawn in the  plane. Ex-
perimentally,  there  is  a  strong  motivation  toward  the
study  of  phase  transitions  in  the  Heavy-Ion  Collision  at
the Large Hadron Collider (LHC) at CERN, the Relativ-
istic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory (BNL), and the Compressed Baryonic Matter
(CBM)  experiment.  The  study  of  low-energy  QCD  for
higher quark flavors  and  also has a significant role
in physics beyond the standard model (BSM), and its ex-
tension  to  the  QCD  phase  diagram  at  finite T and μ,
where  different  phases  of  QCD  exist,  i.e.,  quark-gluon
plasma, quarkyonic matter, neutron star environment, and
the color-flavor-locked  region  of  the  QCD  phase  dia-
gram.

Nc N f

T −µ Nc N f

N f
SU(Nc)

Our aim and motivation of this work was to investig-
ate the critical  and  for the chiral symmetry break-
ing and restoration at zero T and finite T and μ. Further-
more, we are interested to draw the QCD phase diagram
in the  plane for various  and . We use the ef-
fective  Nambu-Jona-Lasinio  (NJL)  model  [47],  dressed
with  the  number  of  quark  flavors  and in  the  funda-
mental  representation  in  the  Schwinger-Dyson
equations framework.  The  NJL  model  has  several  fea-
tures  and is  commonly used in  the  literature.  Dynamical
chiral symmetry breaking and its restoration are some of

the main features of this model. However, it does not sup-
port the phenomenon of quark confinement.

T = 0

Nc N f
Nc

N f
Nc

N f T −µ
Nc N f

The remainder of this article is organized as follows:
In Sec. II, we introduce the general formalism of the NJL
model at  and at finite T and μ. In Sec. III,  we dis-
cuss  the  numerical  solution of  the  gap equation to  study
dynamical  chiral  symmetry  breaking  and  its  restoration
for  higher  and  values.  In  Sec.  IV,  we present  the
numerical solution of the gap equation for higher  and

 and  at  finite T.  In  Sec.  V,  we  depict  the  numerical
solution of the gap equation at finite μ for various  and

. In Sec. VI, we sketch the phase diagram in the 
plane  for  various  and .  Finally,  in  Sec.  VII,  we
provide the summary and conclusions of this work. 

II.  GENERAL FORMALISM OF THE NJL MODEL

We begin the QCD in an effective manner through the
NJL Lagrangian density [47]: 

L = q̄(i ̸∂−m)q+
G0

2
[(q̄q)2+ (q̄iγ5τ⃗q)2], (1)

q̄
̸∂ = γµ∂µ γµ 4×4

∂µ = −ipµ pµ

τ⃗
G0

−(q̄γµλαq)2

where q and  represent quark  and  antiquark  fields,  re-
spectively. Here, , where  are the Dirac ( )
gamma  matrices,  and  (  represents  the  four-
momenta).  Here, m is  the  bare  light  quark  mass  matrix,
which may be equal to zero at the chiral limit. The four-
fermion interaction in the square brackets contains a scal-
ar  and  pseudoscalar  interaction  piece.  represents  the
Pauli matrix acting in isospin space.  is the dimension-
ful  effective  coupling  constant  that  can  be  obtained  by
considering  the  Fierz  transformation  of  the  color-
current –color-current  interaction  ( ) (see  Ap-
pendix A.3 in [41] or the Appendix of this paper).

Such a Lagrangian density Eq. (1) describes dynamic-
al chiral symmetry breaking, which, in the Hartree (mean
field) approximation can be triggered through the follow-
ing gap equation: 

M = m−2G0⟨q̄q⟩ or
M−m
2G0

= ⟨q̄q⟩, (2)

⟨q̄q⟩
where M is the effective or dynamically quark mass, and

 is the quark-antiquark condensate: 

⟨q̄q⟩ = −i
∫

d4k
(2π)4 Tr[S (k)] , (3)

Tr
S (k) = ( ̸k−M+ iϵ)−1

iϵ

where " " means the trace over Lorentz,  color,  and fla-
vor  matrices,  and  is  the  dressed-
quark propagator (in Minkowski space) with  being the
causality  factor,  introduced  to  exclude  the  singularity
from the propagator.

Substituting Eq. (3) into Eq. (2) and after performing
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the traces, we obtain 

M = m+8iG0N f Nc

∫
d4k

(2π)4

M
k2−M2+ iϵ

. (4)

N f
Nc

The gap equation Eq. (4) is based on the NJL Lagrangian.
Eq.  (1)  describes  the  dynamical  mass  generation  for 
and 1).

SU(Nc) N f

In  this  work,  we  are  interested  to  include  the  anti-
screening  effects  of  the  gluons  and  the  screening  effects
of  the  light  quarks;  we  extend  the  NJL  model  to  an

 gauge theory with an  number of light quarks.
In this connection,  we can determine the critical  number
of  flavors  or  colors  for  the  dynamical  chiral  symmetry
breaking/restoration  using  an  "NJL-type"  model  in  the
Schwinger-Dyson  equations  (SDE)  framework.  In  the
SDE scenario, the dynamical mass can be obtained from
the dressed quark propagator: 

S −1(p) = S −1
0 (p)+Σ(p) , (5)

S 0(p) = ( ̸ p−m+ iϵ)−1

S (p)
Σ(p)

where  is the bare quark propagator,
and  is the  dressed  quark  propagator.  The  self  en-
ergy  is given by 

Σ(p) = −i
∫

d4k
(2π)4 g2Dµν(q)

λa

2
γµS (k)

