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Abstract: A feasibility study is performed on the search for vector-like leptons (VLLs) at a muon collider in the
context of the "4321 model", an ultraviolet-complete model with rich collider phenomenology and the potential to
explain several recent existing B physics measurements or anomalies. Pair production and decays of VLLs lead to an

interesting final state topology with multi-jets and multi-tau leptons. In this study, we perform a Monte Carlo invest-

igation with various machine learning techniques and examine the projected sensitivity on VLLs over a wide mass

range at a TeV-scale muon collider. We find that a 3 TeV muon collider with only 10 fb~! of data can be sensitive
over the mass range of a VLL up to 1450 GeV in the "4321 model."
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I. INTRODUCTION

The 4321 model [1-5] is an ultraviolet-complete
model that extends the standard model (SM) gauge
groups to a larger SU4)xSU(3) xSUQR)Lx U(1)" group.
It is motivated by recent measurements of B hadron de-
cays that are in tension [1] with the SM and can provide a
combined explanation for multiple anomalies observed in
b hadron decays, which point to lepton flavor nonuniver-
sality. This model also provides a novel and interesting
final state topology to search for at colliders, with multi-
jets and multi-tau leptons. A search for pair production of
the lightest new particles in this model, such as vector-
like leptons (VLLs), was recently performed [6] at the
CMS experiment based on data collected in 2017 and
2018 corresponding to a total integrated luminosity of
96.5 fb~!. Interestingly, a mild excess has been found at
the level of 2.8 standard deviations for a representative
VLL mass point of 600 GeV [6]. In this study, we per-
form a similar investigation on a future TeV-scale muon
collider [7], which should have great potential to explore
VLLs and other predicted new particles in the 4321 mod-
el to a large extent.

A muon-muon collider with a center-of-mass energy
at the multi-TeV scale has recently received much-re-
vived interest [7] and has several advantages over both
hadron-hadron and electron —electron colliders [8—10].
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Because massive muons emit considerably less synchro-
tron radiation than electron beams, muons can be acceler-
ated in a circular collider to higher energies with a much
smaller circumference. Moreover, because the proton is a
composite particle, muon-muon collisions are cleaner
than proton-proton collisions and thus can lead to higher
effective center-of-mass energies. However, owing to the
short lifetime of the muon, the beam-induced back-
ground (BIB) from muon decays must be examined and
properly reduced. Based on a realistic simulation at
Vs = 1.5 TeV with BIB included, Ref. [11] found that the
coupling between the Higgs boson and the b-quark can be
measured at percent level with order ab™! of collected
data.

II. PHYSICS PROCESSES

The 4321 model includes the existence of new
massive bosons and fermions. It features a massive vec-
tor leptoquark, U, which couples both to leptons and
quarks. To be UV complete and maintain agreement with
other measurements, the 4321 model contains two other
sets of bosons and families of vector-like fermions. In the
4321 model, VLLs come in electroweak doublets with
one charged VLL, E, and one neutral VLL, N, whose
masses are taken to be equal. The VLLs may be pro-
duced via electroweak production through their coup-
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lings to the SM W and Z/y bosons or via interactions with
a new heavy Z’ boson introduced by the 4321 model. In
this study, we consider only the electroweak production
and ignore potential contributions from the Z’ boson. Ex-
amples of Feynman diagrams showing VLL pair produc-
tion through a) s-channel (u*u~ — LL, where L repres-
ents either N or E) and b) vector boson scattering (VBS)
at a TeV muon collider (u*u~ — LLv,¥,), as well as dia-
grams of the VLL decays, are shown in Fig. 1. The VLLs
decay via a virtual leptoquark, U, to two quarks and one
lepton. The leptoquark is expected to couple most
strongly to the third generation to explain the B anom-
alies. For each second- and first-generation fermion, sup-
pression of one or more orders of magnitude in the
branching fraction is expected. We consider only the
dominant decays, that is, decays to third-generation fer-
mions.

Figure 2 shows the cross sections of various pro-
cesses and VLL mass points at the center-of-mass energy
vs=3 or 10 TeV. The cross sections of the EE pro-
cesses are larger than those of the NN processes by one
order of magnitude. The VBS cross sections are smaller
by several orders of magnitude than those of pair produc-
tion. Hence, we hereafter focus on the EE pair produc-
tion processes.

