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Abstract: In this paper, we present the universal structure of the alphabet of one-loop Feynman integrals. The let-
ters in the alphabet are calculated using the Baikov representation with cuts. We consider both convergent and diver-
gent cut integrals and observe that letters in the divergent cases can be easily obtained from convergent cases by ap-
plying certain limits. The letters are written as simple expressions in terms of various Gram determinants. The know-
ledge of the alphabet enables us to easily construct the canonical differential equations of the  form and aids in
bootstrapping the symbols of the solutions.
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I.  INTRODUCTION

ϵ0 ϵ = (4−d)/2

4−2ϵ
ϵ0

The  systematic  study  of  one-loop  Feynman  integrals
in  perturbative  quantum  field  theories  dates  back  to  the
end  of  the  1970s  when  't  Hooft  and  Veltman  [1] calcu-
lated generic one-,  two-,  three-,  and four-point  scalar in-
tegrals in dimensional regularization (DREG) up to order

, where  with spacetime dimension d. Pas-
sarino and Veltman [2] then demonstrated that tensor in-
tegrals up to four points can be systematically reduced to
scalar ones, and later studies [3, 4] demonstrated that in-
tegrals with more than four external legs in  dimen-
sions can be expressed as lower-point ones up to order .
These  developments  in  principle  solved  the  problem  of
next-to-leading  order  (NLO)  calculations  for  tree-in-
duced scattering processes.

ϵ

The improvements  of  experimental  precision and the
progress  of  theoretical  studies  require  the  understanding
of scattering  amplitudes  and  cross  sections  at  higher  or-
ders in perturbation theory. Hence, we must compute the
one-loop integrals to higher orders in .  These enable us
to predict the infrared divergences appearing in two-loop
amplitudes [5–13], and they are necessary for computing
one-loop squared amplitudes, which are essential ingredi-
ents of  next-to-next-to-leading  order  (NNLO)  cross  sec-
tions.

ϵ0Unlike the terms up to order , generic results for the
higher order terms are not available yet. Part of the reas-
on is that integrals with more than four external legs are
generally not reducible to lower-point ones when consid-
ering  higher  orders  in ϵ. These  require  further  calcula-
tions, which are  often complicated owing to the increas-
ing number of physical scales involved.

It is known [14–16] that one-loop integrals in a given
family admit a uniform transcendentality (UT) basis satis-
fying canonical differential equations of the form [17] 

d f⃗ (x⃗, ϵ) = ϵ d A(x⃗) f⃗ (x⃗, ϵ) , (1)

x⃗
d A d log

where  is the set of independent kinematic variables, and
the matrix  has the -form: 

d A(x⃗) =
∑

i

Ci d log(Wi(x⃗)) . (2)

Ci
Wi(x⃗)

Wi

In the above expression,  are matrices consisting of
rational numbers, and  are algebraic functions of the
variables. The functions  are called the "letters" for this
integral  family,  and  the  set  of  all  independent  letters  is
called the "alphabet."

d log
At one loop, a canonical basis can be generically con-

structed  by  searching  for -form integrands  [14–23].
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d log d A(x⃗)

d log
{Wi(x⃗)}

Ci

However, obtaining the  matrix  is not always
a  trivial  task  when  the  number  of  variables  is  large.  We
note  that  the  matrix  can  be  easily  reconstructed  if
we  have  the  knowledge  of  the  alphabet  in ad-
vance,  since  the  coefficient  matrices  can then  be  ob-
tained by bootstrapping.

d A(x⃗)

ϵ

Having the alphabet (and hence the matrix ) in a
good form also  aids  in  solving  the  differential  equations
(1)  order-by-order  in  the  dimensional  regulator .  The
(suitably  normalized)  solution  can  be  expressed  as  a
Taylor series: 

f⃗ (x⃗, ϵ) =
∞∑

n=0

ϵn f⃗ (n)(x⃗ ) , (3)

where  the nth-order coefficient  function  can  be  ex-
pressed as a Chen iterated integral [24]: 

f⃗ (n)(x⃗) =
∫ x⃗

x⃗0

d A(x⃗n) · · ·
∫ x⃗2

x⃗0

d A(x⃗1)+ f⃗ (n)(x⃗0) . (4)

Such iterated integrals can be analyzed using the lan-
guage  of  "symbols"  [25– 27]  that  encodes  the  algebraic
properties of the resulting functions. In certain scenarios,
these  iterated  integrals  can  be  solved  analytically  (either
by direct integration or by bootstrapping). The results can
often be  expressed  in  terms  of  generalized  polylogar-
ithms (GPLs) [28], which enable efficient numeric evalu-
ation [29–31]. When an analytic solution is not available,
they can straightforwardly evaluated numerically through
either numerical integration or series expansion [32, 33].

In this  paper,  we  describe  a  generic  method  to  con-
struct  the  letters  systematically  from  cut  integrals  in  the
Baikov representation [34, 35]. The letters can be gener-
ically  expressed  in  terms  of  various  Gram determinants.
The letters  and  symbols  of  one-loop  integrals  were  con-
sidered  in  [36– 39],  and  our  method  is  similar  to  that  in
[37–39]. Nevertheless,  we evaluate  the  cut  integrals  dif-
ferently and obtain equivalent but simpler expressions in
certain cases  utilizing  the  properties  of  Gram  determin-
ants. Furthermore, we consider the cases of divergent cut
integrals, which were ignored in earlier studies. Using our
results, all letters for a given integral family can be easily
expressed even before constructing the differential  equa-
tions. These letters will  also appear in the corresponding
two-loop integrals. 

II.  CANONICAL BASIS OF ONE-LOOP
INTEGRALS

We use the method of [16, 23] to construct the canon-
ical basis in the Baikov representation. In this section, we
briefly  review  the  construction  procedure  since  it  will
also be relevant for obtaining the alphabet in the matrices

d A(x⃗).

N = E+1
Consider  a  generic  one-loop  integral  topology  with

 external  legs,  where E is the  number  of  inde-
pendent external momenta. Integrals in this topology can
be expressed as 

Ia1,··· ,aN
=

∫
ddl

iπd/2

1
za1

1 za2

2 · · ·z
aN

N
, (5)

ziwhere  are the propagator denominators given by 

z1 = l2−m2
1 , z2 = (l+ p1)2−m2

2 , · · · ,
zN = (l+ p1+ · · ·+ pE)2−m2

N . (6)

p1, . . . , pEHere,  are external momenta, which we assume
to  span  a  space-like  subspace  of  the d-dimensional
Minkowski  spacetime.  This  corresponds  to  the  so-called
(unphysical) Euclidean kinematics. Results in the physic-
al phase-space region can be defined using analytic con-
tinuation.

lµ

zi

The  concept  of  the  Baikov  representation  involves
changing the integration variables from loop momenta 
to the Baikov variables , and the result is given by 

Ia1,...,aN
=

1
(4π)E/2Γ

(
(d−E)/2

)
×

∫
C

|GN(z)|(d−E−2)/2

|KN |(d−E−1)/2

N∏
i=1

dzi

zai

i
, (7)

z = {z1, . . . ,zN}
GN(z)

KN z

where  is the collection of the Baikov vari-
ables.  The function  is a polynomial of the N vari-
ables, while  is independent of . They are given by 

GN(z) ≡G(l, p1, . . . , pE) , KN =G(p1, · · · , pE) , (8)

where the Gram determinant is defined as 

G(q1, . . . ,qn) ≡ det


q1 ·q1 q1 ·q2 · · · q1 ·qn

q2 ·q1 q2 ·q2
...