λa

2
Γν(p,k) , (6)

g2 Γν(k, p)
Dµν(q) = D(q)(−igµν−

qµqν
q2 )

gµν
q = k− p D(q)

λa, s
SU(Nc)

where  is  the  QCD  coupling  constant,  and  is
the dressed quark-gluon vertex. Here, 

 is  the  gluon  propagator  in  the  Landau  gauge,  with
 being  the  metric  tensor  in  the  Minkowski  space;

 is  the  gluon  four  momentum,  and  is  the
gluon  scalar  function.  are  the  usual  Gell-Mann's
matrices.  In  the  representation,  the  Gell-Mann's
matrices satisfies the following identity: 

8∑
a=1

λa

2
λa

2
=

1
2

(
Nc−

1
Nc

)
I, (7)

Λ2
g

∼ 500±200
Γν(k, p) = γν

where I is the unit matrix. We use the following form of
the  gluon  propagator  (in  Landau  gauge),  in  the  infrared
region  where  the  gluons  dynamically  acquire  a  mass 
(  MeV)  [48, 49] and  bare  vertex  approxima-
tion ( ) (see for example [22, 50, 51]): 

g2D(q→ 0) =
4παir

Λ2
g
=G, (8)

which ensures  the  mapping  of  one-gluon  exchange  dia-
grams to  a  contact  interaction in  the  NJL model.  With a
particular choice of the gap equation kernel, the dynamic-
al  quark  mass  function  is  merely  a  constant,  and  the
dressed quark propagator takes the form [52] 

S (k) =
̸k+M

k2−M2+ iϵ
. (9)

Gc
Gc

G = 7.05×10−6MeV−2

Λg = 587.9
4παir = 2.44

The  effective  coupling G must  exceed  its  critical
value  to describe  dynamical  chiral  symmetry  break-
ing.  When G is  greater  than ,  a  nontrivial  solution  to
the QCD gap equation bifurcates from the trivial one (see
for  example  [53]).  In  this  work,  we  use  the  effective
coupling 2), which  can  be  obtained
by setting the gluon mass scale  MeV [41] and

.  Substituting  Eqs.  (6) –(9)  into  Eq.  (5)  and
taking the trace over  the Dirac,  colors,  and flavors  com-
ponents, the gap equation is given by 

M = m+8iGNc (N f )
∫

d4k
(2π)4

M
k2−M2+ iϵ

. (10)

GNc (N f )

Thus, our truncation of the Schwinger-Dyson equations is
equivalent to that of the NJL model in the Hartree mean
field approximation, where  is the effective coup-
ling in  which  the  color  and  flavor  factors  are  incorpor-
ated as 

GNc (N f ) =
[
1
2

(
Nc−

1
Nc

)]
G(N f ). (11)

G(N f )
GNc (N f )

Nc
f Nc

c

Nc
f

Nc
f

To study the gap equation for  the various number of
flavors, we must modify the flavor sector  of the ef-
fective  coupling  in  a  manner  that  it  provides  us
the solution to the gap equation for the higher number of
flavors.  We  shall  use  this  modification  as  our  modeling
and it will aid us in determining  or  for chiral sym-
metry breaking  or  restoration.  We adopt  a  similar  meth-
od of modeling used by [5, 22] in which  are obtained
from  Schwinger-Dyson  equations.  According  to  [5, 22],
the  dynamically  generated  mass M should have  the  fol-
lowing type of relationship with : 

M ∽

√
1−

N f

Nc
f
, (12)

Nc
fwhere  is the critical number of flavors. To obtain such
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N f = 0 Nc = 0
N f Nc

N f = 0 N f Nc

1) The way the gap equation Eq. (4) is written (or obtained) may be or may not sufficient to describes the dynamical symmetry breaking for  or  (or
smaller to larger values of  and ). This is one of the reason that we used SDE treatment of the NJL model where we can modified the effective coupling in such a
way that our gap equation describes the dynamical chiral symmetry breaking/restoration for  to larger  and from smaller  to its larger values.

2) We use the different symbols for the effective coupling G (which is the ratio of the QCD coupling to the gluon mass scale) that appeared in the SDE, and dressed
it with flavors and colors number to distinguish it from G0 that appeared in the NJL gap equation.
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Nc
f G(N f )

a  behavior  in  the  four-fermion  contact  interaction  NJL
model, only a square root flavor-dependence in the coup-
ling  results  in  this  observed behavior  [22].  Therefore,  to
determine , we modify the factor  of Eq. (11) in
similar fashion as in [22]: 

G(N f ) −→
9
2

G

√
1−

(N f −2)
Nc

f
, (13)

Nc
f = Nc

f +η

9/2

where  is a guess value of the critical number
of  flavors.  Our  modification  of  the  effective  coupling  is
almost  the  same  as  in  [22]  but  slightly  different  by  a
factor of  This is because the effective coupling mod-
el  of  [22]  uses  a  local  symmetry  preserving  four-point
contact  interaction,  which,  in  the  scalar-pseudoscalar
channel, is Fierz equivalent to the term in NJL-Lagrangi-
an  Eq.  (1)  [42], (for  Fierz  transformation,  see  for  ex-
ample Appendix A in [41] and the Appendix at the end of
this article).