The background processes we consider include

e bl) utu~ — bb,bbZ,
o b2) utu >ttt Z,

o b3) utum > WHW- , WrwW-Z,
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Fig. 1. Top side: Example Feynman diagrams showing VLL

pair production through s-channel and vector boson scattering
at a TeV muon collider. L represents either the neutral VLL,
N, or the charged VLL, E. Bottom side: Vector-like lepton
decays are mediated by a vector leptoquark, U. These decays
are primarily to third-generation leptons and quarks.
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Fig. 2. (color online) Cross sections of various signal pro-

cesses and VLL mass points in two benchmark collider pro-
posals with +/s=3 or 10 TeV. The x-axis shows the process
symbol (pair production, u*u~ — LL, or VBS production,
wrpu™ — LLv,v,) and +/s in the scale of TeV, whereas the y-ax-
is on the logarithmic scale indicates the cross sections in units
of pb. The cross sections of mg = my =1500 GeV are non-van-
ishing owing to the offshell £, N. The VBS processes with
mg =my = 1500 GeV and +/s =3 TeV result in negligible cross
sections.

o bd) utu~ — 11,17,

o b5) utu~ — ZZh,Zhh,tth,bbh, WWh,v*th (col-
lectively named “others™),

® b6) VBS production of bb, 7t~ , W W~ 1i.

III. SIMULATION AND ANALYSIS
FRAMEWORK

We consider the muon collider benchmarks in which
vs=3 TeV and L = ab~! in this study. Both signal and
background events are simulated with
MadGraph5 aMC@NLO and then showered and hadron-
ized by Pythia8 [12]. The final state jets are clustered us-
ing fastjet [13] with the VLC [14, 15] algorithm at a fixed
cone size of Rj; = 0.5. We use delphes [16] 3.5.0 to simu-
late detector effects with the newly-added card for the
muon collider detector [17]. The jet flavor tagging effi-
ciencies are listed in Table 1. However, note that jet tag-
ging techniques for muon colliders are currently in their
preliminary stage [11, 18] and have a large potential for
improvement.

Table 1. Flavor tagging efficiencies used in this analysis.
Flavor Tagged as light Tagged as b
light 0.9 0.01
b 0.1 0.7
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The hadronic 7 identification efficiency is chosen
from the performance of the CMS detector. The mis-tag-
ging rates are both ~ 1% from CEPC detector simulation
[19] and CMS estimation [20].

Figure 3 shows signal and stacked background distri-
butions on the multiplicities of identified tau, b-jet, and
additional leptons, simulated at a 3 TeV muon collider.
We can see that pair production of EE processes have
dominant significance. Based on the optimization per-
formance shown in Fig. 3, we define our preselection cri-
teria as follows: events must include at least a pair of
identified opposite sign zs, 3 b-tagged jets, while events
with additional leptons are vetoed. The selection effi-
ciency of background/signal events before any cuts and
after the preselection cuts is shown in Table 2.

Table 2. Selection efficiency of background/signal events
before any cuts and after the preselection cuts.
Efficiency Background Signal
Preselection 0.0017% 9.6%

IV. ANALYSIS METHODS AND RESULTS

The reconstruction of the VLL candidates starts with
selecting and clustering five or six jets into two recon-
structed VLLs using the following algorithm looping
through a maximum of ten jets:

e Sclect 2 7 jets and 4 b-tagged jets (for events with
only 3 b tagged jets, a jet is selected or zero padding is
applied, if there is no jet expect the jets already con-
sidered) as b candidates.

xmf

e Construct the combinatorics of the 2 7 and 4 b can-
didates into (71,b1,b2),(72,b3,b4).

e Calculate the invariant mass of the systems
(Tl,bl,bz) and (T2,b3,b4), denoted as M(Tl,bl,bz) and
M(t3,b3,b4), respectively.

e Calculate AM? = M(Tl,bl,bz)z —M(Tg,b3,b4)2,

® (11,b1,by) and (12,b3,b4) giving the lowest AM? are
reconstructed as 2 VLLs.

Additional pairs of VLLs are reconstructed by requiring a
relatively small AM?. This algorithm is used to construct
the input for BDT training.