...
. . .

...
qn ·q1 · · · · · · qn ·qn

 . (9)

z
Note that in Eq. (8), the scalar products involving the

loop momentum l should be re-expressed in terms of : 

l2 =z1+m2
0 ,

l · pi =
zi+1+m2

i+1− p2
i − zi−m2

i

2
−

i−1∑
j=1

pi · p j . (10)

CThe integration domain  in Eq. (7) is determined by
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GN(z)/KN ≤ 0the condition  with Euclidean kinematics.
gNWe are now ready to express the UT integrals  for

any N according  to  [16].  We  must  distinguish  between
the cases of odd N and even N: 

gN
∣∣∣
N-odd =

ϵ(N+1)/2

(4π)(N−1)/2Γ(1− ϵ)

×
∫ (
− KN

GN(z)

)ϵ N∏
i=1

dzi

zi
,

gN
∣∣∣
N-even =

ϵN/2

(4π)(N−1)/2Γ(1/2− ϵ)

×
∫ √

GN(0)
√

GN(z)

(
− KN

GN(z)

)ϵ N∏
i=1

dzi

zi
, (11)

K1 = 1 zi
g2n−1 g2n

2n−2ϵ

where  we  set ,  and 0 means  that  all 's  are  zero.
Note  that  and  can  be  naturally  identified  as
Feynman integrals in  dimensions: 

gN
∣∣∣
N=2n−1 =ϵ

n
√
KN I(2n−2ϵ)

1×N ,

gN
∣∣∣
N=2n =ϵ

n
√

GN(0) I(2n−2ϵ)
1×N , (12)

I(d)
1×N

ai = 1
where  denotes  the d-dimensional N-point  Feynman
integral with all powers : 

I(d)
1×N ≡

∫
ddl

iπd/2

1
z1z2 · · ·zN

. (13)

4−2ϵ

ϵ

They can be related to Feynman integrals in  di-
mensions using dimensional recurrence relations [40, 41].
Applying  the  above  to  all  sectors  of  a  family,  we  can
build a complete canonical basis satisfying -form differ-
ential equations. 

III.  LETTERS IN DIFFERENTIAL EQUATIONS:
CONVERGENT CASES

xi

f⃗ (x⃗, ϵ)

Given  a  basis  of  Feynman  integrals,  calculating  the
derivatives  with  respect  to  a  kinematic  variable  is
straightforward. For a UT basis , we write 

∂

∂xi
f⃗ (x⃗, ϵ) = ϵ Ai(x⃗ ) f⃗ (x⃗, ϵ) , (14)

Ai(x⃗)

Ai(x⃗)

where the elements in the matrix  have the property
that they contain only simple poles. In principle, we may
already attempt  to  solve  these  differential  equations  us-
ing  direct  integration.  However,  this  is  often  difficult
when  contains  many  irrational  functions  (square
roots). Therefore, a very useful method is to combine the
partial  derivatives  into  a  total  derivative  and  rewrite  the
differential  equations  in  the  form  of  Eq.  (1).  Hence,  we

Wi(x⃗) d A(x⃗)

d A(x⃗)

must know the  alphabet  (i.e.,  the  set  of  independent  let-
ters )  in  the  matrix .  With  the  knowledge  of
the  alphabet,  we  can  easily  reconstruct  the  entire  matrix

 by comparing the coefficients in the partial derivat-
ives.

Ai(x⃗) xi

SymBuild

In principle, we may obtain the letters by directly in-
tegrating the matrices  over the variables  and ma-
nipulating  the  resulting  expressions.  However,  in  the
presence  of  many  square  roots  (containing  high-degree
polynomials)  in  multi-scale  problems,  these  integrations
are not  easy  to  perform,  and  the  results  are  often  ex-
tremely  complicated.  Examples  are  available  for  various
one-loop and multi-loop calculations, e.g., Refs. [42–44].
With such types of expressions, it is highly non-trivial to
decide whether a set of letters are independent. There is a
package  [45] which can carry out such a task,
but the computational burden is rather heavy when there
are many square roots. Furthermore, from experience, we
know that letters involving square roots can often be ex-
pressed in the form 

P(x⃗)−
√

Q(x⃗)

P(x⃗)+
√

Q(x⃗)
, (15)

Q(x⃗) > 0 Q(x⃗) < 0

where P and Q are polynomials. Such letters have useful
properties under analytic continuation: they are real when

 and  become  pure  phases  when .
However, recovering  this  structure  from  direct  integra-
tion is difficult.

d log

z1, . . . ,zr

Given  the  above  considerations,  we  now  describe  a
novel  method  of  obtaining  the  letters,  particularly  those
with  square  roots  and  multiple  scales.  Our  method  is
based on the -form integrals in the Baikov represent-
ation  under  various  cuts.  We  will  utilize  the  generic
propagator denominators  in  Eq.  (II)  and the  Baikov rep-
resentation (7). Without loss of generality, we define the
Baikov cut on the first r variable  as [35] 

Ia1,...,aN

∣∣∣
r-cut =

1
(4π)E/2Γ((d−E)/2)

×
∫ N∏

j=r+1

dz j

za j

j

r∏
i=1

∮
zi=0

dzi

zai

i

|GN(z)|(d−E−2)/2

|KN |(d−E−1)/2 .

(16)

ai (1 ≤ i ≤ r)
An important property of the Baikov cut is that if one

of the powers   is non-positive, the cut integ-
ral vanishes according to the residue theorem. The coeffi-
cient  matrices  in  the  differential  equations  are  invariant
under the cuts,  and we utilize this  property to obtain the
letters by imposing various cuts.

gN

First, we express the differential equation satisfied by
an N-point  one-loop  UT  integral  (see  Eqs.  (11)  and
(12)) as 
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dgN(x⃗, ϵ) =ϵ dMN(x⃗)gN(x⃗, ϵ)

+ ϵ
∑
m<N

∑
i

dM(i)
N,m(x⃗)g(i)

m (x⃗, ϵ) , (17)

gN(x⃗, ϵ) g(i)
m (x⃗, ϵ)

f⃗ (x⃗, ϵ) dMN(x⃗) dM(i)
N,m(x⃗)

d A(x⃗)
gN

m < N
g(i)

m dM(i)
N,m

where  and  are components of the canon-
ical basis ,  while  and  are entries
in the matrix . The above equation clearly indicates
that  the  derivative  of  cannot  depend  on  higher-point
integrals as well as on other N-point integrals. It may de-
pend on several m-point integrals for each , and we
use a superscript as in  and  to distinguish them.
These m-point  integrals  can  be  obtained  by  "squeezing"
some of the propagators in the N-point diagram.