Nc
f η = 2.3

Nc
f = 8

(N f −2) Nc = 3 N f = 2
GNc (N f )→GN f Nc

To obtain , we set  which lies in the range as
predicted in [22] by considering . Ref. [22] demon-
strated that the parameter η appears because of the factor

 in  Eq.  (13).  For  fixed  and ,  our
modified  NJL  effective  coupling  that
normally used in NJL model gap equation Eq. (4).

k k0

The  four-momentum  integral  in  Eq.  (10)  can  be
solved  by  splitting  the  four-momentum  into  time  and
space  components.  We  denote  the  space  part  by  a  bold
face letter  and the time part  by .  Thus,  Eq. (10) can
be expressed as 

M =m+8iGNc (N f )M
∫ ∞

0

d3k
(2π)4

×
∫ +∞

−∞

dk0

k0
2−E2

k + iϵ
. (14)

Ek =
√
|k|2+M2 Ek

k 3
Here, ,  in  which  denotes  the  energy
per  particle,  and  is  the -momentum.  On  integrating
over the  time component  of  Eq.  (14),  we  obtain  the  fol-
lowing expression: 

M = m+8iGNc (N f )M
∫ ∞

0

d3k
(2π)4

π

iEk
(15)

d3k = k2dksinθdθdϕIn  spherical  polar  coordinates, ,  and
performing  the  angular  integration,  we  obtain  from  Eq.
(15) 

M = m+
2GNc (N f )M
π2

∫ ∞

0
dk

k2

Ek
. (16)

The integral  occurring  in  Eq.  (13)  is  a  diverging  in-

tegral, and we also know that the NJL model is not renor-
malizable owing to fermionic contact interaction. Differ-
ent types of regularization schemes are used in the literat-
ure  [40].  The  regularization  procedure  we  adopt  in  the
present scenario  is  the  three-dimensional  (3d)  mo-
mentum  cut-off  in  which  we  remove  the  divergence  by
applying a  certain high ultraviolet  3d-momentum cut-off
Λ. Thus, Eq. (16) can be expressed as 

M = m+
2GNc (N f )M
π2

∫ Λ

0
dk

k2

Ek
. (17)

After integrating over the time component in Eq. (17),
we obtain 

M = m+
GNc (N f )M
π2

[
Λ
√
Λ2+M2−M2arcsinh

(
Λ

M

)]
. (18)

In the present scenario, the quark-antiquark condens-
ate,  which  serves  as  an  order  parameter  for  the  chiral
symmetry breaking, is defined as 

−⟨q̄q⟩ = M−m
2GNc (N f )

. (19)

The  finite T and μ version  of  the  NJL-model  gap
equation Eq. (10) can be obtained by adopting the stand-
ard convention for momentum integration i.e., 

∫
d4k

i(2π)4 f (k0,k)→ T
∑

n

∫
d3k

(2π)3 f (iωn+µ,k), (20)

ωn = (2n+1)πTwhere  are the  fermionic  Matsubara  fre-
quencies. After  performing  some  algebra,  the  gap  equa-
tion Eq. (10) at finite T and μ can be expressed as 

M = m+4GNc (N f )M
∫ Λ

0

d3k
(2π)3

1
Ek

(1−nF(T,µ)− n̄F(T,µ)),

(21)

nF(T,µ) n̄F(T,µ)
which is similar to Eq. (18) in a vacuum but modified by
the thermo-chemical parts.  and  represent
the Fermi  occupation  numbers  for  the  quark  and  anti-
quark, respectively, and are defined as 

nF(T,µ) =
1

e(Ek−µ)/T +1
,

n̄F(T,µ) =
1

e(Ek+µ)/T +1
. (22)

On further simplifying, we obtain 
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M =m+
GNc (N f )M
π2

[
Λ
√
Λ2+M2−M2arcsinh

(
Λ

M

)]
−
GNc (N f )M
π2

∫ Λ

0
dk

k2

Ek

[
nF(T,µ)+ n̄F(T,µ)

]
. (23)

µ = T = 0 nF = n̄F = 0If we set  in Eq. (23), we obtain ;
thus, we can retain the gap equation in vacuum, i.e.,  Eq.
(18). In the next section, we present a numerical solution
of Eq. (18) for higher numbers of colors and flavors. 

III.  DYNAMICAL CHIRAL SYMMETRY BREAK-
ING/RESTORATION FOR Nc AND Nf

Λ = 587.9 G = 7.05×
10−6 −2 m = 5.6

fπ = 92.4
mπ = 135.0

N f = 2

In this  section,  we  numerically  solve  the  gap  equa-
tion  Eq.  (18)  with  a  particular  choice  of  the  parameters,
i.e.,  the  cutoff  parameter  MeV1), 

 MeV , and  MeV, which have been determ-
ined to reproduce the pion decay constant  MeV
and  pion  mass  MeV  in  the  two-flavors  NJL
model [41]. The solution of our gap equation with modi-
fied  color-flavor  dependence  effective  coupling  Eq.  (11)
for  two  light  flavors  (i.e.,  up  and  down)  and  for

Nc = 3 M = 399

−⟨q̄q⟩1/3 = 250

Nc N f

N f = 2
Nc

Nc

Nc

Nc = Nc
c

Nc

−⟨q̄q⟩1/3 Nc
c

−∂Nc
⟨q̄q⟩1/3

Nc
c ≈ 2.2

Nc = 3 N f

N f Nc
f

 yields  the  dynamical  mass  MeV.  From
Eq. (19), we calculate the corresponding quark-antiquark
condensate  as  MeV.  In  this  scenario,  our
results are consistent with that obtained in [41]. Next, we
solve  the  gap  equation  Eq.  (18),  for  various  and .
Initially,  we  solve  the  gap  equation  for  fixed  but
varying  and  plot  the  dynamically  generated  quark
mass in Fig. 1(a) as a function of . We observe that the
chiral symmetry is dynamically broken when  exceeds
a  critical  value, ,  and  remains  broken  for  larger
values  of . The  corresponding  quark-antiquark  con-
densate  is  shown  in Fig.  1(b).  is  obtained
from  the  peak  of  the  color  gradient  of  the  quark-anti-
quark  condensate  and  is  depicted  in
Fig.  1(c), from  which  we  observe  that  the  chiral  sym-
metry  is  dynamically  broken  above nd  is  thus
consistent with the predicted value obtained in [22]. Next,
we fix  and solve Eq. (18) for various  as shown
in Fig.  2(a).  The  plot  demonstrates  that  the  dynamically
generated mass  monotonically  decreases  with  the  in-
crease in  until it reaches a critical value , where the
dynamical mass  vanishes  and only  bare  quark  mass  sur-
vives;  thus,  chiral  symmetry  is  dynamically  restored