A. BDT

To implement the BDT, we shuffle the signal and
background events and define the training and test sets
with an event ratio of 4: 1. A BDT with 850 trees and a
maximum depth of three is trained. We apply the per-
event weight during training to account for the cross-sec-
tion difference among the background processes. The
weight is defined by

I’lLX = UxL/NGX, (1)

where oy denotes the cross-section of a process, L de-
notes the default target luminosity in this study at approx-
imately 1 ab~! for a 3 TeV muon collider, and Ng, de-
notes the generated number of events. The total signal
yields are reweighted to match those of the total back-
ground during training for the robustness of the trained

Events

800 T T
HEZHWW)
700 bb(2)
W w(Z)

—— EE(600)<100
EE(1000)<100
NN(800}x1000 E|
NN(1000)x1000 ] 10000

Events
g2 2
8 3
3 3
T

T T 25 T T
HEZAWW) - HZHWW) ]
) E o) 1
- ) - - 1
@ E 20 " 3

—— EE(6001 |
EE(1000)x1 =

Events

—— EE(6005001
€E(1000»0.01
NN(800)0.1

NN(1000)-0.1

NN(600)<10 s 15
NN(1000)x10 =

P | L L
05 0

6 7 -05 0 1 15 0 1 2 4 .
NB;(l) opposite sign ts NLepton
@ 120 = @ 120 El 8 E E
2 100 E- —EE(1000) 3 2 100 —EE(600) 2 = —EE(1000) 3
S 8o ~NN(1000) S 8o E 3 E ~NN(1000)
= 60 - = 60 - = = = -
5 4F 4 5 4F E 5 E E
@ 0F = S 20 = @ E E
0 0 1 2 3 4 5 6 7 0 -04 -02 0 02 04 06 08 1 12 1.4 R].S 0 05 1 1.5 2 25 3 35 4 4.5
g 100¢ @ 120F 3 o 120¢ 3
e gf —EE(600) e IooE —EE(1000) S 100F- —EE(600)
8 e ~NN(600) 8 & ﬂ 3 gg E ~NN(§00)
T 40F = ’é fg = E T wFE 3
S nE E S - S E E
@ E £ & 20 [ @ 20F :
% 2 5 4 5 6 7 05702 0 02 04 08 08 1 12 14 S5 605 115 2 25 3 85 4 45
Fig. 3. (color online) Signal and stacked background distributions on the multiplicities of identified b-jet, tau (requiring 3 b-tagged

jets in events), and additional leptons (requiring 3 b-tagged jets in events and no additional leptons in the events), simulated at a 3 TeV
muon muon collider. The ratio plots below show the statistic only significance estimated for each signal point, based on which we can

decide on selections with the best performance.
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model. Signal yields corresponding to different VLL
masses are weighted to be the same. The input features,
namely, the reconstructed kinematics of each event used
in training, are listed as follows and summarized in Table
3:

® (pr,1, ¢, mass) of a maximum of 10 jets including
78. T jets are prior to b candidates, and both have higher
priorities than rest jets.

® (pr, 7, ¢) of the missing energy £.

® (pr,1, ¢, mass, Nb jetsin VLL) of the six pairs of
VLL candidates.

® (A¢, AR) between each pair of VLLs candidates.

Table 3. Summary of features used for BDT training.
L. Number of
Objective Features
features
Each jet (pt, n, ¢, mass, flavor) 50
E (pr.n, ¢) 3
Each pair of VLL
. (pt, 1, ¢, mass, flavor,A¢, AR) 48
candidates
Total: 101

B. Simple fully-connected DNNs

Using the variables of jets and MET from the input of
the BDT model, for each signal or background event, we
have a flattened feature vector of size 53 to describe the
information extracted from the final state. A direct way to
construct a classifier based on the already vectorized in-
put without any concise symmetry is to build fully-con-
nected dense layers (simple fully-connected DNNSs).

Because the input features are spread over many or-
ders of magnitude, feature-wise normalization is per-
formed before feeding the data into the network. Several

architectures of simple fully-connected DNNs are tried,
which share the same 53-neuron input layer and sigmoid-
activated 1-neuron output layer, differing only in the
number and size of the ReLU-activated hidden layers.
The RMSProp optimizer with an initial learning rate of
10~ and a batch size of 32 is used to minimize the bin-
ary cross entropy loss. Training, validation, and test
samples are randomly taken from the dataset following
the 8:1:1 ratio, and the training samples are shuffled at
the beginning of each epoch. Validation is performed at
the end of each epoch.