d A

ϵ

gN g(i)
N−1 g(i)

N−2

From Eq. (17), we observe that it is possible to focus
on a particular entry of the  matrix by imposing some
cuts. We  elaborate  on  this  in  the  following.  In  this  sec-
tion, we assume that the master integrals (after imposing
cuts) have no divergences such that the integrands can be
expanded as Taylor series in  before integration. We can
show  that  in  this  scenario,  only , ,  and  ap-
pear  on  the  right  side  of  Eq.  (17).  We  observe  that  the
most complicated letters are given by these cases.  Occa-
sionally,  we  encounter  divergences  in  the  cut  integrals,
and  we  must  expand  the  integrands  as  Laurent  series  in
terms of distributions. We discuss these cases in the next
section. 

dMNA.    Self-dependence 

z

The self-dependent term in Eq. (17) is easy to extract
by  imposing  the  "maximal-cut",  i.e.,  cut  on  all  variables

. All the lower-point integrals vanish under this cut, and
the differential equation becomes 

dg̃N(x⃗, ϵ) = ϵ dMN(x⃗) g̃N(x⃗, ϵ) , (18)

g̃Nwhere  denotes the cut integral. Using the generic form
of UT integrals in Eq. (11), we observe that 

dMN(x⃗) = d log
(
−KN(x⃗)

G̃N(x⃗)

)
, (19)

where 

G̃N(x⃗) ≡GN(0) . (20)

Hence, the corresponding letter can be selected as 

WN(x⃗) =
G̃N(x⃗)
KN(x⃗)

. (21)

We  note  that  two  letters  are  equivalent  if  they  only
differ by a constant factor or constant power, i.e., 

W(x⃗) ∼ cW(x⃗) ∼ [
W(x⃗)

]n . (22)

Therefore,  in  practice,  we  may  select  a  form  that  is
convenient for the particular case at hand.

GN(0) = 0 WN(x⃗) = 0
g̃N

It  is  possible  that  such  that  and
cannot be a letter. In this case, the integral  itself van-
ishes under the maximal cut. This means that the integral
is reducible to integrals in sub-sectors, and we do not re-
quire to consider it as a master integral.
 

B.    Dependence on sub-sectors with one

fewer propagator

gN N −1

g(i)
N−1

zN

N −1

We now consider the dependence of the derivative of
 on sub-sectors with  propagators.  We may have

N such sub-sectors,  corresponding to "squeezing" one of
the N propagators.  Focusing  on  one  sub-sector  integral

, we can always reorganize the propagators (by shift-
ing the  loop  momentum  and  relabel  the  external  mo-
menta) such that the squeezed one is . We can then im-
pose a cut on the first  variables and express the dif-
ferential equation as
 

dg̃N(x⃗, ϵ) =ϵ dMN(x⃗) g̃N(x⃗, ϵ)
+ ϵ dMN,N−1(x⃗) g̃N−1(x⃗, ϵ) , (23)

dMN(x⃗)

dMN,N−1(x⃗)

where we have suppressed the superscript since only one
sub-sector survives the cut. The letter in  has been
obtained in the previous step, and we now must calculate
the letter in .
 

1.    Odd number of propagators

We first consider the case in which N is an odd num-
ber. Using the generic form of one-loop UT integrals Eq.
(11), we can write
 

d
∫ r+

r−

(
− KN

GN(0′,zN)

)ϵ dzN

zN

=ϵ dMN

∫ r+

r−

(
− KN

GN(0′,zN)

)ϵ dzN

zN

+dMN,N−1
21−2ϵ Γ2(1− ϵ)
Γ(1−2ϵ)

(
−KN−1

G̃N−1

)ϵ
, (24)

r± GN(0′,zN) 0′

z′ ≡ {z1, . . . ,zN−1}

where the integration boundary is determined by the two
roots  of  the polynomial ,  and  means that
the vector  is zero.

r+ r− zN

ϵ→ 0 ϵ = 0
If both  and  are non-zero, the integration over 

is  convergent  for .  We  can  then  set  in  the
equation and obtain
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dMN,N−1 =
1
2

d
∫ r+

r−

dzN

zN
=

1
2

d log
r+
r−
. (25)

r+/r−
r±

r+ = 0 r− = 0

We may already set the letter to  and stop at this
point.  However,  expressing  in  terms  of  certain  Gram
determinants would be useful. This simplifies the proced-
ure to compute the letter and informs us about the phys-
ics in the divergent scenarios  or .

zN

Given the propagator denominators (II) and the defin-
ition  of  the  Gram  determinant  (9),  we  observe  that 
only  appears  in  the  top-right  and  bottom-left  corners  of
the Gram matrix. Using the expansion of the determinant
in terms of cofactors, we can write 

GN(0′,zN) = −1
4
KN−1z2

N − B̃NzN + G̃N , (26)

B̃N ≡ BN(0) E = N −1where  with (recall that )
 

BN(z) ≡G(l, p1, . . . , pE−1; pE , p1, . . . , pE−1) , (27)

Here, we have defined an extended Gram determinant 

G(q1, . . . ,qn; k1, . . . ,kn)

=det


q1 · k1 q1 · k2 · · · q1 · kn

q2 · k1 q2 · k2
...

...
. . .

...
qn · k1 · · · · · · qn · kn

 . (28)

We  may  further  use  the  geometric  picture  of  Gram
determinants to simplify the two roots. The Gram determ-
inants can be expressed as 

G(q1, . . . ,qn) =det
(
qµi qνjgµν

)
=det(gµν)

[
V(q1, . . . ,qn)

]2 , (29)

qµi qi

{q1, . . . ,qn}
gµν

V(q1, . . . ,qn)
q1, . . . ,qn

where  is  the μth  component  of  in  the  subspace
spanned by  (with an  arbitrary  coordinate  sys-
tem),  and  is  the  metric  tensor  of  this  subspace.

 is the volume of the parallelotope formed by
the vectors  (in the Euclidean sense).

l⋆ z = 0
zi

Let  denote  a  solution to  the  equation  (recall
that  contains scalar  products  involving  the  loop  mo-
mentum l); we can write 

G̃N−1 =G(l⋆, p1, . . . , pE−1) , G̃N =G(l⋆, p1, . . . , pE) ,

B̃N =G(l⋆, p1, . . . , pE−1; pE , p1, . . . , pE−1) . (30)

l⋆⊥ pE⊥ l⋆

pE p1, . . . , pE−1

We let  and  denote  the  components  of  and
 perpendicular to the subspace spanned by ,

l⋆⊥
l⋆

(l⋆)2−m2
1 = 0

l⋆⊥ pE⊥ |l⋆⊥|cosh(η)
|l⋆⊥|sinh(η) |l⋆⊥| ≡

√
(l⋆⊥)2

|pE⊥| ≡
√
−p2

E⊥

respectively. We are interested in the region in which the
subspace of external momenta is space-like, and  must
be time-like (since  is either time-like or light-like ow-
ing to ). We can express the components of

 perpendicular  and  parallel  to  as  and
, respectively, where . We also de-

note . These enables us to write
 

B̃N

KN−1
=− |l⋆⊥||pE⊥|sinh(η) ,

KN

KN−1
= −|pE⊥|2 ,

G̃N

KN−1
=− |l⋆⊥|2|pE⊥|2 cosh2(η) ,

G̃N−1

KN−1
= |l⋆⊥|2 . (31)