Nc N f = 2
Nc

Nc ≈ 2.2

Fig. 1.    (color online) (a) Behaviors of dynamical qurak mass as a function of number of colors  for two fixed flavors . (b)
Quark-antiquark condensate as  a  function of .  (c)  Color  gradient  of  the quark-antiquark condensate;  the peak of  the gradient  is  at

, which is the critical number for dynamical chiral symmetry breaking.
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N f Nc
f −⟨q̄q⟩1/3

N f −∂N f
⟨q̄q⟩1/3

Nc
f ≈ 8

−∂N f
⟨q̄q⟩1/3

N f Nc Nc−N f

Nc
f

Nc
N f Nc

c

Nc
f Nc

c

Nc N f

when  exceeds . In Fig. 2(b), we plot  as a
function of ,  and its flavor gradient  is de-
picted in Fig. 2(c). Thus, we obtain  from the peak
of  the  flavor  gradient .  Our  results  in  this
scenario  agree  with  that  obtained  in  [22].  In Fig.  3,  we
plot  the  critical  line  between  and  in  the 
plane; both the parameters opposes the effect of each oth-
er. Fig.  3 clearly  demonstrates  that  the  required  for
dynamical chiral symmetry restoration increases as  in-
creases, and as  increases, the  required for the dy-
namical  chiral  symmetry  breaking  increases.  For  better
understanding, we have tabulated some data for the vari-
ation in  with  various  in Table  1. In  the next  sec-
tion, we discuss the dynamical chiral symmetry breaking
and its restoration with  and  at finite T. 

IV.  DYNAMICAL CHIRAL SYMMETRY BREAK-
ING WITH Nc AND Nf AT FINITE T

Nc N f
N f = 2

Nc

In this  section,  we  numerically  solve  the  gap  equa-
tion Eq.  (23)  to  understand  dynamical  symmetry  break-
ing and restoration for various  and  and at finite T.
Initially,  we  fix  and  plot  the  dynamical  mass  in
Fig.  4(a)  as  a  function  of  for  various T. The  corres-

Nc
c Nc

c
−∂Nc
⟨q̄q⟩1/3

Nc Nc

Nc
Nc

c
Nc−T

Nc
c

T = Tc

ponding condensate is depicted in Fig. 4(b).  We observe
that  as T increases,  the  dynamical  symmetry  is  broken
above .  We determine  the  for  various  values  of T
from  the  peaks  of  the  color  gradient ,  as
shown  in Fig.  4(c). The  peaks  of  the  gradient  shift  to-
wards  larger  values  of  as  we  increase T.  Hence, 
tends to enhance the dynamical quark mass and condens-
ate  while T suppresses  both,  and  as  a  result,  we  require
higher values of  for dynamical chiral symmetry break-
ing. Thus,  increases with T, as shown in the phase dia-
gram drawn in the  plane in Fig. 4(d). This means
that in the presence of a heat bath, a large  is required
for  dynamical  chiral  symmetry  breaking.  The  nature  of
the transition at each temperature  is of crossover.

Nc = 3
N f

N f

Nc
f
−∂N f
⟨q̄q⟩1/3

N f Nc
f

Now, for fixed , we plot the dynamical mass as
a  function  of  for  different  values  of T as  shown  in
Fig. 5(a), and the corresponding condensate is depicted in
Fig.  5(b).  In  this  case,  we  observe  that  the  dynamical
mass as a function of  is suppressed as T increases. We
obtain  the  critical  number  of  flavors  for  different T
from  the  peaks  of  the  flavor  gradient ,  as
shown in Fig. 5(c). We observe that the peaks shifted to-
wards  their  smaller  values.  Thus,  monotonically
decreases  as T increases,  as  demonstrated  in  the  phase

N f Nc = 3

N f N f

N f N f ≈ 8 Nc
f

Fig.  2.    (a)  Behavior  of  the  dynamical  mass  as  a  function  of  various  for  fixed . The  dynamical  mass  monotonically  de-
creases with increasing . (b) Quark-antiquark condensate as a function of . (c) Flavor gradient of the quark-antiquark condensate
as a function of . The peak of the gradient is at , which is the critical number of flavors , above which the dynamical chiral
symmetry is restored.
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N f −T
Nc

f

diagram in the  plane in Fig. 5(d). Therefore, in the
presence  of  a  heat  bath,  a  lower  is required  for  dy-
namical chiral symmetry breaking/restoration. The nature
of the transition at each temperature T is of crossover. In

Nc N f

the  next  section,  we  investigate  the  behavior  of  chiral
symmetry  breaking  and  restoration  at  a  finite  chemical
potential μ, for various  and . 

