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I.  INTRODUCTION

Scattering  amplitudes  are  fundamental  to  theoretical
predictions  in  perturbative  quantum  field  theory.  Next
generation  colliders,  such  as  the  CEPC  [1, 2],  CLIC
[3– 8],  FCC-ee[9],  ILC  [10],  and  future  muon  colliders
[11, 12], are expected to provide a clean environment for
precision  measurements  because  they  adopt  lepton
beams. Therefore,  they  are  necessary  for  providing  pre-
cise theoretical  predictions,  for  which  computed  scatter-
ing amplitudes in QED are essential.

Traditionally, Feynman  diagrams  are  used  to  com-
pute scattering amplitudes, which originate from the Lag-
rangian formalism of quantum field theory,  where mass-
less  gauge  bosons  are  represented  as  vector  fields.  Such
representation introduces unphysical degrees of freedom,
which must be removed via gauge fixing conditions. As a
result,  individual  Feynman diagrams are often gauge-de-
pendent, and physical results are obtained after summing
all  Feynman  diagrams.  This  gauge  redundancy  often
leads to a rapidly growing number of Feynman diagrams
as  the  number  of  external  legs  increases,  and  thus  the
complexity increases significantly.

Powered  by  locality  and  unitarity,  on-shell  methods
[13, 14] provide an alternative way to eliminate gauge de-
pendency  in  the  intermediate  steps  by  constructing  full
amplitudes using only on-shell amplitudes. Initially, these

were discovered for pure Yang-Mills theory and then ex-
tended  to  include  quarks  [15],  gravity  [16, 17]1),  and
SYM  theory  [18].  Besides  the  analytical  properties  and
validity of on-shell recursion relations, numerical studies
have  also  been  performed  to  compare  them  with  other
methods.  In  particular,  in  Ref.  [19],  the  efficiency  of
purely color-ordered gluon amplitudes are studied, and in
Ref. [20], the efficiency of evaluating the full amplitudes
of gluons is studied.

e+e−→ nγ [1,5⟩
[5,2⟩
e−e+→ 4γ

e−e+→ 4γ

However, for QED, which is an Abelian theory, such
a  method  was  first  applied  in  Ref.  [21]  to  the  process

,  where  the  shift (in our  all-out  conven-
tions, this corresponds to the  shift) was explored for
the NMHVA of the process . The dressed ver-
sion  was  proposed  in  Ref.  [22]  to  obtain  compact  forms
of amplitudes. Despite these progresses, the core issue of
which  shift  is  simplest  and  provides  the  most  economic
method for  realistic  application  has  not  yet  been  ad-
dressed. In this study, we address this core issue and ex-
amine all  possible  shifts  of  the NMHVA for  the process

. Based on our observations, we propose a nov-
el shift that is the sum of a few shifts and can produce the
correct  amplitude,  and  we  generalize  our  finding  for  the
amplitudes of more general processes.

0→ e+e−4γ 0→ e+e−5γ 0→ e+e−6γ

We  adopt  Feynman  diagrams  in  the  Berends-Giele
(BG) gauge [23] to compute the helicity amplitudes of the
processes , ,  and .
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0→ e+e−4γ
z→∞

[1−,γ+⟩ [γ−i ,γ
−
j ⟩

0→
e−e+γ+1 · · ·γ+n γ−1 · · ·γ−m 1 < m ≤ n

Subsequently,  we  use  a  numerical  approach  to  examine
the  equivalence  of  different  shifts  for  the  process

 and  study  the  boundary  terms  for  different
shifts  in  the  limit .  Following  this,  we  propose  a
novel shift (known as the LLYZ shift), which could have
several  realistic  computational  advantages,  though  for
each  of  the  shifts,  the  boundary  term  is  non-vanishing.
We also find that the shifts  and  of a pair
of photons, each with a negative helicity, for the process 

 with  can have  a  manage-
able number  of  amplitude  terms,  which  should  be  con-
sidered in realistic computations.

0→ e+e−4γ 0→ e+e−5γ 0→ e+e−6γ

0→ e+e−4γ

0→ e−e+nγ

This  paper  is  organized  as  follows.  In  section  II,  we
briefly  review  the  BCFW  method.  In  section  III,  we
present  the  helicity  amplitudes  of  the  processes

, ,  and .  In section IV,
we  examine  all  shifts  within  the  BCFW  method  for  the
NMHV  amplitude  of  the  process  and  pay
particular attention to the boundary limits. Then, we pro-
pose a so-called LLYZ shift. In section V, we prove that
this shift  can work for amplitudes of the general process

.  In  section  VI,  we  examine  the  number  of
terms in the amplitudes and independent amplitudes for a
few shifts.  Finally,  we  conclude  this  study  with  discus-
sions. 

II.  BCFW RECURSION RELATION

A = A(1,2, · · · ,
i, · · · , j, · · · ,n)

Considering  a  tree-level  amplitude 
, we can shift the momenta of particles i and

j by the following shift on the spinors: 

|î⟩ = |i⟩ , |î] = |i]+ z| j] , | ĵ⟩ = | j⟩− z|i⟩ , | ĵ] = | j] . (1)

[i, j⟩
[i| | j⟩ [ j| |i⟩

We refer  to  this  as  the  shift,  which changes the
spinors  and  while leaving the spinors  and  un-
changed.

With the above shift,  it  is  clear  that  momentum-con-
servation is preserved. 

| ĵ⟩[ ĵ|+ |î⟩[î| = | j⟩[ j|+ |i⟩[i|. (2)

A = A(1,2,
· · · , î, · · · , ĵ, · · · ,n) = A(z)

As a result, the amplitude is continued across the en-
tire complex plane of z as the analytic function 

.  Considering  the  contour  integral
on the z plane, 

I =
∮

A(z)
z
, (3)

where  the  contour  is  sufficiently  large  so  that  all  finite
singularities are inside the contour, we have 

0 = Resz→0
A(z)

z
+

∑
z,∞,z,0

Resz
A(z)

z
+Resz→∞

A(z)
z
. (4)

B = −Resz→∞
A(z)

z
Resz→0

A(z)
z
= A(0)

For later  use,  we define  as the  bound-

ary term.  is the original amplitude be-
fore analytic continuation. Then, we have 

A(0)−B = −
∑

z,∞,z,0

Resz
A(z)

z
. (5)

i j
B = 0

A(z)

z→ zI

1
P̂2

L

P̂L =
∑
k∈L

pk

With an appropriate choice of shift in the two legs ,
we can make the boundary term vanishing, i.e., . In
such  a  case,  it  is  known  that  the  finite  singularities  of
amplitude  only originate  from propagator  denomin-
ators,  and  the  amplitude  can  then  be  factorized.  Thus,
near the singular region , the amplitude can be fac-
torized into left-hand and right-hand parts, which are con-

nected by a propagator  and , i.e., the amp-
litude can be expressed as 

A(z)
P̂2

L→0
−−−−→

∑
h

ÂL(zI ,h)
1

P̂2
L

ÂR(zI ,−h)

=− zI

z− zI

∑
h

ÂL(zI ,h)
1

P2
L

ÂR(zI ,−h) , (6)

ÂL(zI ,h) ÂR(zI ,−h)
where L (R)  denotes  the particles  in  the left-hand (right-
hand) side, and  ( ) is the sub-amplitude
formed by the particles L (R).

A(0)
With the factorizability near the pole regions and the

analyticity given in (4), we can obtain the amplitude 
in terms of on-shell amplitudes with fewer external legs. 

A(0) = −
∑

i∈L, j∈R

∑
h

ResP̂2
i (z)=0

1
z

ÂL(zI ,h)
1

P̂2
L(z)

ÂR(zI ,−h)

(7)
 

=
∑

i∈L, j∈R

∑
h

ÂL(zI ,h)
1

P2
L

ÂR(zI ,−h), (8)

which are the famous BCFW recursion relations. The ad-
vantage  of  assembling  on-shell  amplitudes  into  the  full
amplitudes  lies  in  the  fact  that  the  subamplitudes  are
gauge independent and calculations can be more efficient. 

III.  HELICITY AMPLITUDES OF THE PRO-
CESSES 0→e−e+4γ, 0→e−e+5γ, AND 0→e−e+6γ

0→ e−e+γγγγ
4−6 = −2

In  this  study,  we  follow the  conventions  in  [24]  and
use all-out conventions for all amplitudes. First, it is use-
ful  to  know  the  mass  dimension  of  the  amplitudes.  For
the  process ,  the  mass  dimension  of  the
amplitudes is equal to .

0→ e−e+γγγγThe  helicity  amplitudes  of  include  24
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Feynman diagrams, and there are only two types of inde-
pendent  helicity  amplitudes:  one  is  the  MHV,  and  the
other is the NMHV. In Fig. 1, two Feynman diagrams for
each of these two types of amplitudes are presented.