Thus, 

B̃2
N +KN−1G̃N = −K2

N−1|l⋆⊥|2|pE⊥|2 =KNG̃N−1 . (32)

Note that the above relation can also be obtained from
Sylvester's determinant identity applied to Gram determ-
inants  (for  other  applications  of  this  relation,  see,  e.g.,
[16, 23, 46]). We encounter further instances of this rela-
tion later in this paper.

r±
dMN,N−1

Expressing  in terms of the Gram determinants, we
can finally express the letter in  (for odd N) as 

WN,N−1(x⃗) =
B̃N −

√
G̃N−1KN

B̃N +

√
G̃N−1KN

. (33)

B̃N G̃N−1 KN

x⃗ x⃗

We emphasize that the ingredients , , and 
can be very complicated functions of the kinematic vari-
ables  when N and the length of  are large, and it is dif-
ficult  to  obtain  the  letter  through  direct  integration  in
multi-scale problems.

r± zN

ϵ→ 0
WN,N−1(x⃗)

G̃N = 0 gN

G̃N−1 = 0 gN−1

logWN,N−1 = log(1) = 0

If  one of  is  zero,  the integration over  is diver-
gent when , and we cannot expand the integrand as
a  Taylor  series.  Actually,  we  observe  that  in
Eq. (33) becomes zero in this scenario. However, this re-
quires ,  which  means  that  vanishes  under  the
maximal cut and hence is not a master integral. It is also
possible  that  and  is  not  a  master.  In  this
case,  drops  out  of  the  differential
equations. Therefore, we do not require to consider these
cases  here.  Similar  considerations  apply  to  the N-even
case, described in the next section. 

2.    Even number of propagators

We now analyse  the  scenario  in  which N is  an  even
number. We proceed similarly as the odd case, and arrive
at the cut differential equation 
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d
∫ r+

r−

dzN

zN

√
G̃N

√
GN(0′,zN)

[
− KN

GN(0′,zN)

]ϵ

=ϵ dMN

∫ r+

r−

dzN

zN

√
G̃N

√
GN(0′,zN)

[
− KN

GN(0′,zN)

]ϵ
+2πϵ

22ϵ Γ(1−2ϵ)
Γ2(1− ϵ) dMN,N−1

(
−KN−1

G̃N−1

)ϵ
. (34)

zN

ϵ→ 0
ϵ0

We again assume that the integration over  is con-
vergent for . We can then expand the integrands on
both sides of the above equation. At order , the integral
on the left side is 

∫ r+

r−

dzN

zN

√
G̃N

√
GN(0′,zN)

= iπ. (35)

ϵ1

dMN

Hence, its derivative is zero. Comparing the order 
coefficients,  and  plugging  in  the  form  of  obtained
earlier in Eq. (19), we obtain 

dMN,N−1 = −
1

2π
d
∫ r+

r−

dzN

zN

√
G̃N

√
GN(0′,zN)

log
GN(0′,zN)

G̃N
.

(36)

r− r+

The above  integrand  involves  multi-valued  functions
such as square roots and logarithms. To define the integ-
ral, we must select a convention including branch cuts for
these functions and also the path from  to . Different
conventions will  cause  results  to  differ  by  some  con-
stants or an overall minus sign, but these do not affect the
letter up to the equivalence mentioned in Eq. (22).

GN(0′,zN) (r+− zN)(zN − r−)KN−1/4
KN−1 > 0

We denote  as  with
, and express the integral as 

MN,N−1 =−
1

2π

∫ r+

r−

dzN

zN

√
r+r−

(zN − r+)(zN − r−)

× log
(zN − r+)(zN − r−)

r+r−
. (37)

r± ∞
zN

The  branch  cuts  involve  the  points  and  on  the
complex  plane. To represent the cuts more clearly, we
perform the change of variable: 

zN =
1
t
, t± =

1
r∓
. (38)

t± 0The branch points then become  and , and we ex-
press the integral as 

MN,N−1 = −
1

2π

∫ t+

t−
I(t)dt , (39)

with the integrand 

I(t) =
1

√
(t− t+)(t− t−)

[
log

t− t+
t
+ log

t− t−
t

]
. (40)

t+
t−

0 t±

Ci±

√
(t− t+)(t− t−)→ t t→∞

With this form of the integrand, we select the branch
cut for the square root to be the line segment between 
and ,  and the branch cuts  for  the two logarithms to be
the  line  segments  between  and ,  respectively.  These
branch cuts are depicted as the wiggly lines in Fig. 1, to-
gether  with  several  paths  thatt  lie  infinitesimally
close to the cuts. We define the square root following the
convention that  when .

C1+

We select the integration path in Eq. (39) to along the
line segment , and express the integral as 

MN,N−1 = −
1

4π

[∫
C1+

I(t)dt−
∫
C1−

I(t)dt
]
, (41)

I(t) C1±
∞

where  we  have  used  the  characteristic  that  the  values  of
 on  differ  by  a  sign.  Since  no  other  singularities

exist  in  the  complex t plane  (including ), we  may  de-
form the paths as long as we do not go across the branch
cuts. Hence, we know that 

MN,N−1 =
1

4π

[∫
C2+

I(t)dt−
∫
C2−

I(t)dt
]

+
1

4π

[∫
C3+

I(t)dt−
∫
C3−

I(t)dt
]
. (42)

C2+ C2− 2πi

−2πi

On  the  paths  and ,  a  difference  results
from the first logarithm in Eq. (40). A similar difference
of  resulting  from  the  second  logarithm  occurs

 

MN,N−1

Fig.  1.    (color  online)  Branch cuts  and integration paths for
 with even N.
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C3+ C3−between  and . Therefore, we obtain 

dMN,N−1 =−
i
2

d
∫ t+

0

dt
√

(t− t+)(t− t−)

− i
2

d
∫ t−

0

dt
√

(t− t+)(t− t−)

=− id log
√

r+−
√

r−√
r++
√

r−
. (43)

Note that with the above convention, we obtain 

∫ r+

r−

dzN

zN

√
G̃N

√
GN(0′,zN)

=

∫ t+

t−

dt
√

(t− t+)(t− t−)
= iπ. (44)

r±We  can  now  express  the  roots  in  terms  of  Gram
determinants. The result can be expressed as 

dMN,N−1 =
i
2

d log
B̃N −

√
−G̃NKN−1

B̃N +

√
−G̃NKN−1

, (45)

B̃N G̃N KN−1

dMN,N−1

where the definitions of , , and  are similar as
before.  Hence,  we can express the letter  in  (for
even N) as 

WN,N−1(x⃗) =
B̃N −

√
−G̃NKN−1

B̃N +

√
−G̃NKN−1

. (46)

G̃N−1 = 0 G̃N = 0
As  mentioned  earlier,  we  do  not  require  to  consider

the  divergent  case  or  the  trivial  case 
here. 