V.  DYNAMICAL CHIRAL SYMMETRY BREAK-
ING FOR Nf, Nc, AND AT FINITE μ

Nc N f
N f = 2 Nc

µc
µ = µc

Nc
Nc

c
−∂Nc
⟨q̄q⟩1/3µ
Nc−µ

Nc
c

Nc
c µ = 100

In this  section,  we  discuss  dynamical  chiral  sym-
metry breaking and its restoration at a finite μ for various

 and .  The  dynamical  mass  as  a  function  of μ for
fixed  and various  is shown in Fig. 6(a). We ob-
serve  that  the  chiral  symmetry  is  dynamically  restored
when μ exceeds  a  critical  value .  The  discontinuity  in
the dynamical mass at  shows that the nature of the
phase transition  is  of  first-order,  while  the  smooth  de-
crease  in  the  dynamical  mass  represents  the  crossover
transition.  This  means  that μ suppresses  the  dynamical
mass and condensate in contrast to , which strengthens
it.  We  can  determine  the  critical  number  of  colors 
from the  peak  of  for  various μ.  We  plot  the
phase  diagram  in  the  plane,  where  we  show  the
variation in  with μ in Fig. 6(b). This plot shows that as
we increase μ,  also increases. For example, at 
MeV,  we  require  a  lower  critical  number  of  colors  (i.e,

Nc −N fTable  1.    Data  for  plotting  the  critical  line  in  the 
plane as depicted in Fig. 3.

Nc 2.2 3 4 5 6 7 8 9 10

N f 3 8 9.5 10.3 10.7 11 11.2 11.3 11.4

 

N f Nc

Nc −N f

Fig.  3.    Plot  of  the  critical  line  between  and  in  the
 plane.

Nc N f = 2
Nc N f = 2

Nc

Nc −T Nc

Fig. 4.    (color online) (a) Behavior of dynamical mass as a function of  for fixed  and for various T. (a) Quark-antiquark con-
densate as a function of  for various T and fixed . (c) Color gradient of quark-antiquark condensate for various T. The peaks of
the gradient shifts towards their larger values of  as T increases. (d) Phase diagram for dynamical chiral symmetry breaking/restora-
tion in the  plane. The higher the T, the larger value of  required for the dynamical symmetry breaking.
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Nc
c = 2.2
µ = 250 Nc

c = 2.5
Nc ≤ 2.5

Nc > 2.5
(Nc

c ≈ 2.5, µc
c ≈ 290 Nc = 3

N f

µc

N f

N f ≤ 5 N f ≥ 5

N f

Nc
f

−∂Nc
⟨q̄q⟩1/3µ Nc

f µc

N f −µ Nc
f

(N f
c = 5,µ f

c = 290

)  for  chiral  symmetry  breaking  compared  with
 MeV  (i.e., ).  We  observe  the  crossover

phase transition for  and first-order transition for
 differentiated  by  a  critical  endpoint

 MeV).  Next,  we  fix  and  plot
the dynamical  mass as  a  function of μ for  various  in
Fig.  7(a).  Dynamical  chiral  symmetry  is  restored  when
the chemical potential reaches a critical value  for dif-
ferent .  However,  the  nature  of  phase  transition  is  of
first-order  for  and  crossover  for . The  dy-
namical mass as a function of μ is suppressed with the in-
crease  in .  We  then  determine  the  critical  number  of
flavors  for each chemical potential μ from the peak of

 and plot the variation in  versus  in the
 plane, as depicted inFig. 7(a). We note that  de-

creases  with  the  increase  in μ.  The  nature  of  the  phase
transition  is  crossover  until  the  critical  endpoint

 MeV) where at and above it, the nature
of transition changes to first-order.

Nc
c Nc

f

Nc N f

The  overall  results  shows  that  at  higher  values  of μ,
we require a higher  and lower  for dynamical chir-
al symmetry breaking/restoration. In the next section, we
investigate  the simultaneous effects  of T and μ on chiral
phase transition for various  and .
 

VI.  QCD PHASE DIAGRAMS FOR VARIOUS Nc

AND Nf IN THE T−µ PLANE

T −µ Nc N f
N = 2

Nc = 3,4,5,6
Tc

µc

N f = 2 Nc = 3
µ = 0
T ≤ Tc ≈ 235

T = 0
µc ≈ 380

µ = 0
T = 0

(µE
c ≈ 330,T E

c ≈ 81) N f = 2
Nc = 3

In this section, we sketch the QCD phase diagrams in
the  plane  for  various  and .  First,  the  QCD
phase diagram is shown in Fig. 8 for fixed  and for
various  number  of  colors  (i.e, )  at T and μ.
We obtain the critical temperature  and critical chemic-
al potential  from the peaks of the thermal and chemic-
al  potential  gradients  of  the  quark-antiquark  condensate,
receptively.  Initially,  we  plot  the  phase  diagram  for

 and ,  which  shows  that  at  finite T but  at
,  the  dynamical  chiral  symmetry  is  broken  for

 MeV,  while  above  that,  it  is  restored.  The
phase transition is a crossover in this case. At finite μ and

, the dynamical symmetry is observed to be broken
below  MeV, while above that,  it  is  restored via
first-order  phase transition.  We confirm from Fig.  8 that
the crossover  line  in  the  phase  diagram starts  from a  fi-
nite T-axis  (for )  never  ends up at  finite μ-axis  (for

); hence, a critical endpoint exists at which the cros-
sover transition  changes  to  first-order  transition.  We de-
termine  the  co-ordinates  of  the  critical  endpoint  at

 MeV.  Our  analysis  for  and
,  with  a  particular  choice  of  parameters  of  NJL-

type model, which is based on the SDE truncation, is con-

N f Nc = 3
N f

N f

N f −T

Fig. 5.    (color online) (a) Behavior of dynamical mass as a function of  for fixed  and various T. As T increases, the dynamic-
al mass is suppressed. (b) Behavior of the quark-antiquark condensate as a function of  for various T. (c) Flavor gradient of the con-
densate for various T, which shows that as T increases, the peaks shift towards their lower  values. (d) Phase diagram for the dynam-
ical chiral symmetry breaking/restoration in the  plane.
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Nc
Nc