The  MHV  amplitude  can  be  computed  using  the
Feynman  diagram  method.  In  the  BG  gauge  [23],  the
spinors of a photon can be expressed as 

ϵ−(i) =
|i⟩[qi|
[iqi]

, ϵ+(i) =
|qi⟩[i|
⟨qii⟩

, (9)

qi

q6 = 2
q3 = q4 = q5 = 1

where  the  momentum  denotes the  reference  mo-
mentum.  By  choosing  the  reference  momenta  as 
and  and  computing  six  nonvanishing
Feynman  diagrams,  as  shown  in Fig.  1.a) (where  dia-
grams  with  all  permutations  of  (3,  4,  5)  should  be
summed), we  find  that  the  MHV  amplitudes  can  be  ex-
pressed as 

Atree
6 (1−e ,2

+
ē ,3
+
γ ,4
+
γ ,5
+
γ ,6
−
γ ) = Q4

e
⟨12⟩2⟨16⟩2

⟨13⟩ ⟨23⟩ ⟨14⟩ ⟨24⟩ ⟨15⟩ ⟨25⟩ .
(10)

3↔ 4 4↔ 5 5↔ 3

[1,2⟩

Clearly, the  amplitude  is  invariant  under  the  ex-
change , or , or , which is expected ow-
ing to  the  bosonic  nature  of  photons.  Such an amplitude
can also be obtained using the BCFW method and taking
the  shift. Then, utilizing boson exchange symmetry,
we arrive at the amplitude 

⟨16⟩2
⟨23⟩ ⟨24⟩ ⟨25⟩

{
⟨23⟩2

⟨13⟩ ⟨43⟩ ⟨53⟩ +
⟨24⟩2

⟨14⟩ ⟨34⟩ ⟨54⟩

+
⟨25⟩2

⟨15⟩ ⟨35⟩ ⟨45⟩

}
. (11)

After combining all  terms in the brackets, it  is found
that 

⟨23⟩2
⟨13⟩ ⟨43⟩ ⟨53⟩ +

⟨24⟩2
⟨14⟩ ⟨34⟩ ⟨54⟩ +

⟨25⟩2
⟨15⟩ ⟨35⟩ ⟨45⟩

=
⟨12⟩2

⟨13⟩ ⟨14⟩ ⟨15⟩ . (12)

0→ e−(1−)e+(2+)γ−(3−)γ+(4+) · · · γ+(n+)

We then arrive at the result given in Eq. (10) from Eq.
(11). The MHV helicity amplitudes with more photons of
the  process  can
be assumed as 

Atree
n (1−e ,2

+
ē ,3
−
γ ,4
+
γ ,5
+
γ ,6
+
γ , · · · ,n+γ )

→ Atree
4 (1−e ,2

+
ē ,3
−
γ ,4
+
γ )
⟨12⟩
⟨15⟩ ⟨25⟩ · · ·

⟨12⟩
⟨1n⟩ ⟨2n⟩ , (13)

4,5, · · · ,

which have the correct mass dimensions, the correct heli-
city index for each spinor, and boson exchange symmet-
ries among indices (  and n).

[1,2⟩Using  the  BCFW  method  and  taking  the  shift ,
we can obtain the amplitude in the following form: 

⟨13⟩2
⟨24⟩ · · · ⟨2n⟩

{
⟨24⟩n−4

⟨14⟩⟨54⟩⟨64⟩ · · · ⟨n4⟩ + · · ·

+
⟨2n⟩n−4

⟨1n⟩⟨4n⟩⟨5n⟩ · · · ⟨(n−1)n⟩

}
, (14)

which maintains  the  boson  exchanging  symmetries.  Us-
ing induction, we can arrive at the result given in Eq. (13)
from  Eq.  (14).  Therefore,  the  MHV  amplitudes  of  QED
can be elegantly expressed as 

Atree
n (1−e ,2

+
ē ,3
−
γ ,4
+
γ ,5
+
γ ,6
+
γ , · · · ,n+γ )

=Qn−2
e

⟨13⟩2⟨12⟩n−4

⟨14⟩ ⟨24⟩ ⟨15⟩ ⟨25⟩ · · · ⟨1n⟩ ⟨2n⟩ , (15)

which has only one term and was obtained in [23].

q3 = q4 = 1 q5 = q6 = 2

The  NMHV  amplitude  can  be  computed  using  the
Feynman diagram method in the BG gauge. By choosing
the  gauge  with  and  and comput-
ing eight non-vanishing Feynman diagrams, we arrive at
the amplitude of the NMHV, which can be expressed as 

Atree
6 (1−e ,2

+
ē ,3
+
γ ,4
+
γ ,5
−
γ ,6
−
γ )

=Q4
e

{
1

⟨13⟩ ⟨23⟩ ⟨14⟩ ⟨24⟩ [15][25][16][26]
S 1

6 +S 2
6

}
, (16)

S 1
6where  the  term  is  computed  from  the  four  Feynman

diagrams given in Fig. 2, as follows: 

S 1
6 = ⟨12⟩ [12] ⟨1| ̸k156|2] S 156 = ⟨12⟩ [12] ⟨1|5+6|2] S 156 ,

(17)

When we consider the soft  limits,  it  is  noted that the
following two relations are crucial: 

 

0→ e−(1)
e+(2)γ(3)γ(4)γ(5)γ(6)
Fig.  1.    Two non-vanishing Feynman diagrams of 

.
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⟨1|̸k156|2] = −⟨1|̸k234|2] (18)

and 

S 234 = S 156 = (k2+ k3+ k4)2 = (k1+ k5+ k6)2 , (19)

k1+ k2+ k3+ k4+ k5+ k6 = 0
S 1

6
S 1

6
3↔ 4 5↔ 6

which  are  the  direct  results  of  momentum  conservation
.  These  two  relations  are  also

helpful  for  understanding  the  symmetric  features  of .
Clearly,  is invariant  under  the  exchange  transforma-
tions  and .

S 2
6The  term  can  be  expressed  in  symmetric  form

from the four Feynman diagrams given in Fig. 3 as 

S 2
6 =

1
⟨14⟩ [26]

⟨15⟩ [23]
[15] ⟨23⟩

⟨6|̸k236|4]
S 236

+
1

⟨14⟩ [25]
⟨16⟩ [23]
[16] ⟨23⟩

⟨5|̸k235|4]
S 235

+
1

⟨13⟩ [26]
⟨15⟩ [24]
[15] ⟨24⟩

⟨6|̸k246|3]
S 246

+
1

⟨13⟩ [25]
⟨16⟩ [24]
[16] ⟨24⟩

⟨5|̸k245|3]
S 245

. (20)

⟨i|i+ j+ k| j] = ⟨i|k| j]
S 2

6

Using  the  fact  that ,  we  can
present the term  as
 

S 2
6 =

1
⟨14⟩ [26]

⟨15⟩ [23]
[15] ⟨23⟩

⟨6|2+3|4]
S 236

+
1

⟨14⟩ [25]
⟨16⟩ [23]
[16] ⟨23⟩

⟨5|2+3|4]
S 235

+
1

⟨13⟩ [26]
⟨15⟩ [24]
[15] ⟨24⟩

⟨6|2+4|3]
S 246

+
1

⟨13⟩ [25]
⟨16⟩ [24]
[16] ⟨24⟩

⟨5|2+4|3]
S 245

(21)

 

= [P(5,6)][P(3,4)]
1

⟨14⟩ [26]
⟨15⟩ [23]
[15] ⟨23⟩

⟨6|2+3|4]
S 236

,

(22)

where  we  have  use  the  permutation  group  symbols

[P(5,6)] [P(3,4)] [P(i, j)]

[P(i, j)] = E+P(i, j)
5 6 3 4

 and  to  simplify  the  results.  de-
notes  the  sum  of  all  group  elements  of  the  permutation
group  of  two  objects,  i.e., .  Because
photons  and  (  and )  have the same helicity,  there
are boson exchange symmetries.

3↔ 4 5↔ 6
S 2

6

In total, the amplitude given in Eq. (16) is manifestly
invariant  under  the  exchanges  and , as  re-
quired  by  boson  exchange  symmetry.  We  note  that 
vanishes  when any one of  the  photons  moves  toward its
soft limit.  With this property, the form given in Eq. (16)
has good features when considering all soft and collinear
limits.

n!

2

0→ e−e+5γ
0→ e−e+6γ

It should be noted that although a general form of the
amplitudes with an arbitrary number of photons was for-
mulated in terms of Feynman diagrams in reference [25],
the number of terms increases with  (n is the number of
photons). In contrast,  in the BG gauge, there is only one
compact term for the MHV amplitudes, as shown above.
Although  there  is  no  general  form  of  the  NMHV  and
N MHV (or  higher)  amplitudes  for  more  photons  in  the
BG gauge,  the  actual  forms  of  the  NMHV or  higher  or-
der  amplitudes  are  dependent  on  the  helicity  sequences
(or  spin  chain  of  photons).  Once  the  helicity  sequences
are specified,  it  it  straightforward  to  express  the  amp-
litudes  in  terms  of  spinor  brackets  and  permutation
groups. Below, we present the amplitudes of 
and  for later reference.

f̄ (2+)
f (1−)

+++−−− ++−+−−

++++−−−
+++−+−− ++−++−−

+++++−−− ++++−+−−
+++−++−− ++−+++−− 2

++++−−−− +++−+−−−

To  realize  boson  exchange  symmetry,  in  the  total
amplitude,  all  possible  permutations  of  photons  with  the
same  helicities  must  be  considered.  For  these  helicity
configurations,  both  end  particles,  denoted  as  and

,  are  fixed,  and  the  helicities  of  photons  adjoined
with  fermion  particles  are  also  fixed  in  the  BG  gauge.
These  facts  constrain  all  allowed helicity  configurations.
For  the  NMHV  6-point  amplitude,  there  are  only  two
helicity  configurations,  i.e.,  and .
For the NMHV 7-point amplitude, there are only three al-
lowed  helicity  configurations,  i.e., ,

,  and . Moreover,  for  the  NM-
HV 8-point  amplitude,  there  are  only  four  allowed  heli-
city  configurations,  i.e., , ,

,  and .  For  the  N MHV  of
the 8-point amplitude, there are only six allowed helicity
configurations,  i.e., , ,

S 1
6Fig. 2.    Four Feynman diagrams contributing to the term .
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++−++−−− +++−−+−− ++−+−−+−−
++−−++−−

0→ e−e+γ+1 · · · γ+n γ−1 · · ·γ−m m ≤ n

, , ,  and
. For  more  general  amplitudes  of  the  pro-

cess  with ,  the number of
allowed helicity configurations is given as 

NS =
(m+n−2)!