C. ABCNet model

The ABCNet [21] is an attention-based graph neural
network that takes advantage of the graph attention
polling (GAP) [22] layers to enhance the local feature ex-
traction, in addition to the previous state-of-the-art model
ParticleNet [23], for tasks such as quark-gluon tagging
and pileup mitigation. For the purpose of binary classific-
ation between the signal and background events in the
context of the 4321 model in literature [6] and this paper,
the model takes batches of the point-cloud encoded
events as inputs and outputs the predicted probabilities
for each event to be the signal, which we refer to as AB-
CNet scores in the following.

Specifically, point-cloud encoding contains both de-
tailed information about jets (local features, including 7
jets and b candidates) and about the entire event (global
features). For each event, the cloud collects a maximum
of 10 jets with their kinematics, charges, and b-tagging
results. 7 jets are prior to b candidates, and both are then
sorted by pr in descending order. Jets with lower priorit-
ies are discarded if more than 10 are found, and zero pad-
ding is applied to ensure 10 points to input otherwise. We
summarize the local features in Table 4 and also provide
the missing energy as global features. The two input cat-
egories of features are integrated by ABCNet to predict
the ABCNet score. We cut the events as follows before
building the dataset:

o At least 3 b-tagged candidates with ¢ =90% ;

Table 4. Input local features of our ABCNet model.
No. Feature Description
0 n pseudorapidity of the jet momentum
1 ] azimuthal angle of the jet momentum
2 log % transverse momentum of the jet, with logarithmic scaling
3 log Gr:V static mass of the jet, with logarithmic scaling
4 (0] charge for a 7 jet or zero filling otherwise
5 BTags, b-tagging result for a b candidate with € = 50% or zero filling otherwise
6 BTagzo b-tagging result for a b candidate with €, = 70% or zero filling otherwise
7 BTagy, b-tagging result for a b candidate with e = 90% or zero filling otherwise
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e Atleast 2 7, with at least 1 7" and atleast 1 7
e No lepton.

Then, the events are shuffled and split into training, valid-
ation, and test sets with the 8 : 1 : 1 ratio.

Our ABCNet model is similar to that used by the
CMS collaboration [6], except for the three input global
features and the fully connected layer of size 16 connect-
ing them to the aggregation. It is tuned, starting from Fig.
1 in literature [21], shrinking the edge size of the first
GAP block to 16, decreasing the capacities of the layers
immediately after the two GAPs block both to 64, and re-
placing the structures after the aggregation to two fully
connected layers of size 256, sandwiching a max-polling
layer before the softmax activated output layer of size 2.
In addition, to avoid over-training, we apply a dropout
after each hidden fully connected layer, whose ratio is
tuned to be 0.3. Figure 4 shows the architecture of the
ABCNet used in this study. We use the Adam optimizer
with a batch size of 64 and a learning rate decaying expo-
nentially from 1072, which performs well both in feature
extraction and over-fit avoidance. We monitor the train-
ing process with metric validation accuracy and perform
an early stop if the metric value does not improve over
the nearest 10 epochs. The best-fit model with the highest
validation accuracy is then tested over the test set to en-
sure accuracy and conduct AUC evaluation.

Owing to the insufficiency of MC samples originat-
ing from the slowness of simulation, as well as our inten-

tion to use the entire dataset to set limits afterward, we
equally divide the set into 10 folds for cross-validation.
For each fold, the model is trained on other folds and
tested on the unseen fold to give ABCNet scores. Figure
5 (a) visualizes the distribution of the ABCNet scores in
the 10 mutually exclusive test folds. For both the signal
and background events, their distributions do not vary
much between different folds, although the signal and
background distributions do separate to a large extent.
The two features show the excellent generalizing and dis-
tinguishing powers of the model. To further inspect the
stability and generalization of the model, Table 5 gives
the detailed performance of the model over the 10 differ-
ent folds and the overall values. For each of the 10 runs,
we perform the Kolmogorov-Smirnov test to ensure that
no over-fitting occurs with respect to the correspondence
of the ABCNet score distributions over the training and
test sets for both signal and background samples, among
which the result of the first run is visualized in Fig. 5 (b).