Tc µc
µE

c T E
c

Nc
Tc µc µE

c T E
c Nc

Nc
Nc

sistent  with  that  of  the  NJL  model  QCD  phase  diagram
sketched  in  [41].  Subsequently,  we  extend  it  to  various

.  The  solid-triangular  lines  represents  the  crossover
phase  transition  for  various  phase  diagrams,  and  the
dotted  dashed  lines  for  the  first-order  phase  transition  is
separated by the big red dots (the critical endpoints) in all
the  phase  diagrams.  We  observe  that , ,  and  co-or-
dinates  of  the  critical  endpoints  ( , ) are  shifted  to-
wards  their  higher  values  as  increases.  The  variation
in , , and ( , ) with  are tabulated in Table 2.
This  means  that  as increases,  the  strength  of  the  non-
abelian  interaction  increases.  A  higher  provides
stronger bindings  between  the  quarks.  To  undo  that  ef-
fect,  we require a higher T or μ for  the dynamical  chiral
symmetry  breaking/restoration,  as Fig.  8 confirms.  Refs.

µc Nc
µc ∼

√
Nc

Nc Tc
Nc Tc ∼

√
Nc

SU(Nc)

Tc(µ = 0)/
√
σ Nc

Tc

Nc = 3 N f = 2
Tc

[54, 55]  demonstrated  that  increases  with  as
. Additionally, effective lattice simulations with

heavy quarks  have indicated the  same observation about
the shifting of  critical  endpoint  in  the phase diagram for
higher  [56, 57].  Ref.  [58]  argued  that  increases
with  as .  However,  a  lattice  simulation  of

 in  the  quenched  approximation,  based  on  the
string  tension σ, predicted  an  opposite  behavior,  i.e.,

 decreases  as  increases, and  the  trans-
ition  is  first-order  at  [59], for  more  clear  demonstra-
tion,  see  for  example  [60]1),  whereas,  in  the  real-world
for  and ,  the  QCD  exhibits  a  crossover
transition near  [61].

Nc = 3
Next, we draw the QCD phase diagrams in Fig. 9 for

fixed  but  various  numbers  of  light  quark  flavors

Nc N f = 2
Nc ≥ 2.5

Nc < 2.5 Nc −µ
(Nc

c ≈ 2.5,µc
c ≈ 290

Fig. 6.    (color online) (a) Dynamical quark mass as a function of μ for various  and fixed . The plot shows that the dynamical
mass decreases as we increase μ. The discontinuity in the mass function for  demonstrates that the nature of the phase transition
is of first-order, while that of  is crossover. (b) Phase diagram for dynamical chiral symmetry breaking/restoration in the 
plane. The nature of the phase transition is of smooth crossover until the critical endpoint  MeV), while above it, the
transition changes to the first-order.

 

N f Nc = 3
µc Nc

N f −µ N f < 5
N f ≥ 5 (N f

c ≈ 5, µ f
c ≈ 290

Fig. 7.    (color online) (a) Behavior of the dynamical quark mass as a function of μ at various  and fixed . The plot demon-
strates that the dynamical chiral symmetry is restored above a critical  for each . (b) Phase diagram for dynamical chiral symmetry
breaking/restoration in the  plane. The nature of the phase transition is smooth crossover for  and changes to first-order for

. Both transitions are differentiated by a critical endpoint  MeV).
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N2
c Nc Nc

Nc→∞
g2N2

c ∼ Nc

1) In quenched lattice QCD, there are  gluonic degrees of freedom but only  fermionic ones, as  becomes large the gluons dominate the dynamics and the
fermions quenched out. So, in the large , QCD behaves like a pure gauge theory, and in this limit, the quenched QCD exhibits a first-order transition. As for as
our NJL-type interaction concerned with dynamical quarks, based on the notion of single massive gluon exchanged between the quark-antiquarks with  and
contributes to an Hartree potential. It could be if the link is actually realized by a single gluon exchange then the situation may changes.
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N f = 2,3,4,5

Nc = 3 N f

N f N f Tc µc

µE
c T E

c
N f

Tc µc µE
c T E

c
N f

(i.e., ). We use the same technique and same
parameters to create the phase diagrams, but now we fix

 and vary . All the phase diagrams in Fig. 9 in-
dicate their regular behaviors but are suppressed with in-
creasing . We note that as  varies, , the  poten-
tial, and the coordinates of the critical endpoints ( , )
are  suppressed  with  the  increase  in .  In Table  3,  we
tabulate the variation in , , and ( , ) with a large

.
In  the  next  section,  we  summarize  our  findings  and

draw the conclusions. 

VII.  SUMMARY AND CONCLUSIONS

N f

Nc

Nc N f

GNc (N f )

N f = 0
N f

In  this  work,  we  have  studied  the  dynamical  chiral
symmetry breaking/restoration for light quark flavors 
and colors . Additionally, we investigate the impact of

 and  on the QCD phase diagram at finite temperat-
ure T and  quark  chemical  potential μ.  For  this  purpose,
we use the NJL-type model dressed with the color-flavor
dependence  of  effective  coupling  in  the
Schwinger-Dyson equations  framework,  which  has  ad-
vantages  to  study  the  QCD  gap  equation  for  as
well as a higher number of flavors .  Our observations