(m−1)! (n−1)!
, (23)

(m+n)!

which is significantly less than the number of amplitudes
constructed  directly  from  Feynman  diagrams  (which
should be counted as ).

It  is  noteworthy  that  terms  calculated  in  the  helicity
amplitude can be combined into a form with fewer terms;
for example,  there  is  only  one  term  for  the  MHV  amp-
litudes.  For  helicity  amplitudes  beyond  the  MHVA,  a
smaller  number  of  terms  can  be  achieved,  similar  to  the
helicity  amplitudes  given  in  Eq.  (25),  Eq.  (30),  and  Eq.
(35).  In  contrast,  if  we  construct  the  amplitude  directly
from Feynman diagrams, there are n! terms, regardless of
the helicity structure assumed.

Atree
7 (1−e ,2

+
ē ,3
+
γ ,4
+
γ ,

5+γ ,6
−
γ ,7
−
γ )

Subsequently, the NMHV amplitude 
 can be efficiently computed using the off-shell

amplitude  method  in  the  BG gauge.  Using  the  Feynman
diagrams given in Fig.  4 as examples  and the  boson ex-
change symmetries of photons that have the same helicit-
ies, we  can  obtain  the  total  amplitude.  In  terms  of  heli-
city  configurations,  the  total  amplitude can be organized
into the following form: 

Atree
7 (1−e ,2

+
ē ,3
+
γ ,4
+
γ ,5
+
γ ,6
−
γ ,7
−
γ ) = Q5

e

{
S 1

7 +S 2
7 +S 3

7

}
, (24)

S i
7where each  term is given below.

 

S 1
7 =

⟨12⟩2 [12] ⟨1|6+7|2] S 167∏
i=3,4,5 ⟨1i⟩ ⟨2i⟩∏ j=6,7[1 j][2 j]

, (25)

 

S 2
7 =

⟨12⟩∏
i=3,4,5 ⟨1i⟩ [P(6,7)]

[
⟨17⟩

[17][26]
[P(34,5)]

× ⟨1|3+4|2]
⟨23⟩ ⟨24⟩

[5|1+7|6⟩
S 157

]
, (26)

 

S 3
7 =[P(6,7)]

⟨17⟩2
[17][26]

[
[P(3,45)]

× [23]
⟨23⟩

1
⟨14⟩ ⟨15⟩S 236

[P(4,5)]
[5]7[4|2+3|6⟩

S 157

]
,

(27)

S 1
7

++++−−−
S 2

7
+++−+−−

S 3
7

++−++−−
[P(34,5)]

E+P35+P45
3 4

5
[P(34,5)]

where  includes the contribution of  diagrams with the
helicity configuration , as given in Fig. 4.a),

 includes the  contribution  of  diagrams  with  the  heli-
city configuration , as given in Fig. 4.b), and

 includes the  contribution  of  diagrams  with  the  heli-
city  configuration ,  as  shown  in Fig.  4.c).
The  symbol  denotes  the  sum  of  the  subset  of
the  permutation  group , because  the  sym-
metry  between  and  is realized,  and  only  the  sym-
metry with  must be restored, as shown in Fig. 4.b). The
symbol  acts to the terms in the right hand side,
i.e., after the action, the terms will be changed to the sum
of three terms. For example, 

[P(34,5)]
⟨1|3+4|2]
⟨23⟩ ⟨24⟩

[5|1+7|6⟩
S 157

=
⟨1|3+4|2]
⟨23⟩ ⟨24⟩

[5|1+7|6⟩
S 157

+
⟨1|4+5|2]
⟨24⟩ ⟨25⟩

[3|1+7|6⟩
S 137

+
⟨1|3+5|2]
⟨23⟩ ⟨25⟩

[4|1+7|6⟩
S 147

. (28)

[P(3,45)]
E+P34+P35 [P(3,45)][P(4,5)]
[P(3,45)][P(4,5)] = [P(3,4,5)]

[P(3,4,5)] = E+P34+P35+P45+P345+P2
345

Similarly,  the  symbol  denotes  the  sum  of
.  When ,  we  arrive  at

,  which  denotes  the  sum  of
all  allowed  permutations  of  three  objects,  i.e.,

.

S 2
7 [P(6,7)]

S 3
7

[P(4,5)] [47][5|2+3|6⟩
S 147

[57][4|2+3|6⟩
S 157

+
[47][5|2+3|6⟩

S 147

Atree
7

To realize  boson  exchange  symmetry,  we  use  per-
mutation group symbols. For example, in ,  in-
dicates  that  two  terms  should  be  added.  In ,

 means . It is clear
that the boson exchange symmetries among photons with
the same helicities for  are explicit.

Atree
8 (1−e ,2

+
ē ,

3+γ ,4
+
γ ,5
+
γ ,6
+
γ ,7
−
γ ,8
−
γ )

Similarly,  the  NMHV  amplitude 
 can be efficiently computed using the

off-shell amplitude method. We can use the Feynman dia-
grams given in Fig. 5 as a guide to compute the results of

S 2
6Fig. 3.    Four non-vanishing Feynman diagrams contributing to the term .
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+++++−−− S 1
8N ++++−+−−

S 2
8N +++−++−− S 3

8N
++−+++−− S 4

8N

each helicity configuration using the off-shell amplitudes
and  permutation  symmetries.  The  results  are  organized
into  the  following  four  helicity  configurations:

 (denoted  as ),  (denoted
as ),  (denoted  as ),  and

 (denoted as ). The total amplitude can
be organized into the following form: 

Atree
8N (1−e ,2

+
ē ,3
+
γ ,4
+
γ ,5
+
γ ,6
+
γ ,7
−
γ ,8
−
γ )

=Q6
e

{
S 1

8N +S 2
8N +S 3

8N +S 4
8N

}
, (29)

S i
8where the  term corresponding to each figure in Fig. 5

is given as 

S 1
8N =

⟨12⟩3 [12] ⟨1|7+8|2] S 178∏
i=3,4,5,6 ⟨1i⟩ ⟨2i⟩∏ j=7,8[1 j][2 j]

, (30)

 

S 2
8N =

⟨12⟩2∏
i=3,4,5,6 ⟨1i⟩ [P(345,6)][P(7,8)]

×
{
⟨1|3+4+5|2]∏

j=3,4,5 ⟨2 j⟩
⟨18⟩
[18]

[6|1+8|7⟩
[27]S 168

}
, (31)

 

S 3
8N =

⟨12⟩∏
i=3,4,5,6 ⟨1i⟩ [P(7,8)]

⟨18⟩2
[27][18]

{
[P(34,56)]

× ⟨1|3+4|2]
⟨23⟩ ⟨24⟩S 1568

[P(5,6)]
[86][5|1+6+8|7⟩

S 168

}
,

(32)
 

S 4
8N = ⟨12⟩ [P(7,8)]

⟨18⟩2
[27][18]

{[P(34,56)]

1
⟨15⟩ ⟨16⟩S 1568

(
[P(3,4)]

[23]
⟨23⟩

[4|2+3|7⟩
⟨14⟩S 237

)
(
[P(5,6)]

[86][5|1+6+8|7⟩
S 168

)}
, (33)

[P(345,6)] = E+P36+P46+P56

3 4 5 [P(34,56)] =
E+P35+P36+P45+P46+P35P46

3 4
5 6

[P(3,4,5,6)] = [P(34,56)][P(3,4)]×
[P(5,6)]

where ,  which  reflects  the
exchange symmetry among , , and , and 

, which expresses the ex-
change  symmetry  between  and ,  and  the  symmetry
between  and . According to these conventions, the fol-
lowing relation  exists: 

.
2 Atree

8 (1−e , 2
+
ē , 3

+
γ , 4

+
γ , 5

+
γ , 6

−
γ

7−γ ,8
−
γ )

The  N MHV  amplitude ,
 can be computed from the Feynman diagrams giv-

en in Fig. 6 and can be expressed as
 

Atree
8N2 (1−e ,2

+
ē ,3
+
γ ,4
+
γ ,5
+
γ ,6
+
γ ,7
−
γ ,8
−
γ )

=Q6
e

{
S 1

8N2 +S 2
8N2 +S 3

8N2 +S 4
8N2 +S 5

8N2 +S 6
8N2

}
, (34)

S i
8N2where  corresponding  to  each  diagram  in Fig.  6 is

given below.
 

S 1
8N2 =

⟨12⟩2 [12]2 ⟨1|6+7+8|2] S 1678∏
i=3,4,5 ⟨1i⟩ ⟨2i⟩∏ j=6,7,8[1 j][2 j]

, (35)
 

Atree
7Fig. 4.    Three types of non-vanishing Feynman diagrams contributing to the term .