C.    Dependence on sub-sectors with two
fewer propagators

gN

N −2
z′ = {z1, . . . ,zN−2}

N −1 z′,zN−1
z′,zN

As in  the  previous  subsection,  we  consider  the  de-
pendence  of  the  derivative  of  on  sub-sectors  with

 propagators.  Without  loss  of  generality,  we cut  on
the variables . Now, we remain with two
sub-sectors with  propagators: one with  and
the other  with .  We use a  superscript  to  distinguish
these two, and the differential equation then becomes 

dg̃N =ϵ
(
dMN g̃N +dM(1)

N,N−1 g̃(1)
N−1

+dM(2)
N,N−1 g̃(2)

N−1+dMN,N−2 g̃N−2
)
, (47)

where we  have  suppressed  the  arguments  of  the  func-

tions for simplicity. 

1.    Odd number of propagators

If N is an odd number, assuming convergence and ex-
panding the integrands, we obtain 

d
∫
C

dzN−1

zN−1

dzN

zN
=4πdMN,N−2

+2dM(1)
N,N−1

∫ r(1)
+

r(1)
−

dzN−1

zN−1

√
G̃(1)

N−1√
G(1)

N−1(0′,zN−1)

+2dM(2)
N,N−1

∫ r(2)
+

r(2)
−

dzN

zN

√
G̃(2)

N−1√
G(2)

N−1(0′,zN)
,

(48)

C GN(0′,zN−1,zN) ≥ 0
r(i)
± G(i)

N−1(0′,z)
where the domain  is determined by ,
and  are the two roots of the polynomial .

The two integrals on the right-hand side can be easily
performed using Eq. (35), and we obtain 

dMN,N−2 = dIN,N−2−
i
2

(
dM(1)

N,N−1+dM(2)
N,N−1

)
, (49)

IN,N−2where  is the double integral: 

IN,N−2 =
1

4π

∫
C

dzN−1

zN−1

dzN

zN
. (50)

CThe  integration  domain  is  controlled  by  the  positivity
of the polynomial 

GN(0′,zN−1,zN) =− 1
4
KN−1z2

N −BN(0′,zN−1,0)zN

+GN(0′,zN−1,0) . (51)

zNThe integration over  can be easily performed to yield 

IN,N−2 =
1

4π

∫ rN−1,+

rN−1,−

I(zN−1)dzN−1

≡ 1
4π

∫ rN−1,+

rN−1,−

dzN−1

zN−1

× log
BN(0′,zN−1,0)−

√
∆(zN−1)

BN(0′,zN−1,0)+
√
∆(zN−1)

, (52)

rN−1,±where  are the two roots of the polynomial 

G(1)
N−1(z′,zN−1) =G(l, p1, . . . , pE−1) , (53)

and 
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∆(zN−1) =
[
BN(0′,zN−1,0)

]2
+KN−1GN(0′,zN−1,0)

=KNG(1)
N−1(0′,zN−1) . (54)

I(zN−1) 0 ∞
rN−1,−

rN−1,+
RN−1,− RN−1,+

RN−1,± GN(0′,zN−1,0)

C1

We are now interested in the singularities of the integ-
rand  in Eq. (52). Two poles exist, at  and , re-
spectively.  There  is  a  branch  cut  between  and

 for  the  square  root.  There  is  also  a  branch  cut
between  and  for  the  logarithm,  where

 are the two roots of the polynomial .
These singularities  are  depicted in Fig.  2.  We define the
integral path of Eq. (52) to be the upper half of the con-
tour . Hence, we obtain 

IN,N−2 =
1

8π

∫
C1

I(zN−1)dzN−1

=− 1
8π

∫
C2+C3+C4

I(zN−1)dzN−1 . (55)

C3 (−2πi)
zN−1 = 0

The integration around  is simply  multiply-
ing the residue at , i.e., 

− 1
8π

d
∫
C3

I(zN−1)dzN−1 =
i
4

d log
B̃N −

√
KNG̃(1)

N−1

B̃N +

√
KNG̃(1)

N−1

=
i
2

dM(1)
N,N−1 . (56)

C2 2πiOn the two sides of ,  the logarithm differs by ,
and 

− 1
8π

d
∫
C2

I(zN−1)dzN−1 =
i
4

d log
RN−1,+

RN−1,−

=
i
4

d log
B̃N −

√
KNG̃(2)

N−1

B̃N +

√
KNG̃(2)

N−1

=
i
2

dM(2)
N,N−1 . (57)

dMN,N−2
C4

zN−1→∞

From the  above,  we  observe  that  the  genuine  contri-
bution to  results only from the integration along

. For that, we must investigate the behavior of the log-
arithm  in  Eq.  (52)  in  the  limit .  We  first  note

G(1)
N−1(0′,zN−1) ∼ −KN−2z2

N−1/4
BN(0′,zN−1,0) zN−1

that  in  that  limit.  For
, it is a linear function of , and the coef-

ficient can be extracted as 

∂BN(0′,zN−1,0)
∂zN−1

=
∂G(l, p1, . . . , pE−1; pE , p1, . . . , pE−1)

∂zN−1

=
∂l · pE

∂zN−1

∂G(l, p1, . . . , pE−1; pE , p1, . . . , pE−1)
∂l · pE

+
∂l · pE−1

∂zN−1

∂G(l, p1, . . . , pE−1; pE , p1, . . . , pE−1)
∂l · pE−1

=
1
2

G(p1, . . . , pE−1; p1, . . . , pE−1)

+
1
2

G(p1, . . . , pE−2, pE−1; p1, . . . , pE−2, pE)

=
1
2

G(p1, . . . , pE−2, pE−1; p1, . . . , pE−2, pE−1+ pE) . (58)

Hence, we obtain 

dMN,N−2 =−
1

8π
d
∫
C4

I(zN−1)dzN−1

=
i
4

d log
CN −

√
−KNKN−2

CN +
√
−KNKN−2

, (59)

where 

CN =G(p1, . . . , pE−2, pE−1; p1, . . . , pE−2, pE−1+ pE) . (60)

WN,N−2

G̃N−2 = 0 gN−2

The  letter  can  be  readily  read  off.  Note  that
the Gram determinants in this letter only involve external
momenta. Hence, the letter has a well-defined limit when

 and  is not a master. We explain the mean-
ing of this later. 