Nc = 3 N f

N f

Nc
f ≈ 8

N f = 2 Nc

Nc
c ≈ 2.2

Nc
f Nc

c

N f

Nc

Tc

Nc Nc

Nc
c

N f = 2
Nc = 3 N f

N f Nc
f

Nc
f

show that for fixed  and increasing , the dynam-
ical  chiral  symmetry  is  partially  restored  when  ex-
ceeds a critical value . Our results have a remark-
able resemblance  with  the  modern  lattice  QCD  simula-
tion  and  Schwinger-Dyson's  equation  predictions.  For

,  as  increases, we  determine  the  critical  num-
ber  of  colors  as ,  above  which  the  dynamical
chiral symmetry is broken. The dramatic opposed effects
between  the  two  parameters  and  have been  ob-
served. This  corresponds  with  our  expectation  and  con-
forms to previous studies [22], that is, increasing  sup-
presses  the  dynamical  generated  quark  mass  and  quark-
antiquark  condensate,  whereas  increasing  enhances
the dynamical mass and condensate. At finite T, our res-
ults show that the dynamical chiral symmetry is restored
when T reaches a critical value . A higher T suppresses
the dynamical quark mass and condensate in contrast to a
higher ;  consequently,  the  larger  is  required  for
chiral symmetry breaking. Thus, the critical value  (for

)  increases  as T increases.  Our  results  at  finite T,
for fixed  and varying  shows that the dynamic-
al quark mass and condensate monotonically decreases as

 increases; hence, fewer  are required to restore the
dynamical chiral symmetry at finite T. As a result,  de-

Tc µE
c ,T

E
c

Nc N f = 2 m = 5.6

Table  2.    Data  for  the  variation  in  and  ( )  in  the
phase diagrams with various ,  for  fixed  and 
MeV.

S.No Nc Tc µ = 0/MeV at µc T = 0/MeV at (µE
c ,T

E
c )/MeV

01 3 235 380 (330, 81)

02 4 377 450 (415,185)

03 5 503 510 (509,271)

04 6 623 609 (604,350)

Tc µE
c ,T

E
c

N f = 2 Nc = 3

m = 5.6

Table  3.    Data  for  the  variation  in  and  ( )  in  the
phase  diagrams  with  various ,  for  fixed  and

 MeV.

S.No N f Tc µ = 0/MeV at µc T = 0/MeV at (µE
c ,T

E
c )/MeVCEP

01 2 235 380 (330, 81)

02 3 216 355 (320, 64)

03 4 194 330 (308, 40)

04 5 169 300 (280, 25)

 

T −µ
(Nc = 3,4,5,6)

N f = 2

Fig. 8.    (color online) QCD phase diagram in the  plane
for  various  number  of  colors  and for  fixed  fla-
vor . The all solid-triangle lines represent the crossover
phase transitions, and the dot-dashed lines represent the first-
order phase  transitions.  The  big  red-dots  for  the  critical  end-
points in each phase diagrams.

 

Tc −µc

(Nc = 2,3,4,5)
Nc = 3

Fig.  9.    (color  online)  QCD  phase  diagram  for  the 
plane  for  various  number  of  flavors ,  for  fixed

.  All  solid-triangle  lines  represent  the  crossover  phase
transitions and  dot-dashed  lines  the  first-order  phase  trans-
ition. The big red-dots represent the location of the critical en-
dpoint in each phase diagram.
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Nc−Tc N f −Tc

Nc
c

(Ncp
c ≈ 2.5 µcp

c ≈ 290

Nc
f

(Ncp
f ≈ 5,µcp

f ≈ 290

creases as T increases. The nature of the phase transition
remains  a  crossover  throughout  for  both  phase  diagrams
drawn in the  and  planes. Similarly, in the
presence of quark chemical potential μ, we conclude that
the  for  the  dynamical  chiral  symmetry  restoration  is
enhanced as μ increases and vice versa. The nature of the
phase  transition  in  this  case  is  observed  to  be  smooth
crossover until the critical endpoint , 
MeV), and above that, the transition changes to the first-
order. We further observe that the  required for the dy-
namical  symmetry  restoration  is  suppressed  as μ in-
creases.  In this case, the nature of the phase transition is
smooth  crossover  until  the  critical  endpoint

 MeV)  and  above  that,  the  transition
changes to the first-order.

T −µ Nc N f

Tc µc µE
c T E

c
Nc

N f Tc µc µE
c T E

c
N f

Finally, we have sketched the QCD phase diagram in
the  plane  for  various  and .  We observe  that

, , and the location of critical endpoint ( , ) shift
toward  higher  values  with  increasing .  For  increasing

,  the  scenario  is  reversed,  i.e., , ,  and  ( , )
shift  towards  their  lower  values  with  the  increasing .
We conclude  that  considering  the  number  of  light  quark
flavors (or colors) yields an important impact on the QCD
phase diagram  in  addition  to  the  heat  bath  and  back-
ground fields. This work not only connects the color-fla-
vor dependence with T and μ in congruence with the ex-
isting  theoretical  and  phenomenological  interpretations,
but also has important consequences related to the heavy-
ion collision experiments. In the future, we plan to invest-
igate  the  color-flavor  phase  diagram  in  the  presence  of
background fields and other light hadrons properties. 
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APPENDIX A: FIERZ TRANSFORMATION

SU(Nc)

Fierz  Transformation  is  a  re-arrangement  of  fermion
operator products in the Dirac, flavor, and color space us-
ing  index-exchanging  properties  of  the  gamma  and

 generator matrices.  Consider  an  NJL-type  inter-
action (for detail, see Appendix A in [41]): 

Lint = gI(q̄Γ̂Iq)2 = gIΓ
I
i jΓ

I
klq̄iq jq̄kql, (A1)