 

Atree
8Fig. 5.    Four types of non-vanishing Feynman diagrams contributing to the term .
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S 2
8N2 = [P(6,78)][P(34,5)]

[
⟨12⟩ [12]

(
∏

i=3,4 ⟨1i⟩ ⟨2i⟩)(∏ j=7,8)[1 j][2 j]
⟨1|7+8|2]⟨1|3+4 2][5|1+7+8|6⟩

⟨15⟩ [26]S 1578

]
, (36)

 

S 3
8N2 = [P(34,5)]

{
[P(3,4)]

[23]
⟨23⟩ ⟨14⟩

[
[P(6,78)]

[12]
(
∏

j=7,8[1 j][2 j])
[2|7+8|1⟩
⟨15⟩ [26]

[4|2+3|6⟩[5|7+8|1⟩
S 236S 1578

]}
, (37)

 

S 4
8N2 = [P(6,78)]

{
[P(7,8)]

⟨18⟩
[27][18]

[
[P(34,5)]

⟨12⟩
(
∏

j=3,4 ⟨1 j⟩ ⟨2 j⟩)
[2|3+4|1⟩
⟨15⟩ [26]

[5|1+8|7⟩[2|3+4|6⟩
S 158S 1578

]}
, (38)

 

S 5
8N2 = [P(34,5)][P(6,78)]

{
1

⟨15⟩ [26]

[
[P(7,8)][P(3,4)]

(
[23]
⟨23⟩ ⟨14⟩

⟨18⟩
[27][18]

[4|2+3|6⟩[5|1+8|7⟩[2|5+7+8|1⟩
S 236S 158S 1578

)]}
,

(39)
 

S 6
8N2 = [P(3,45)][P(67,8)]

{
[23]2 ⟨18⟩2

⟨23⟩ ⟨14⟩ ⟨15⟩ [26][27][18]S 1458

(
[P(4,5)][P(6,7)]

⟨36⟩ [58][4|2+3+6|7⟩
S 158S 236

)}
. (40)

It should be noted that, by using the off-shell current
method  given  in  [23] and  the  permutation  group  for  bo-
son  exchange  symmetry,  we  can  express  the  amplitudes
of a given helicity configuration in an elegant form with a
smaller number of terms than that in the direct Feynman
diagram  method.  This  analytic  form  of  amplitudes  is
helpful  to  understand  the  properties  all  shifts  in  the
BCFW method. 

0→ e−e+4γIV.  AMPLITUDES OF THE PROCESS 
VIA THE BCFW METHOD

0→ e−e+4γ

3⊗5
3

4⊗4

5⊗3

To compute the amplitudes of the process 
using  the  BCFW method,  we  can  organize  the  diagrams
with  three  types  of  topologies,  i.e.,  (denoted  as P
diagrams,  as  shown in Fig.  7,  where  indicates  that  the
left  side has 3-point amplitudes and the right side has 5-
point amplitudes),  (denoted as R diagrams, as shown
in Fig. 8, where both the left and right sides have 4-point
amplitudes), and  (denoted as Q diagrams, as shown
in Fig.  9,  where the left  side has 5-point  amplitudes and

[1,2⟩
the  right  side  has  3-point  amplitudes).  Because  the  shift

 is  a  natural  choice  to  factorize  the  total  amplitude
owing  to  the  charge  conservation  law,  and  there  are  12
diagrams in  total.  Below,  we  describe  all  of  these  dia-
grams in detail.  The diagrams for other shifts are simply
subsets of these 12 diagrams.

3⊗5
P1 P2 P3 P4

P1
P3 3↔ 4 P2 P4 5↔ 6

P1 P2 P3 P4
P1 = k̂1+ k3 = −(k̂2+ k4+ k5+ k6)

The  topology  includes  the  four  diagrams  given
in Fig. 7, labeled as , , , and . In these four dia-
grams,  there  is  an  exchange  symmetry  between  and

 with  and between  and  with . Such
exchange symmetries can be used to simplify the calcula-
tion procedure. The momenta of the internal lines are de-
noted  as , , ,  and ,  respectively.  For  example,

. The arrows in the fermi-
on lines denote the direction of particle flow.

4⊗4
R1 R2 R3 R4

R1 R2
3↔ 4 R1 R3 5↔ 6

R1 R2 R3 R4

The  topology  includes  the  four  diagrams  given
in Fig. 8, labeled as , , , and . In these four dia-
grams, there is an exchange symmetry between  and 
with  and between  and  with . Such ex-
change symmetries  can  be  used  to  simplify  the  calcula-
tion procedure. The momenta of the internal lines are de-
noted  as , , ,  and ,  respectively.  For  example,

Atree
8Fig. 6.    Six types of non-vanishing Feynman diagrams contributing to the term .
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R1 = k̂1+ k3+ k5 = −(k̂2+ k4+ k6).
5⊗3

Q1 Q2 Q3 Q4
Q1

Q3 3↔ 4 Q2 Q4 5↔ 6

Q1 Q2 Q3 Q4
Q1 = k̂2+ k3 = −(k̂1+ k4+ k5+ k6)

The  topology  includes  the  four  diagrams  given
in Fig.  9,  labeled  as , , ,  and .  In  these  four
diagrams,  there  is  an  exchange  symmetry  between 
and  with  and between  and  with .
Such  exchange  symmetries  can  be  used  to  simplify  the
calculation procedure. The momenta of the internal lines
are denoted as , , , and , respectively. For ex-
ample, .

0→ e−(1−)e+(2+)γ+(3+)γ+(4+)γ−(5−)γ−(6−)

z→∞

For  the  NMHV  amplitude  of  the  process
,  there  are  30

shifts  that  can  be  defined.  From  the  result  given  in  Eq.
(16)  and  in  terms  of  the  highest z power  in  the  limit

, they can be divided into five categories:
 

z2 [3,5⟩ [4,5⟩ [3,6⟩ [4,6⟩● 1) :  ( ) and  ( );
 

z1 [3,1⟩ [4,1⟩ [2,5⟩ [2,6⟩● 2) :  ( ) and  ( );
 

z0 [2,1⟩ [1,5⟩ [1,6⟩ [3,2⟩ [4,2⟩● 3) : ,  ( ), and  ( );
 

z−1 [1,3⟩ [1,4⟩ [5,2⟩ [6,2⟩ [5,1⟩ [6,1⟩
[5,6⟩ [6,5⟩ [3,4⟩ [4,3⟩ [2,3⟩ [2,4⟩

●  4) :  ( ),  ( ),  ( ),
 ( ),  ( ),  ( );

 
z−2 [1,2⟩ [5,3⟩ [6,3⟩ [5,4⟩ [6,4⟩● 5) : ,  ( ) and  ( ).

 

z→∞ k < 0

k ≥ 0

In Table 1, we show the power index of z in the limit
 for all shifts. We describe shifts with  as good

shifts because the boundary terms vanish and the BCFW
method  is  expected  to  work.  Conversely,  for  shifts  with

, in general, it is not expected to work.
[1,2⟩
[1,2⟩

Here,  we  demonstrate  the  results  of  the  shift ,
which has  a  vanishing boundary term.  In the shift ,

zk z→∞ [i, j⟩
0→ e−(1−)e+(2+)γ(3+)γ(4+)γ(5−)γ(6−)

Table 1.    Leading  in the limit  of shifts  in the
BCFW method for .

[i, j⟩(i < j)shifts [1,2⟩ [1,3⟩ [1,4⟩ [1,5⟩ [1,6⟩

k −2 −2 −2 0 0

[i, j⟩(i < j)shifts [2,3⟩ [2,4⟩ [2,5⟩ [2,6⟩ [3,4⟩

k −1 −1 1 1 −1

[i, j⟩(i < j)shifts [3,5⟩ [3,6⟩ [4,5⟩ [4,6⟩ [5,6⟩

k 2 2 2 2 −1

[i, j⟩(i > j)shifts [2,1⟩ [3,1⟩ [4,1⟩ [5,1⟩ [6,1⟩

k 0 2 2 −1 −1

[i, j⟩(i > j)shifts [3,2⟩ [4,2⟩ [5,2⟩ [6,2⟩ [4,3⟩

k 0 0 −2 −2 −1

[i, j⟩(i > j)shifts [5,3⟩ [6,3⟩ [5,4⟩ [6,4⟩ [6,5⟩

k −2 −2 −2 −2 −1

3⊗5 [1,2⟩Fig. 7.    Four diagrams for the  topology are shown in the  shift.
 

4⊗4 [1,2⟩Fig. 8.    Four diagrams for the  topology are shown in the  shift.
 

5⊗3 [1,2⟩Fig. 9.    Four diagrams for the  topology are shown in the  shift.
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there are three independent terms that must be computed,
while  the  rest  can  be  obtained  from the  boson  exchange
symmetries of photons. The total amplitude can be com-
puted as 

At = A12
P +A12

Q +A12
R , (41)

 

A12
P1
= A12

P3
= A12

Q2
= A12

Q4
= 0 , (42)

 

A12
P2
=

S 125[25]⟨6|1+5|2]2

[15]⟨3|1+5|2]⟨3|1+2|5]⟨4|1+5|2]⟨4|1+2|5]
, (43)

 

A12
P4
=

S 126[26]⟨5|1+6|2]2

[16]⟨3|1+6|2]⟨3|1+2|6]⟨4|1+6|2]⟨4|1+2|6]
, (44)

 

A12
Q1
= (−)

S 123⟨13⟩⟨1|2+3|4]2

⟨23⟩⟨3|1+2|5]⟨1|2+3|5]⟨3|1+2|6]⟨1|2+3|6]
,

(45)
 

A12
Q3
= (−)

S 124⟨14⟩⟨1|2+4|3]2

⟨24⟩⟨4|1+2|5]⟨1|2+4|5]⟨4|1+2|6]⟨1|2+4|6]
,

(46)
 

A12
R1
= (−)

⟨15⟩2[24]2⟨1|3+5|2]
S 135⟨13⟩[26]⟨1|3+5|6]⟨3|1+5|2]

, (47)

 

A12
R2
= (−)

⟨15⟩2[23]2⟨1|4+5|2]
S 145⟨14⟩[26]⟨1|4+5|6]⟨4|1+5|2]

, (48)

 

A12
R3
= (−)

⟨16⟩2[24]2⟨1|3+6|2]
S 136⟨13⟩[25]⟨1|3+6|5]⟨3|1+6|2]

, (49)

 

A12
R4
= (−)

⟨16⟩2[23]2⟨1|4+6|2]
S 146⟨14⟩[25]⟨1|4+6|5]⟨4|1+6|2]

. (50)

0→ e−e+4γ
We compute  the  amplitudes  of  all  shifts  for  the  pro-

cess .  We  find  that  the  obtained  amplitudes
have  very  different  forms.  Because  it  is  difficult  to
demonstrate  the  equivalence  of  the  results  given  in  Eq.
(16) and those obtained using BCFW shifts, we resort to
numerical methods to examine whether they are equival-
ent. We consider all allowed shifts in the BCFW method
and  examine  whether  they  can  yield  the  same  results  as
those  obtained  from  the  Feynman  diagram  method.  To
conduct  the  numerical  analysis,  we use the  Mathematica
tool "S@M", which is a Mathematica Implementation of
the Spinor-Helicity Formalism [26].