2.    Even number of propagators

If N is  an even number, assuming no divergence, we
obtain the differential equation 

d
∫
C

dzN−1

zN−1

dzN

zN

√
G̃N

√
GN(0′,zN−1,zN)

= 4πdMN,N−2 , (61)

C GN(0′,zN−1,zN) ≥ 0
g(i)

N−1
zN

where the domain  is determined by .
Note  that  the  dependence  on  vanishes  in  this  case.
We select to integrate over  first and obtain 

dMN,N−2 =
1

4π
d
∫ rN−1,+

rN−1,−

dzN−1

zN−1

√
G̃N

√
GN(0′,zN−1,0)

 

 

MN,N−2

Fig.  2.    (color  online)  Branch cuts  and integration paths for
 with odd N.
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×
∫ rN,+

rN,−

dzN

zN

√
GN(0′,zN−1,0)
√

GN(0′,zN−1,zN)
, (62)

rN,±
GN(0′,zN−1,zN) zN zN−1

zN−1
GN(0′,zN−1,zN)

zN ∆ =K4G(1)
N−1×

(0′,zN−1) rN−1,±
G(1)

N−1(0′,zN−1)

where  are  the  two  roots  of  the  polynomial
 with respect to  (treating  as a con-

stant).  Consequently, the integration range of  is de-
termined  by  the  discriminant  Δ  of  (with
respect  to  the  variable ).  Expressing 

, we know that the bounds  are simply the
two  roots  of  the  polynomial .  Here,  we
define 

G(1)
N−1(z′,zN−1) =G(l, p1, . . . , pE−1) ,

G(2)
N−1(z′,zN) =G(l, p1, . . . , pE−1+ pE) . (63)

zNThe  integration  over  can  be  performed  using  Eq.
(35). We then obtain 

dMN,N−2 =
i
4

dIN,N−2 , (64)

where 

IN,N−2 =

∫ rN−1,+

rN−1,−

dzN−1

zN−1

√
G̃N

√
GN(0′,zN−1,0)

, (65)

rN−1,± G(1)
N−1(0′,zN−1)

GN(0′,zN−1,0) RN−1,±

where  are  the two roots  of . We de-
note  the  two  roots  of  as .  We  can
then write 

GN(0′,zN−1,0) = −1
4
K (2)

N−1(zN−1−RN−1,+)(zN−1−RN−1,−) ,
(66)

where 

K (2)
N−1 =G(p1, . . . , pE−2, pE−1+ pE) . (67)

We define 

t =
1

zN−1
, t± =

1
rN−1,∓

, T± =
1

RN−1,∓
. (68)

The integral can then be expressed as 

IN,N−2 =

∫ t+

t−

dt
√

(t−T+)(t−T−)

=2log
√

t+−T++
√

t+−T−√
tT++

√
tT−

. (69)

We now aim to rewrite the above expression in terms
of Gram determinants. Hence, we first write 

GN(0′,zN−1,0) =− 1
4
K (2)

N−1z2
N−1− B̃NzN−1+ G̃N ,

G(1)
N−1(0′,zN−1) =− 1

4
KN−2z2

N−1− B̃(1)
N−1zN−1+ G̃(1)

N−1 , (70)

where 

KN−2 =G(p1, . . . , pE−2) ,

B(1)
N−1(z) =G(l, p1, . . . , pE−2; pE−1, p1, . . . , pE−2) . (71)

The roots are given by 

t± =
B̃(1)

N−1±
√
K (1)

N−1G̃N−2

2G̃(1)
N−1

,

T± =
B̃N ±

√
KNG̃(2)

N−1

2G̃N
, (72)

where 

G(2)
N−1 =G(l, p1, . . . , pE−2, pE−1+ pE) , (73)

and we have used the relations 

B2
N +K

(2)
N−1GN =KNG(2)

N−1 ,(
B(1)

N−1

)2
+KNG(1)

N−1 =K
(1)
N−1GN−2 . (74)

l⋆ z = 0
l⋆ pE−1 pE−1+ pE

{p1, . . . , pE−2}
kµ l⋆ pµ pE−1

qµ pE−1+ pE kµ

pµ qµ

|k| =
√

k2 |p| =
√
−p2 |q| =

√
−q2

kµ pµ kµ⊥
pµ⊥
|k⊥| |p⊥|

We can now employ the geometric representations of
the Gram determinants in Eq. (31) to simplify the expres-
sions. Let  be the solution to ; we are interested in
the  components  of ,  and  orthogonal  to
the subspace spanned by .  For convenience,
we denote these components as  (for ),  (for )
and  (for ). We note that  is time-like, while

 and  are space-like. Hence, we can define the norms
, , and . We further denote

the components of  and  perpendicular to q as  and
,  respectively,  and  define  the  corresponding  norms as
 and . We can finally write 

t± =
sinh(η1)± i

2|k||p|cosh2(η1)
, T± =

sinh(η2)± i
2|k⊥||p⊥|cosh2(η2)

, (75)

η1 η2
k⊥ p⊥

θkp ≡ π/2− iη1
cosh(η1) = sinθkp i sinh(η1) = cosθkp

where  is the hyperbolic angle between k and p, and 
is the hyperbolic angle between  and . It will be con-
venient to define the imaginary angle  such
that  and ;  similarly,
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θkp,⊥q ≡ π/2− iη2 .
θpq

θkq ≡ π/2− iξ

We use  to denote the angle between p and q and
define ξ as the hyperbolic angle between k and q (with the
corresponding  imaginary  angle ).  We  then
obtain the relations 

|p⊥| =|p|sinθpq , |k⊥| = |k|sinθkq ,

cosθkp =cosθkq cosθpq+ cosθkp,⊥q sinθkq sinθpq . (76)

Thus, 

t±−T± ≡
P±±

2|k⊥||p⊥|sin2 θkp sin2 θkp,⊥q
, (77)

where 

P±± =(−i cosθkp± i) sin2 θkp,⊥q sinθpq sinθkq

− (−i cosθkp,⊥q± i) sin2 θkp . (78)

P±±
Substituting the  relation  (76),  we  may  express  the  func-
tions  as 

P++ =−8i sin2
(
θkp

2

)
cos2

(
θkq+ θpq

2

)
sin2

(
θkp,⊥q

2

)
,

P+− =8i sin2
(
θkp

2

)
cos2

(
θkq− θpq

2

)
cos2

(
θkp,⊥q

2

)
,

P−+ =−8i cos2
(
θkp

2

)
sin2

(
θkq+ θpq

2

)
sin2

(
θkp,⊥q

2

)
,

P−− =8i cos2
(
θkp

2

)
sin2

(
θkq− θpq

2

)
cos2

(
θkp,⊥q

2

)
. (79)

Using trigonometry identities together with the relations 

cosθpq =cosθkp cosθkq+ cosθpq,⊥k sinθkp sinθkq ,

sinθpq =sinθpq,⊥k
sinθkp

sinθkp,⊥q
, (80)

we obtain a surprisingly simple result: 

IN,N−2 = 2loge−iθpq,⊥k = log
cosθpq,⊥k − i sinθpq,⊥k

cosθpq,⊥k + i sinθpq,⊥k
, (81)

θpq,⊥k p⊥k q⊥kwhere  is  the  angle  between  and .  It  is
straightforward  to  rewrite  the  above  expression  in  terms
of Gram determinants, and we finally obtain 

dMN,N−2 =
i
4

d log
D̃N −

√
−G̃NG̃N−2

D̃N +

√
−G̃NG̃N−2

, (82)

D̃N = DN(0)where  and 

DN(z) =G(l, p1, . . . , pE−1; l, p1, . . . , pE−1+ pE) . (83)
 

D.    Dependence on further lower sub-sectors
dgN gN−3

ϵ
dgN gN−3

ϵ

(N −3)

dMN,N−3 = 0

In the convergent case,  cannot depend on  or
integrals with even fewer propagators. For odd N, this can
be  easily  observed  from  the  powers  of  in  Eq.  (11).
However, for even N,  and  are multiplied by the
same  power  of  in the  differential  equations.  Sub-
sequently, we  must  examine  the  three-fold  integrals  ap-
pearing in the differential equations under the -cut.
The first  two  folds  can  be  performed  using  the  calcula-
tions  in  Section  III.C.2,  and  the  last  fold  can  be  studied
similar to those in Section III.C.1. Finally, we can arrive
at the conclusion that  in the convergent case.
However, note that such dependence can be present in the
divergence cases, as discussed in the next section. 