Γ̂Iwhere the operator  corresponds to the quark-antiquark
channel I.  Considering  the  anticommutation  relation  for
fermions, we have the following identities 

Lexc = −gIΓ
I
i jΓ

I
klq̄iqlq̄kq j and

Lqq = gIΓ
I
i jΓ

I
klq̄iq̄kqlq j. (A2)

In the Hartree-type approximation, we can rewrite the
operators 

ΓI
i jΓ

I
kl =

∑
M

cI
MΓ

I
i jΓ

I
kl, (A3)

to obtain 

Lexc = −gI

∑
M

cI
M(q̄Γ̂Iq)2. (A4)

To describe  the  combined  effect  of  direct  plus  ex-
change interaction by Lagrangian, we can perform a Fierz
transformation in the quark-antiquark channel: 

Lqq̄ =Ldir(≡ Lint)+Lexc =
∑

M

GM(q̄Γ̂Iq)2, (A5)

GM
GM

gI GM = cI
MgI M , I

GM = (1− cI
I)gI

where  represents the effective coupling constants and
sum runs over all quark-antiquark channels M.  can be
obtained  from  the  i.e,  for  and

.
In the  same  manner,  we  can  employ  a  Fierz  trans-

formation into the quark-quark channel to write the an ef-
fective quark-quark interaction as 

Lqq =
∑

D

HD(q̄Γ̂DCq̄T )(qT CΓ̂Dq), (A6)

HD = dI
DgI

cI
M dI

D

Lint GM HD
Lq̄q Lqq

where D corresponds  to  the  various  diquark
channels.  are the  quark-quark  effective  coup-
ling constants. The coefficients  and  of the operat-
ors are discussed in detail in Appendix A.2 of [41]. Thus,
if we know the Lagrangian ,  and  are uniquely
fixed.  To  avoid  double  counting,  and  are  to  be
used in Hartree approximation only.

SU(Nc)

A  simple  Fierz  transformation  of  the  color-
current–color-current  interaction (which can be  obtained
from  the  QCD  Lagrangian  by  converting  the  original

 gauge  symmetry  into  a  global  symmetry  of  the
quark color-currents) is given by 

Lint = −g(q̄γµλαq)2. (A7)
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The quark-antiquark interaction can be expressed as
 

Lq̄q =
2(N2

c −1)g
N f N2

c

[
(q̄q)2+ (q̄iγ5q)2− 1

2
(q̄γµq)2− 1

2
(q̄γµγ5q)2

]
+

(N2
c −1)g
N2

c

[
(q̄τaq)2+ (q̄iγ5τaq)2− 1

2
(q̄γµτaq)2

− 1
2

(q̄γµγ5τaq)2
]
−+ g

NcN f

[
(q̄λaq)2+ (q̄iγ5λaq)2

− 1
2

(q̄γµλaq)2− 1
2

(q̄γµγ5λaq)2
]
− g

2Nc

[
(q̄τaλa′q)2

+ (q̄τaiγ5λa′q)2− 1
2

(q̄γµτaλa′q)2− 1
2

(q̄γµγ5τaλa′q)2
]

=
(N2

c −1)g
N2

c

N2
f−1∑

a=0

[
(q̄τaq)2+ (q̄iγ5τaq)2− 1

2
(q̄γµτaq)2

− 1
2

(q̄γµγ5τaq)2
]
− g

2Nc

N2
f−1∑

a=0

[
(q̄τaλa′q)2+ (q̄τaiγ5λa′q)2

− 1
2

(q̄γµτaλa′q)2− 1
2

(q̄γµγ5τaλa′q)2
]
,

(A8)

τa SU(N f )
λa SU(Nc)

1 N2
f ,c−1

(q̄q))2

(q̄iγ5τaq)2

where  denotes  operators  in  the  flavor  space,
and  are  the  operators  in  the  color  space.  The
flavor and color  indices run from  to . Compar-
ing the coefficient  of  the scalar  and pseudo-scalar

 terms from Eqs. (1) and (31), we obtain
 

G := coeff. (q̄q)2 =
2(N2

c −1)g
N f N2

c
. (A9)

 

G := coeff. (q̄iγ5τaq)2 =
(N2

c −1)g
N2

c
. (A10)

Nc = 3 N f = 2 G =
8
9

gFor  and , we obtain .
Now, for the quark-quark interaction, we obtain 

Lqq =
(N2

c +1)g
2Nc

[(q̄iγ5CτAλA′ q̄T )(qT Ciγ5CτAλA′q)

+ (q̄CτAλA′ q̄T )(qT CτAλA′q)

− 1
2

(q̄γµγ5CτAλA′ q̄T )(qT Cγµγ5CτAλA′q)

− 1
2

(q̄γµCτAλA′ q̄T )(qTγµCτAλA′q)]

− (N2
c −1)g
2Nc

[(q̄iγ5CτS λS ′ q̄T )(qT Ciγ5CτS λS ′q)

+ (q̄CτS λS ′ q̄T )(qT CτS λS ′q)

− 1
2

(q̄γµγ5CτS λS ′ q̄T )(qT Cγµγ5CτS λS ′q)

− 1
2

(q̄γµCτS λS ′ q̄T )(qTγµCτS λS ′q)]. (A11)

where the subscripts S and A are the symmetric and anti-
symmetric indices, and C is a charge conjugation operat-
or. In particular, we obtain 

H := coeff (q̄iγ5CτAλA′ q̄T )(qT Ciγ5CτAλA′q) =
(Nc+1)g

2Nc
.

(A12)

Nc = 3 H =
2
3

g

H : G =
(Nc)

2(Nc−1)
=

3
4

For ,  we  obtain ;  thus,  the  ratio

.
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