The numerical results are summarized in Table 2.
 

[2,5⟩ [2,6⟩ [3,5⟩ [3,6⟩ [4,5⟩
[4,6⟩ [3,1⟩ [4,1⟩

[2,5⟩ [2,6⟩ [3,1⟩ [4,1⟩

● First, shifts such as , , , , ,
, ,  and  cannot produce the correct results

without  a  known  boundary  term.  The  reason  lies  in  the
fact  that  shifts  such  as , , ,  and 
change the amplitude into the form 

A(z) =C1
(z2+a1z+a2)(z+b)(z+ c)

(z− z1)

+C2
(z+b1)(z+ c1)(z+d1)

(z− z1)(z− z2)

[3,5⟩ [3,6⟩ [4,5⟩ [4,6⟩and shifts such as , , , and  change the
amplitude into the form 

A(z) =C1
(z+a)(z+b)

(z− z1)(z− z2)
+C2

(z+a)(z+b)(z+ c)
(z− z1)(z− z2)

limz→∞
∮ A(z)

z

which  has  either  an  undetermined  or  non-vanishing

boundary value in the limit .
 

Atree
6 (1−e ,2

+
ē ,3
−
γ ,4
−
γ ,5
+
γ ,6
+
γ )

[5,4⟩ [6,4⟩ [5,3⟩ [6,3⟩
[1,3⟩ [1,4⟩ [5,2⟩

[6,2⟩

● Second, among the 30 shifts of the BCFW method,
there are 18 shifts that satisfy the necessary condition of
the  BCFW  method  and  can  produce  the  correct  results.
Generally,  a  shift  with  the  inverse  helicity  of  a  pair  of
spinors  in  the  amplitude  can  always  work.  For  example,
with both a fermion and photon in the amplitude, such as
the  amplitude ,  shifts  such  as

, , , and  can always work. Similarly,
this  also  holds  for  shifts  such  as , , ,  and

. These shifts have vanishing boundary terms.
 

[2,1⟩●  Third,  it  should  be  noted  that  the  shift  can
produce the correct results, which is slightly surprising. It
is  not  expected  to  work  from  our  experience  of  4-point
and  5-point  amplitudes.  Why  does  this  shift  work?  It  is
found  that  in  this  shift,  the  amplitude  given  in  Eq.  (16)

[i, j⟩
0→ e−(1−)e+(2+)γ(3+)γ(4+)γ(5−)γ(6−)
Table 2.    Results of the shifts  in the BCFW method for

.

[i, j⟩(i < j)shifts [1,2⟩ [1,3⟩ [1,4⟩ [1,5⟩ [1,6⟩

×◦ ×◦

[i, j⟩(i < j)shifts [2,3⟩ [2,4⟩ [2,5⟩ [2,6⟩ [3,4⟩

×× ××

[i, j⟩(i < j)shifts [3,5⟩ [3,6⟩ [4,5⟩ [4,6⟩ [5,6⟩

×× ×× ×× ××

[i, j⟩(i > j)shifts [2,1⟩ [3,1⟩ [4,1⟩ [5,1⟩ [6,1⟩
√√

×× ××
[i, j⟩(i > j)shifts [3,2⟩ [4,2⟩ [5,2⟩ [6,2⟩ [4,3⟩

×√ ×√

[i, j⟩(i > j)shifts [5,3⟩ [6,3⟩ [5,4⟩ [6,4⟩ [6,5⟩
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changes to the form 

A21(z) =C1
(z2+a1z+a2)(z+b)

(z− z1)(z− z2)(z− z3)(z− z4)

+C2
(z+ c1)(z+ c2)(z+ c3)
(z− z5)(z− z6)(z− z7)

. (51)

z→∞ C1
C2

C2

In  the  limit ,  the  first  term  proportional  to 
vanishes,  and  the  second term proportional  to  appar-
ently leads  to  a  non-vanishing  boundary  value.  Fortu-
nately,  is found to have the following term: 

1
⟨2|3+6|1]

+
1

⟨2|3+5|1]
+

1
⟨2|4+6|1]

+
1

⟨2|4+5|1]
, (52)

⟨2|3+6|1] = −⟨2|4+5|1] ⟨2|3+5|1] =
−⟨2|4+6|1]

[2,1⟩

and it can be proven that this term is vanishing when we
consider  that  and 

 in terms of momentum conservation. This ex-
plains  why  the  shift  can  work.  Such  cancellation
only occurs at the full amplitude level,  which was found
in Ref. [27].
 

[1,5⟩ [1,6⟩ [3,2⟩ [4,2⟩

C1+C2
z+a
z− z1

+C3
z+b

(z− z1)(z− z2)
[1,5⟩ [1,6⟩

[3,2⟩ [4,2⟩

●  We  would  like  to  emphasize  that  although  each
shift,  such  as , , ,  and , cannot  pro-
duce  complete  results  without  calculating  the  boundary
term because under the shift, the amplitude is changed in-

to the form , the combina-

tion of  two  shifts,  i.e.,  the  sum  of  and  (the
sum  of  and ), can  generate  the  complete  res-
ults.
 

[1,5⟩ [1,6⟩
[1,5⟩

Below, we show further details on why the combina-
tion of  and  can produce full results. Under the
shift , the amplitude given in Eq. (16) can be written
in the form 

A15(z) =C15
1 +C15

2

z+
[12]
[52]

z+
[16]
[56]

+

C15
3

z− ⟨5|2+3|4]
⟨1|2+3|4]

(z+
[16]
[56]

)(z− S 235

⟨1|2+3|5]
)
+ (3↔ 4)

 ,
(53)

 

C15
1 =

1
⟨14⟩ [26]

⟨15⟩ [23]
[15] ⟨23⟩

⟨6|2+3|4]
S 236

+
1

⟨13⟩ [26]
⟨15⟩ [24]
[15] ⟨24⟩

⟨6|2+4|3]
S 246

, (54)
 

C15
2 =

[52]⟨1|5+6|2]S 156

⟨13⟩ ⟨23⟩ ⟨14⟩ ⟨24⟩ [15][25][26][56]
, (55)

 

C15
3 =

⟨1|2+3|4] ⟨16⟩ ⟨23⟩
[56] ⟨14⟩ ⟨23⟩ [25]⟨1|2+3|6]

. (56)

z15→∞The residue of  can be found as 

Resz15→∞

(
A15(z)

z

)
= −C15

1 −C15
2 = −B5 , (57)

B5

[1,6⟩
where  denotes  the  boundary  term.  Under  the  shift

, the amplitude is changed into the following form: 

A16(z) =C16
1 +C16

2

z+
[12]
[62]

z− [15]
[56]

+

C16
3

z− ⟨6|2+3|4]
⟨1|2+3|4](

z− [15]
[56]

)(
z− S 236

⟨1|2+3|6]

) + (3↔ 4)

 ,
(58)

 

C16
1 =

1
⟨14⟩[25]

⟨16⟩[23]
[16]⟨23⟩

⟨5|2+3|4]
S 235

+
1

⟨13⟩[25]
⟨16⟩[24]
[16]⟨24⟩

⟨5|2+4|3]
S 245

, (59)

 

C16
2 = −

[62]⟨1|5+6|2]S 156

⟨13⟩⟨23⟩⟨14⟩⟨24⟩[25][16][26][56]
, (60)

 

C16
3 = −

⟨1|2+3|4]⟨15⟩⟨23⟩
[56]⟨14⟩⟨23⟩[26]⟨1|2+3|5]

. (61)

z16→∞The residue of  can be found as 

Resz16→∞

(
A16(z)

z

)
= −C16

1 −C16
2 = −B6 , (62)

B6where  denotes the boundary term.
From Eqs. (57) and (62), it is observed that 

Resz15→∞

(
A15(z)

z

)
+Resz16→∞

(
A16(z)

z

)
=−Atree

6 (1−e ,2
+
ē ,3
+
γ ,4
+
γ ,5
−
γ ,6
−
γ ) . (63)

A15(z)/z
A16(z)/z A15(0) = A16(0) = Afull

Therefore,  using  the  analyticity  of  and
 and  the  fact  that , we  ar-

rive at the result 

A15(0)+A16(0)−B5−B6 = Afull

=−Resi

(
A15(z)

z

)
−Resi

(
A16(z)

z

)
, (64)
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[1,5⟩ [1,6⟩

[3,2⟩ [4,2⟩

which explains why the sum of the shifts  and 
produces the full  result.  Similar  reasoning also holds for
the sum of shifts  and .

[1,5⟩ [1,6⟩Because the sum of the shifts  and  can pro-
duce  the  full  amplitude  result,  we  can  express  the  total
amplitude  from  the  amplitudes  obtained  from  these  two
shifts as 

At =[P(5,6)]
( S 2

156⟨2|1+6|5]
⟨23⟩⟨24⟩[16][56]⟨3|1+6|5]⟨4|1+6|5]

− [P(3,4)]
⟨16⟩2[24]2

S 136⟨13⟩[25]⟨3|1+6|5]

)
(65)

2× (1+2) = 6

[1,5⟩ [1,6⟩

The  number  of  terms  for  the  full  amplitude  reads  as
. Although the form of this amplitude is dif-

ferent  from that  given  in  Eq.  (16),  we  find  that  they  are
numerically equal. Meanwhile, this form of amplitude has
an  explicit  property  in  which  it  is  the  sum of  two  terms
unchanged under the shifts  and .