IV.  LETTERS IN DIFFERENTIAL EQUATIONS:
DIVERGENT CASES

We now consider the scenario in which some cut in-
tegrals become divergent and we cannot perform a Taylor
expansion  for  the  integrands.  As  discussed  earlier,  this
occurs when certain Gram determinants vanish under the
maximal cut,  and  the  corresponding  integrals  are  redu-
cible to  lower  sectors.  A  classical  example  is  the  mass-
less three-point integral that can be reduced to two-point
integrals. Reducible higher-point integrals can occur with
specific configurations  of  external  momenta,  which  ap-
pear,  e.g.,  at  boundaries  of  differential  equations  or  in
some effective field theories.  Divergent cut integrals can
have two types of consequences, which we discuss in the
following. 

N,N−2 (N−1)A.     dependence with a reducible -point
integral

dgN gN−2

g(1)
N−1

rN−1,±
G(1)

N−1(0′,0) = 0 zN−1

ϵ
dMN,N−2

We  consider  the  dependence  of  on  when
 is reducible, where N is even. Following the deriva-

tion in Section III.C.2, we observe that now one of 
is  zero  and .  Hence,  integration  over 
is  divergent  and we cannot perform Taylor expansion of
the  integrand  in .  Moreover,  we  observe  that  the  entry

 obtained in Section III.C.2 is divergent. To pro-
ceed,  we  can  maintain  the  regulator  in  the  differential
equation: 

d
∫
C

dzN−1

zN−1

dzN

zN

√
G̃N

√
GN(0′,zN−1,zN)

[
− KN

GN(0′,zN−1,zN)

]ϵ
=ϵ dMN

∫
C

dzN−1

zN−1

dzN

zN
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×

√
G̃N

√
GN(0′,zN−1,zN)

[
− KN

GN(0′,zN−1,zN)

]ϵ
+4πdM⋆N,N−2

(
−KN−2

G̃N−2

)ϵ
+O(ϵ) , (84)

dM⋆N,N−2
g(1)

N−1
O(ϵ)

(N −1)
g(2)

N−1 G(2)
N−1(0′,0)

zN ϵ→ 0

where  denotes  the  entry  in  the  divergent  case.
Note that  is not a master integral and does not con-
tribute to the right-hand side, while the last  denotes
a  suppressed  contribution  from  another -point in-
tegral . Here, we assume that  is non-zero
and the integration over  is convergent for .

We now must  perform Laurent  expansions of  the in-
tegrands in terms of distributions. We write 

G(1)
N−1(0′,zN−1) =

1
4
KN−2zN−1 (t− zN−1) ,

t =−
4B̃(1)

N−1

KN−2
. (85)

We can then use 

∫ t

0

dz
z1+ϵ f (z) = − t−ϵ

ϵ
f (0)+

∫ t

0

dz
z1+ϵ

[
f (z)− f (0)

]
, (86)

to perform the series expansion. In particular, we obtain 

∫
C

dzN−1

zN−1

dzN

zN

√
G̃N

√
GN(0′,zN−1,zN)

[
− KN

GN(0′,zN−1,zN)

]ϵ

=iπ
∫ t

0

dzN−1

z1+ϵ
N−1

√
G̃N

√
GN(0′,zN−1,0)

×
[
1+ ϵ h(zN−1)+O(ϵ2)

]
=iπ

[
− 1
ϵ
+ log(t)−h(0)

+

∫ t

0

dzN−1

zN−1


√

G̃N
√

GN(0′,zN−1,0)
−1


]
+O(ϵ) ,

(87)

h(zN−1)
ϵ zN zN−1→ 0
where the function  results  from the expansion in

 after integrating over . When , it reduces to 

h(0) = log

4K (1)
N−1

B̃(1)
N−1

+4log(2) . (88)

G̃(1)
N−1→ 0

1/zN−1

The last  integral  in  Eq.  (87)  can  be  obtained  by  ob-
taining the limit  in the difference between Eq.
(82) and a simple integral of : 

∫ t

0

dzN−1

zN−1


√

G̃N
√

GN(0′,zN−1,0)
−1


= lim

G̃(1)
N−1→0

log
D̃N −

√
−G̃NG̃N−2

D̃N +

√
−G̃NG̃N−2

− log
B̃(1)

N−1+

√
G̃N−2K (1)

N−1

B̃(1)
N−1−

√
G̃N−2K (1)

N−1

 .
(89)

Using the relations 

−GNGN−2 =D2
N −G(1)

N−1G(2)
N−1 ,

GN−2K (1)
N−1 =

(
B(1)

N−1

)2
+G(1)

N−1KN−2 , (90)

we can simplify the expression and obtain 

∫ t

0

dzN−1

zN−1


√

G̃N
√

GN(0′,zN−1,0)
−1

 = log
G̃NKN−2

K (1)
N−1G̃(2)

N−1

. (91)

Now,  we  can  combine  everything,  and  we  observe
that in the divergent case (for even N), 

W⋆N,N−2 =
G̃N−2KN

K (1)
N−1 G̃(2)

N−1

. (92)

G̃(1)
N−1→ 0

Comparing to  Eq.  (92),  we note  that  the  letter  in  the
divergent case is simpler (without square roots) than that
in  the  convergent  case.  Interestingly,  this  simple  letter
can  be  obtained  without  using  the  tedious  calculation
above.  We observe  that  in  the  divergent  case ,
we have the relation 

g̃(1)
N−1 = −

1
2

g̃N−2 . (93)

dM(1)
N,N−1

dMN,N−2 dM⋆N,N−2

This  hints  that  we  should  combine  and
 to obtain :

 

dM⋆N,N−2 = lim
G̃(1)

N−1→0

(
−1

2
dM(1)

N,N−1+dMN,N−2

)

=
i
4

lim
G̃(1)

N−1→0

log
D̃N −

√
−G̃NG̃N−2

D̃N +

√
−G̃NG̃N−2

− log
B̃(1)

N −
√
−G̃NK (1)

N−1

B̃(1)
N +

√
−G̃NK (N)

3

 . (94)

Using the relations in Eq. (90) as well as 
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−GNK (1)
N−1 =

(
B(1)

N

)2
+G(1)

N−1KN , (95)

we can easily arrive at Eq. (92).
G̃(2)

N−1 = 0
g(1)

N−1 g(2)
N−1

dM(2)
N,N−1

g(i)
N−1

Further  divergences  may  occur  if  in  Eq.
(92).  In  this  case,  both  and  are  reducible  to
lower-point integrals. The corresponding letter can be ob-
tained by including , but we do not elaborate on
the calculation here.  We finally note that  the above con-
siderations  can  also  be  applied  to  the N-odd cases,  al-
though here  can only be reducible for specific con-
figurations  of  external  momenta.  We  discuss  similar
scenarios in the next subsection. 