[1,5⟩
[1,6⟩ [3,2⟩ [4,2⟩

[1,5⟩ [1,6⟩ [3,2⟩ [4,2⟩

[1,5⟩

It  is  found  that  although  each  of  the  shifts ,
, ,  and  could not yield the full  amplitude

without  evaluating  the  boundary  term,  the  sum  of  the
shifts  and  (  and ) can  indeed  pro-
duce  the  whole  amplitude.  Furthermore,  the  calculation
procedure  for  these  shifts  within  the  BCFW  method  is
simple.  Therefore,  the  calculation  procedure  is  worth
close inspection. For example, for the shift , the total
amplitude is given as 

At = A15
P +A15

Q +A15
R , (66)

 

A15
P1
= A15

P2
= A15

P3
= A15

Q = A15
R1
= A15

R2
= 0 , (67)

 

A15
P4
=

S 2
156⟨2|1+6|5]

⟨23⟩⟨24⟩[16][56]⟨3|1+6|5]⟨4|1+6|5]
, (68)

 

A15
R3
= (−)

⟨16⟩2[24]2

S 136⟨13⟩[25]⟨3|1+6|5]
, (69)

 

A15
R4
= (−)

⟨16⟩2[23]2

S 146⟨14⟩[25]⟨4|1+6|5]
. (70)

A15
P4

There are only two independent terms requiring com-
putation. For example, according to the diagram given in
Fig. 7, the amplitude  can be expressed as
 

A15
P4
=
⟨16⟩2
⟨1p̂⟩

1
S 16

⟨
(−p̂)5̂

⟩2 ⟨(− p̂)2⟩
⟨(−p̂)3⟩ ⟨(−p̂)4⟩ ⟨23⟩ ⟨24⟩ , (71)

and from the pole condition, it is easy to find the shifted
spinors, which can be solved as 

|5̂⟩ = (5+1)|6]
[65]

, (72)

 

|p̂⟩ = (1+6)|5]
[56]

. (73)

Substituting these  two  spinors  into  Eq.  (71),  we  ar-
rive  at  Eq.  (68).  Moreover,  it  is  observed  that  there  are
five brackets  with  shifted  momenta  requiring  computa-
tion.

A15
R3

From the diagram given in Fig.  8,  the amplitude 
can be expressed as 

A15
R3
=
⟨16⟩2
⟨14⟩ ⟨r̂4⟩

1
S 146

[23]2

[(−r̂)5][25]
, (74)

r̂
and from the pole condition, it is easy to find the shifted
momentum , which is given as 

r̂ = |1⟩[1|+ |4⟩[4|+ |6⟩[6| − S 146

⟨1|4+6|5]
|1⟩[5| , (75)

⟨4|p̂|5]
and there is no complicated calculation required to evalu-
ate . Instead, we may use 

⟨4|r̂|5] = ⟨4|1+6|5] . (76)

A15
R4

3↔ 4
A15

t
[1,6⟩

Meanwhile,  there  are  only  two  brackets  with  shifted
momenta  requiring  computation.  Amplitude  can  be
obtained  using  the  boson  exchange  symmetry  between

,  which  should  be  simple.  Another  interesting  fact
is  that  the  amplitude  is  unchanged  if  we  apply  the
shift .

[1,6⟩Similarly,  under  the  shift ,  the  total  amplitude
can be directly computed from diagrams and is given as 

At = A16
P +A16

Q +A16
R , (77)

 

A16
P1
= A16

P3
= A16

P4
= A16

Q = A16
R3
= A16

R4
= 0 , (78)

 

A16
P2
= (−)

S 2
156⟨2|1+5|6]

⟨23⟩⟨24⟩[15][56]⟨3|1+5|6]⟨4|1+5|6]
,

(79)
 

A16
R1
= (−)

⟨15⟩2[24]2

S 135⟨13⟩[26]⟨3|1+5|6]
, (80)

 

A16
R2
= (−)

⟨15⟩2[23]2

S 145⟨14⟩[26]⟨4|1+5|6]
. (81)
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[1,6⟩
[1,5⟩

5↔ 6
A16

t [1,5⟩

It is observed that the results of the  shift can be
directly obtained from the results of the  shift using
the  exchange  symmetry . Meanwhile,  the  amp-
litude  is unchanged if we perform the  shift.

[1,5⟩ [1,6⟩
[1,2⟩ [1,3⟩ [5,6⟩

It is  interesting  to  compare  the  computation  proced-
ure  of  the  sum  of  the  and  shifts  with  good
shifts, such as the , , and  shifts, as presen-
ted in Table 3. Note the comments on this comparison be-
low.
 

[1,2⟩ [1,3⟩

[5,6⟩

[1,5⟩ [1,6⟩

● 1) In the  and shifts, there are three inde-
pendent  terms,  which  should  be  computed  before  using
the  boson exchange  symmetries.  In  the  shift ,  there
are  four  independent  terms,  whereas  for  the  sum  of  the

 and  shifts,  there  are  only  two  independent
terms to be computed.
 

[1,2⟩ [1,3⟩
[5,6⟩

[1,5⟩ [1,6⟩

● 2) The total number of terms of the amplitude in the
 ( )  shift  is  eight  (five).  The  total  number  of

terms is six for the shift ,  whereas the total  number
of terms in the  and  shifts is six.
 

| p̂⟩ |q̂] r̂
[1,2⟩ [1,3⟩ [5,6⟩ [1,5⟩ [1,6⟩

●  3)  Third,  as  shown  above,  there  are  more  terms,
such as the spinors , , and , to be computed for the

, ,  and  shifts  than  the  and 
shifts. This may save the CPU time in realistic computa-
tion.
 

[1,5⟩ [1,6⟩
[1,2⟩ [1,3⟩ [5,6⟩

[3,2⟩ [4,2⟩

Therefore,  from  this  comparison,  we  can  conclude
that  the  and  shifts  could  be  more  economic
than  the , ,  and shifts.  Similarly,  we  also
find  that  the  sum  of  the  and  shifts  can  also
produce the full amplitude result.

To distinguish such a shift from other shifts that have
vanishing  boundary  terms,  we  refer  to  this  shift  as  the
LLYZ shift. 

V.  PROOF OF THE LLYZ SHIFT FOR MORE
GENERAL PROCESSES

0→ e−e+5γ
We have determined that this novel shift can work for

the  helicity  amplitudes  of  the  processes  and

0→ e−e+6γ

0→ e−e+5γ 0→ e−e+6γ

, where  the  amplitudes  can  be  calculated  ex-
plicitly, as given in section III, from Eq. (24) to Eq. (40).
For  example,  for  the  NMHVA  of  the  processes

 and ,  there  are  two photons  with
negative helicity. 

∑
γ−i

Bi =
∑
γ−i

−Resz→∞
A[1,γ−i ⟩

z
= Afull , (82)

Then, the sum of these two shifts can indeed produce
one full amplitude.

0→ e−e+γ+1 · · ·γ+n γ−1 · · ·γ−m
1 < m ≤ n An,m

[1,γ−i ⟩ z→∞

For more  general  cases,  we  can  denote  the  amp-
litudes  of  the  process  with

 as , where n and m represent the number of
photons with  positive  and  negative  helicities,  respect-
ively. We can assume that in this novel shift, the sum of
the  shifts  in  the  limit  produces  a  negative
full amplitude, i.e., we have 

∑
γ−i

Bi =
∑
γ−i

−Resz→∞
A[1,γ−i ⟩(z)

z
= Afull

n,m . (83)

[1−,γ−i ⟩
(m−1) Afull

n,m

N2

Thus,  the  sum  of  the  shifts  can  produce  the
result ,  where the amplitude of  each shift  can
be  obtained  using  the  BCFW method.  Such  a  result  can
be  tested  explicitly  using  the  actual MHV  amplitude
given in Eq. (34).

0→ e−(1−)e+(2+)γh3

3 · · ·γ
hn
n

For  the  general  amplitudes  of  the  process
, we can prove that this identity

holds by choosing the BG gauge. In terms of spinor con-
vention [27], the most general QED tree-level amplitudes
[25] obtained using Feynman diagrams can be expressed
as 

Afull =
1∏n

j=3

⟨
p j,h j

ref | jh j

⟩ ∑
σ∈S n−2

F(1,2;σ(3)hσ3 , · · · ,σ(n)hσn ) ,

(84)
 

F(1,2;3h3 , · · · ,nhn ) = ⟨a3 1⟩ [2bn]
n−1∏
i=3

⟨ai+1|1+K3,i|bi]
(1+K3,i)2 , (85)

K3,i =
∑i

j=3 k j

⟨
p j,h j

ref | j
h j

⟩
⟨p−|q+⟩ = ⟨pq⟩ ⟨p+|q−⟩ = [pq] p j,h j

ref

where ,  and  originates  from  the
wave  functions  of  photons  and  can  be  understood  as

 and , where  is known as
the reference momentum, which is an arbitrary light-like
four vector and is dependent on the momentum and heli-
city of photons numbered as j. In this form, the boson ex-
change symmetries  are  explicit  because they are  built  as
the sum of all permutations.

p j,h j

ref

Generally, in the BG gauge, the reference momentum
 for photons numbered as j can be expressed as

 

[1,2⟩ [1,3⟩ [5,6⟩ [1,5⟩
[1,6⟩

Table 3.    Comparison of  the independent  terms (I.T),  num-
ber  of  calculations  of  the  shifted  brackets  in  all  independent
terms,  and  number  of  terms  for  the  full  amplitudes  (F.A.)  of
the shifts , , and  and the sum of shifts  and

.

I.T. No. of calculations for I.T. No. of terms for F.A.

[1,2⟩ 3 16 8

[1,3⟩ 3 15 5

[5,6⟩ 4 16 6

[1,5⟩ [1,6⟩ + 2 7 6
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p j,h j

ref =
1+h j

2
p1+

1−h j

2
p2 , (86)

p1 e− 1
p2

e+ 2
p j,−

ref = p1

p j,+
ref = p2

ai bi 3 ≤ i ≤ n

where  is  the  momentum  of  (labeled  as  for  the
sake of simplicity to avoid confusion), and  is the mo-
mentum  of  (labeled  as  for  the  sake  of  simplicity).
For all  photons with positive helicity, we have ,
and  for  all  photons  with  negative  helicity,  we  have

. Therefore, under this convention, the momenta
of  the  spinors  and  (with )  in F can  be
defined as 

ai =
1+hi

2
pi,hi

ref +
1−hi

2
ki , (87)

 

bi =
1+h j

2
ki+

1−h j

2
pi,hi

ref . (88)

hi = +1 ai = p1

bi = ki hi = −1 ai = ki bi = p2

1 2 p1 p2

We  then  arrive  at  the  following:  if , 
and ;  if ,  and .  Below, for the
sake of simplicity, we use  ( ) to denote  ( ).

With this convention, we have 

F(1−,2+; i+, · · · ) = 0 , (89)

⟨ai1⟩ = ⟨11⟩ = 0simply because .
Considering  the  contribution  of  a  particular  helicity

configuration, without loss of generality, we label it as 

F(1−,2+;3−,4−, · · · , ( j−1)−, j+, ( j+1)h j+1 , · · · ,nhn )

h3 = h4 =

· · · = h j−1 = −
3− ( j−1)−

where j is the first γ with positive helicity, i.e., 
. Summing over all permutations of particles

from  to ,
we obtain the following results:

F(( j+1)h j+1 , · · · ,nhn ) =
∑
σ−

F(1−,2+;σ(3)−, · · · ,σ( j−1)−, j+,R) (90)
 

=
[12] j−4∏ j−1

i=3 [1i]
⟨1|

j−1∑
i=3

ki|2][bn2]
n∏

i= j

⟨ai+1|1+K3,i|bi]
(1+K3,i)2 . (91)

[1,3−⟩Therefore, in the  shift, such contribution to the amplitude is modified to
 

A[1,3⟩(( j+1)h j+1 , · · · ,nhn ) =
1∏n

i=3

⟨
pi,hi

ref |ihi

⟩ [1̂2] j−4∏ j−1
i=3 [1̂i]

⟨1̂|
j−1∑
i=3

k̂i|2][bn2]
n∏

i= j

⟨âi+1|1̂+ K̂3,i|bi]

(1̂+ K̂3,i)2
, (92)

âi+1 1̂ hi = −1 z→∞where  can be  when the helicity . At the limit , the amplitude can be expressed in the following form:
 

lim
z→∞

A[1,3⟩(( j+1)h j+1 , · · · ,nhn ) =
1∏n

i=3

⟨
pi,hi

ref |ihi

⟩ [12] j−4∏ j−1
i=3 [1n]

T [1,3⟩⟨1|
j−1∑
i=3

ki|2][bn2]
n∏

i= j

⟨ai+1|1+K3,i|bi]
(1+K3,i)2

=A(( j+1)h j+1 , · · · ,nhn ) T [1,3⟩ , (93)

1̂+ K̂3,i = 1+K3,i ⟨1̂|∑ j−1
i=3 k̂i|2] = ⟨1|1̂+∑ j−1

i=3 k̂i|2] = ⟨1|∑ j−1
i=3 ki|2]

T [1,3⟩
where  we  use  the  fact  that  and .  Meanwhile,  the  factor

 can be found as
 

T [1,3⟩ =

∏ j−1
i=3 [1i]

[12] j−4

[32] j−4

[13]
∏ j−1

i=4 [3i]
. (94)

Summing over all such shifts, we obtain
 

j−1∑
m=3

lim
z→∞

A[1,m⟩(( j+1)h j+1 , · · · ,nhn ) = A(( j+1)h j+1 , · · · ,nhn )
j−1∑

m=3

T [1,γ−m⟩ . (95)

Using the Schouten identity and mathematical induction, as given in Eq. (14), we can obtain
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j−1∑
m=3

T [1,γ−m⟩ =

∏ j−1
i=3 [1i]

[12] j−4

 j−1∑
m=3

[m2] j−4

[1m]
∏ j−1

i=3,i,m[mi]

 =
∏ j−1

i=3 [1i]

[12] j−4

[12] j−4∏ j−1
i=3 [1i]

= 1 . (96)

[1,γ−i ⟩ i > j z→∞Furthermore, we notice that for the shift  with , it vanishes in the limit . Hence, we arrive at the follow-
ing result:
 ∑

γ−j

lim
z→∞

A[1,γ−j ⟩(( j+1)h j+1 , · · · ,nhn ) = A(( j+1)h j+1 , · · · ,nhn ) . (97)

Summing over all possible choices, we conclude that ∑
γ−j

lim
z→∞

A
[1,γ−j ⟩
full = Afull . (98)

1−

Bi

f (1−)
γ−i

B̄i

f̄ (2+)
γ+i

According  to  the  above  proof,  the  identity  given  in
Eq. (98) is closely related to the property of helicity amp-
litudes in the BG gauge, i.e., only diagrams with the fer-
mion  adjoining  a  photon  with  negative  helicity  can
contribute to the total amplitude. However, the total amp-
litude  can  always  be  expressed  as  the  sum  of  terms ,
which denotes the contribution of all diagrams with 
adjoining a photon . Similarly, the total amplitude can
also be expressed as the sum of terms , which denotes
the  contributions  of  diagrams  in  which  adjoins  a
photon with a positive helicity . 

VI.  COMPARISON OF THE LLYZ SHIFT WITH
OTHER SHIFTS IN THE BCFW METHOD

[1−,γ−i ⟩ [γ+i ,2⟩

0→ e−e+γ+1 · · ·γ+n γ−1 · · ·γ−m m ≤ n

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2

To avoid a rapid increase in the number of amplitude
terms,  in  the  LLYZ  shift,  we  always  choose  the  sum  of
the  shifts  instead  of  the  sum  of ,  which
should  also  be  applicable  to  the  process

 with .  Using  the  BCFW
method, the number of terms in the NMHV amplitudes of
the  process  in  the  LLYZ shift  can
be found as 

TN(n) = 2(2n−1) , (99)

2
[1,γ−1 ⟩ [1,γ−2 ⟩

2

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3

where  the  factor  represents  the  fact  that  there  are  two
shifts  for  the  sum,  i.e.,  and .  Similarly,  the
number  of  terms  in  the  N MHV amplitudes  of  the  pro-
cess  in  the  LLYZ  shift  can  be
given as 

TN2 (n) = 3× (6×3n−8×2n−3×n+2) , (100)

3where  the  factor  reflects  the  fact  that  there  are  three

[1,γ−1 ⟩ [1,γ−2 ⟩ [1,γ−3 ⟩
3

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3 γ−4

shifts  for  the  sum,  i.e., , ,  and .The
number  of  terms  in  the  N MHV  amplitudes

 in the LLYZ shift can be giv-
en as 

TN3 (n) =4×
3×

n−3∑
k=0

Ck
n TN2 (n− k)+Cn−2

n TN(3)+Cn−1
n


+ 3×

2C1
n TN(n−1)+

n−2∑
k=2

Ck
n TN(k) TN(n− k)


+

C1
n +C2

n TN(3)+
n−1∑
k=3

Ck
n TN2 (k)


 ,

(101)

4

Ck
n =

n!
k!(n− k)!

4 5

where  the  overall  factor  indicates  that  there  are  four
shifts to  be  summed,  and  each  line  represents  one  topo-

logy  and .  In  principle,  for  other  higher
MHV amplitudes,  such  as  N MHV and  N MHV,  based
on the BCFW method,  we can derive the recursion rela-
tions of the number of terms.

0→ e−(1−)e+(2+)γ+1 · · ·γ+n γ−1 γ−2

[γ−1 ,γ
−
2 ⟩ [1−,γ+⟩

Nγ+

It  is  also interesting to compare the number of terms
of  different  shifts  in  the  BCFW  method  for  the  NMHV
amplitudes  of  the  process ,
as  given  in Table  4.  It  is  observed  that  the  number  of
terms in the amplitude of the LLYZ shift is the same as in

. The number of terms for  is smaller than
that for the LLYZ shift by one for all .

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3
[1−,γ+⟩

2

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3 Nγ+ = 3,4
[γ−,γ−⟩ Nγ+ > 5

We also provide a comparison of the number of terms
of  a  few typical  shifts  within  the  BCFW method for  the
process , as given in Table 5. We
find that the  shift has the least number of terms in
the full amplitude of the N MHV amplitude for the pro-
cess  when ,  and  the

 shift has the least number of terms when .