N,N−3 (N−2)B.     dependence with a reducible -point
integral

dgN

gN g(i)
N−1 g(i)

N−2
g(i)

N−2
dgN (N −3)

In  the  convergent  case,  we  have  observed  that 
can  only  depend  on , ,  and .  This  picture
changes in the divergent case when one of  is redu-
cible, and  may develop dependence on some -
point  integrals.  As  a  practical  example,  we  consider  the
dependence of 5-point integrals on 2-point ones. Accord-
ing to Eq. (17), we obtain 

dg̃5 =ϵ dM5 g̃5+ ϵ
∑

i

dM(i)
5,4 g̃(i)

4 + ϵ
∑

i

dM(i)
5,3 g̃(i)

3

+ ϵ dM5,2 g̃2 , (96)

z1 z2where the cut on  and  is imposed. Using Eq. (11), we
arrive at 

dM5,2+O(ϵ) =
ϵ

8π
dI5,2(ϵ)− ϵ

4π

5∑
i=3

dM(i)
5,4 I(i)

4,2(ϵ)

− ϵ
2

5∑
i=3

dM(i)
5,3 I(i)

3,2(ϵ) , (97)

where 

I5,2(ϵ) =
∫

dz3

z3

dz4

z4

dz5

z5

(
− K5

G5(0,0,z3,z4,z5)

)ϵ
,

I(i)
4,2(ϵ) =

∫
dz j

z j

dzk

zk

√
G(i)

4 (0,0,0,0)√
G(i)

4 (0,0,z j,zk)

×
− K (i)

4

G(i)
4 (0,0,z j,zk)

ϵ ,
I(i)
3,2(ϵ) =

∫
dzi

zi

− K (i)
3

G(i)
3 (0,0,zi)

ϵ , (98)

j < k j,k , i
ϵ

ϵ→ 0
G(i)

3 (0,0,0)
G(3)

3 (0,0,0) = 0 G(i)
3 (0,0,0)

I(i)
3,2(ϵ)

I(4)
4,2(ϵ) I(5)

4,2(ϵ)
−iπ/ϵ +O(ϵ0)

I5,2(ϵ)

where  and .  We  note  that  each  term  on  the
right-hand  side  of  Eq.  (97)  has  a  factor  of .  Therefore,
the term can only contribute if the integral is divergent in
the  limit .  For  that  to  occur,  at  least  one  of

 must  vanish.  For  simplicity,  we  assume
, while the other two 's are non-

zero.  Generally,  it  is  clear  that  the  terms  do  not
contribute  since  they  are  either  zero  or  non-divergent.
The  integrals  and  are  similar  to  Eq.  (87)
with  the  result .  Therefore,  we  only  require
to address the divergent part of : 

I5,2(ϵ) =
∫

dz3

z3

dz4

z4
[∆(z3,z4)]−ϵ

× log
B(5)

5 (0,0,z3,z4,0)−
√
∆(z3,z4)

B(5)
5 (0,0,z3,z4,0)+

√
∆(z3,z4)

+O(ϵ0) , (99)

where 

∆(z3,z4) =K5G(5)
4 (0,0,z3,z4) . (100)

z4

∆−ϵ

z3→ 0
ϵ

z−ϵ3 z−1−ϵ
3

1/ϵ

The integration over  is  similar  to  Eq.  (52),  except
for the additional factor , which regularizes the diver-
gence as . Since we are only interested in the lead-
ing  term in ,  it  is  equivalent  to  replacing  this  factor  by

.  We can  then  expand  in  terms  of  distributions.
Maintaining only the  terms, we obtain 

dI5,2(ϵ)+O(ϵ0)

=− 1
ϵ

d
∫

dz4

z4
log

B(5)
5 (0,0,0,z4,0)−

√
∆(0,z4)

B(5)
5 (0,0,0,z4,0)+

√
∆(0,z4)

=− 1
ϵ

(
2πidM(4)

5,4+2πidM(5)
5,4+4πdM(3)

5,3

)
, (101)

where the second line follows from the calculation of Eq.
(52). We finally arrive at 

dM5,2 = −
1
2

dM(3)
5,3 = −

i
8

d log
C5−

√
−K5K3

C5+
√
−K5K3

, (102)

where 

C5 =G(p1, p2, p3, p4; p1, p2, p3, p4+ p5) . (103)

g(3)
3 = −g2/2

G̃3 dM5,2

dM5,3

The  result  in  Eq.  (102)  is  unsurprising  owing  to  the
relation .  Similar  behaviors  are  observed
when more than one  vanish. The corresponding 
is then a linear combination of several 's. Hence, we
conclude  that  letters  in  these  cases  can  also  be  obtained
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straightforwardly without tedious calculations.

dMN,N−3 g(i)
N−2

g(i)
N−3

dMN,N−4

The  above  discussion  relates  the  appearance  of
 to  the  reducibility  of  one  or  more 's.  We

may consider that,  if  in addition, one or more 's be-
comes  reducible,  can  appear  in  the  differential
equations.  This  is  impossible  for  integrals  with  generic
external  momenta  (i.e.,  the E external momenta  are  in-
deed  independent).  However,  such  cases  may  occur  at
certain boundaries of kinematic configurations. When this
occurs,  the  corresponding  letters  can  be  easily  obtained
using the  reduction  rules  among the  integrals,  as  is  con-
ducted in the previous paragraph. 

V.  SUMMARY AND OUTLOOK

In  summary,  we  have  studied  the  alphabet  for  one-
loop  Feynman  integrals.  The  alphabet  governs  the  form
of the  canonical  differential  equations  and  provides  im-
portant  information  on  the  analytic  solution  of  these
equations. We observe that the letters in the alphabet can

ϵ→ 0

2→ 3

be  generically  constructed  using  UT  integrals  in  the
Baikov  representation  under  various  cuts.  We  have  first
considered cases in which all the cut integrals are conver-
gent  in  the  limit . The  corresponding  letters  coin-
cide with the results in [37–39], while our expressions are
simpler in  certain  cases.  We  have  also  thoroughly  stud-
ied the  cases  of  divergent  cut  integrals.  We observe that
letters in the divergent cases can be easily obtained from
the convergent  cases  by applying certain  limits.  The let-
ters admit universal expressions in terms of various Gram
determinants.  We  have  checked  our  general  results  for
several  known  examples  and  observed  agreements.  We
have also applied our results to the complicated case of a

 amplitude  with  seven  physical  scales.  The  details
of that is presented in Ref. [44].

2→ 3 2→ 4
We expect that our results will be useful in many cal-

culations of  and  amplitudes, which are the-
oretically  and/or  phenomenologically  interesting.  It  is
also  interesting  to  observe  whether  similar  universal
structures can be obtained at higher loop orders using the
UT integrals in the Baikov representation of [16, 23].
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