[γ−1 ,γ
−
2 ⟩

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3

Because the  shift  with  a  pair  of  photons  with  negat-
ive  helcities  has  the  least  number  of  terms,  we  also
provide  the  relevant  formula  to  count  it.  The  number  of
terms  in  the  amplitude  for  the  shift  of the  pro-
cess  can be expressed as 
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T γ
−γ−

N2 (n) = 4

n−1∑
i=2

Ci
n TN(i)+C1

n

+2TN(n) . (102)

[γ−1 ,γ
−
2 ⟩ 0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3 γ−4

The  number  of  terms  in  the  amplitude  for  the  shift
 of the process  can be

expressed as 

T γ
−γ−

N3 (n) =4

n−3∑
i=1

Ci
n T γ

−γ−

N2 (n− i)+C2
n TN(3)+C1

n

+2T γ
−γ−

N2 (n) ,

+4

n−2∑
i=2

Ci
n TN(i)TN(n− i)+2C1

n TN(n−1)

 .
(103)

[1−,γ+⟩
0→ e−e+γ+1 · · ·γ+n γ−1 γ−2

For the shift , the number of terms in the NM-
HV amplitudes  of  the  process  can
be expressed as 

T 1γ−

N (n) = 2n+1−3 . (104)

2

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3
[1−,γ+⟩

Similarly,  the  number  of  terms in  the  N MHV amp-
litudes  of  the  process  in  the

 shift can be given as
 

T 1γ−

N2 (n) =T 1γ−

N2 (n−1)

+3

n+ n−3∑
i=0

Ci
n−1T 1γ−

N (n−1+ i)


+3

1+ n−1∑
i=1

Ci
n−1T 1γ−

N (i+1)

 . (105)

3

0→ e−e+γ+1 · · ·γ+n γ−1 γ−2 γ−3 γ−4 [1−,γ+⟩
The  number  of  terms  in  the  N MHV  amplitudes  of

the  process  in  the 
shift can be given as 

0→ e−e+γ+1 · · ·γ
+
n γ
−
1 γ
−
2Table 4.    Number of terms of NMHV amplitudes for  with a few typical shifts within the BCFW method. The

dressed BCFW method is proposed in [22].

Np 6 7 8 9 10 11 12 13 14

Nγ 4 5 6 7 8 9 10 11 12

Nγ+ 2 3 4 5 6 7 8 9 10

LLYZ shift 6 14 30 62 126 254 510 1022 2046

BCFW (Dressed) 6 14 30 62 126 254 510 1022 2046

[γ−1 ,γ
−
2 ⟩ 6 14 30 62 126 254 510 1022 2046

[1−,γ+⟩ 5 13 29 61 125 253 509 1021 2045

[γ+i ,γ
+
j ⟩ 6 20 56 144 352 832 1920 4352 9728

[γ−1 ,γ
+
i ⟩ 6 20 56 144 352 832 1920 4352 9728

[γ−,2+⟩ 5 22 103 546 3339 23500 188255 1694806 16949083

[1−,2+⟩ 8 38 182 972 5958 41960 336190 3026732 30269366

2 0→ e−e+γ+1 · · ·γ
+
n γ
−
1 γ
−
2 γ
−
3Table 5.    Number of terms of N MHV amplitudes for  with a few typical shifts within the BCFW method.

Np 8 9 10 11 12 13 14

Nγ 6 7 8 9 10 11 12

Nγ+ 3 4 5 6 7 8 9

LLYZ shift 273 1044 3567 11538 36237 111888 341931

[γ−1 ,γ
−
2 ⟩ 112 444 1544 5044 15936 49388 151288

[1−,γ+⟩ 106 451 1624 5425 17398 54463 167956

[γ+i ,γ
+
j ⟩ 112 620 2860 11876 46108 170948 613084

[γ−,γ+⟩ 138 710 3150 12782 48894 179438 638814

[γ−,2+⟩ 142 1037 8101 67971 617275 6088429 65204413

[1−,2+⟩ 390 3330 27816 241458 2236044 22329138 241156248
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T 1γ−

N3 (n) =T 1γ−

N3 (n−1)+4

n−1+C2
n−1T 1γ−

N (3)+
n−3∑
i=0

Ci
n−1T 1γ−

N2 (n−1− i)


+6

nT 1γ−

N (n−1)+T 1γ−

N (n)+
n−3∑
i=1

Ci
n−1T 1γ−

N (i+1)T 1γ−

N (n−1− i)


+4

1+ (n−1)T 1γ−

N (3)+
n−1∑
i=2

T 1γ−

N2 (i+1)

 . (106)

N
2 0→ e−e+γ+1 · · ·
γ+n γ

−
1 · · ·γ−n [γ−,γ−⟩ [1,γ−⟩

[γ−1 ,γ
−
2 ⟩ [1−,γ+⟩

Nγ ≥ 8 [γ−,γ−⟩

In Table  6,  we  list  the  number  of  terms  in  the
N MHV  amplitudes  of  the  process 

 in  the  LLYZ  shift,  shift,  and 
shift  within the BCFW method. Note that  the number of
terms  in  the  full  amplitudes  in  the  LLYZ shift  increases
rapidly  compared  with  that  of  the  and 
shifts.  When ,  the number of  terms in the 
shift has a clear advantage.

It should be noted that the number of terms is not the
only factor that determines the speed of computation. For
different shifts within the BCFW method, the number of
independent amplitudes and the number of calculations to
eliminate shifted brackets are also crucial to evaluate the
speed of computation.

In Table  7 and Table  8, we  list  the  number  of  inde-
pendent terms that  require  computation before  using bo-
son  exchange  symmetries.  For  the  NMHV  method,  the
LLYZ  shift  has  only  half  the  number  of  independent
terms to be computed. Meanwhile, the number of calcula-

[γ−i ,γ
−
j ⟩ [1−,γ+⟩

tions  required  to  evaluate  the  shifted  brackets  in  the
LLYZ  shift  is  significantly  smaller  than  that  in  the

 shift.  The  shift  has  the  least  number  of
terms in the full  amplitudes;  however,  there are signific-
antly more independent  terms to be computed before in-
voking  boson  exchange  symmetry.  This  shift  has  more
shifted brackets to be computed. 

VII.  DISCUSSIONS AND CONCLUSIONS

0→ e−e+4γ
0→ e−e+4γ

[2,1⟩

[1,5⟩
[1,6⟩ [3,2⟩ [4,2⟩

0→ e−e+nγ

In this study, we use the Feynman diagram method in
the  BG  gauge  to  obtain  the  NMHV  amplitudes  of

.  In  particular,  the  NMHV  amplitudes  of
, given in Eq. (16), can be expressed in a form

with explicit boson exchange symmetries. Using the amp-
litude, we perform a comprehensive and detailed study on
all  allowed  shifts.  The  equivalence  of  all  the  allowed
shifts is verified using a numerical method. It is interest-
ing  to  note  that  the  shift  can  also  yield  the  correct
amplitude, which is not expected. Moreover, we find that
there  are  two  pairs  of  shifts,  which  can  lead  to  the  full
results  in  a  new  manner,  i.e.,  the  sum  of  the  and

 shifts (or the sum of the  and  shifts) can
finally  lead  to  the  full  results;  it  is  expected  that  each
should be equal to the full results. We compare this nov-
el shift with other shifts within the BCFW method. With
tests on additional amplitudes, given in Eq. (24), Eq. (29),
and  Eq.  (34),  we  demonstrate  and  prove  that  this  new
shift  (the  LLYZ  shift)  can  be  applied  to  the  process

.  It  should  be  mentioned that  even with  non-
vanishing  boundary  terms,  the  on-shell  method  can  be

N
2

0→ e−e+γ+1 · · ·γ
+
n γ
−
1 · · ·γ

−
n

Table  6.    Number  of  terms  of  N MHV  amplitudes  of  the
process  with a few typical shifts with-
in the BCFW method.

Np 6 8 10 12 14

Nγ 4 6 8 10 12

Nγ+ = Nγ− 2 3 4 5 6

LLYZ shift 6 273 35344 9793805 4921520256

[γ−1 ,γ
−
2 ⟩ 6 112 4344 144178 23608048

[1−,γ+⟩ 5 106 5041 424592 55741427

0→ e−e+γ+1 · · ·γ
+
n γ
−
1 γ
−
2

Table  7.    Number  of  independent  NMHV  terms  requiring
computation  before  using  boson  change  symmetries  for

 with  a  few  typical  shifts  within  the
BCFW method.

Np 6 7 8 9 4+n

N+γ 2 3 4 5 n

LLYZ shift 2 3 4 5 n

[γ−1 ,γ
−
2 ⟩ 4 6 8 10 2 n

[1−,γ+⟩ 3 6 10 15
n(n+1)

2

N2MHV

0→ e−e+γ+1 · · ·γ
+
n γ
−
1 γ
−
2 γ
−
3

Table 8.    Number of  independent  terms for  requir-
ing  computation  before  using  boson  change  symmetries  for

 with  a  few  typical  shifts  within  the
BCFW method.

Np 8 9 10 11 5+n

N+γ 3 4 5 6 n

LLYZ shift 9 16 25 36 n2

[γ−i ,γ
−
j ⟩ 18 32 50 72 n22 

[1−,γ+⟩ 20 50 105 196 n
6
+

5n2

12
+

n3

3
+

n4

12
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used, as demonstrated in [28].

0→ e−e+4γ

Further  studies  are  required  to  analytically  reveal
whether the results from different shifts within the BCFW
method  are  equivalent,  despite  determining  that  two  of
them are  equal  numerically.  An insightful  observation is
that the amplitudes can be viewed as the volume of poly-
topes  defined  in  twistor  space  [29],  which  can  hold  for
the  NMHV  and  be  generalized  to  amplitudes  of  more
general QFT and gravity theories [30]. Exploring the geo-
metric  meanings  behind  the  NMHV  of  in
QED will be interesting but beyond the scope of the cur-
rent study; this may be investigated in future research.

N
2

[γ−,γ−⟩
[1−,γ+⟩

0→ qq̄ng

As  shown  in Table  6,  the  increase  in  the  number  of
terms  of  the  N MHV amplitudes  in  the  LLYZ  shift  in-
creases significantly faster than that in the shifts 
and .  It  is  worth  optimizing  this  shift  to  prevent
the number of terms from increasing too rapidly with the
increase in the number of photons. It might also be inter-
esting  to  examine  whether  such  a  shift  can  work  for  the
process  in QCD.  Besides  the  tree  level  amp-
litudes,  it  might  also  be  interesting  to  examine  whether
the LLYZ  shift  can  be  applied  to  the  loop  level  amp-
litudes of YM gauge theories [31, 32].
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