D. Results

Receiver operating characteristic (ROC) curves are
shown in Fig. 6 to illustrate the performance of the classi-
fiers. Our primary metric for comparison is the area un-
der the ROC curve (AUC), with a higher AUC value in-
dicating a more robust classification power across a wide
range of working points. This metric is insightful be-
cause it is directly connected to classification accuracy,
the quantity optimized in hyperparameter tuning, and oth-
er important metrics. The statistical significance is calcu-
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Fig. 4. ABCNet architecture used in this study.
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Table 5. Performance of the ABCNet model over the 10 dif-
ferent folds and the overall values. In the table, std denotes the
standard deviation, and S and B denote signal and back-
ground, respectively. The overall AUC is computed by gather-
ing the 10 folds to evaluate the overall FPR and TPR and are
thus slightly variant from the mean value of the group.

No. Accuracy AUC S p-value B p-value
0 0.9305 0.9660 0.5349 0.1672
1 0.9365 0.9726 0.0130 0.7574
2 0.9373 0.9707 0.4207 0.2046
3 0.9362 0.9698 0.5278 0.0541
4 0.9331 0.9671 0.3081 0.0281
5 0.9362 0.9715 0.8091 0.0389
6 0.9420 0.9744 0.3776 0.2883
7 0.9358 0.9687 0.3732 0.4290
8 0.9399 0.9734 0.7797 0.1458
9 0.9352 0.9686 0.7758 0.5006
mean 0.9363 0.9703 0.4920 0.2614
std 0.0030 0.0026 0.2372 0.2246
overall 0.9363 0.9698 - -

lated to reveal its strong positive dependence on the
AUC.

Considering the AUC metric, ABCNet has the best
performance compared to the BDT and DNNs using the
same input, as shown in Fig. 6, as expected. A fully-con-
nected DNN with many hidden layers performs even
worse than the most reduced single-hidden-layer one.

We use the kinematic information of the 7, jet, and
VLL candidates to predict the VLL mass, whose distribu-

1.0

N

0.4

| —— DNN (AUC = 0.922)

—— DNN_Simple (AUC = 0.943)
—— BDT (AUC = 0.966)

0.0 — ABCNet (AUC = 0.970)

Background Rejection (1 - FPR)

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency (TPR)

Fig. 6.
versus signal efficiency for classification models: (a) BDT, (b)
DNN with a single hidden layer, (c) DNN with more hidden
layers, and (d) ABCNet.

(color online) Comparison of background rejection

tion is then used to derive the limits on each mass point.
The predicted VLL mass distribution is a more involved
mass reconstruction that uses the same DNN model as in
Section 4.2 but changed from a classification to a regres-
sion task. The comparison between the predicted VLL
mass and the VLL mass reconstructed using a simplified
traditional method (see section 4) is shown in Fig. 7,
where the former fits considerably better.

The signal region is defined as where the discrimin-
ant (that is, the ABCNet score) exceeds the threshold,
which is chosen such that the best (that is, strongest) 95%
confidence level (CL) upper limits are obtained for all
VLL mass points. We search for peaks in the regressed
VLL mass distributions by performing binned maximum
likelihood fits using HistFactory [24] and pyhf [25,
26]. Because observed yields are unavailable, "Asimov"
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data are used. We set the upper limit (UL) using the CL
technique [27, 28]. Assuming the measurements per-
formed are limited by the availability of data statistics,
have well-constrained experimental systematics, and have
excellent MC statistics, the background uncertainty is
taken as the Poisson counting uncertainty for the expec-
ted background yield in each bin.

Compared to the results of the analysis performed by
the CMS experiment with the analyzed data correspond-
ing to an integrated luminosity of 96.5 fb~! at a 13 TeV
proton collider, the results at a 3 TeV muon collider are
significantly improved. In the CMS experiment, an ex-
cess of 2.8 standard deviations over the SM background-
only hypothesis was observed from the data at the repres-
entative VLL mass point of 600 GeV and no VLL masses
were excluded at the 95% CL. In comparison, at the 3
TeV muon collider, VLL masses can be excluded at the
95% CL up to 1450 GeV with an integrated luminosity of
only 0.01 ab~!. The upper limit of the signal cross-sec-
tion at the 95% CL corresponding to an integrated lumin-
osity of 0.01 ab™! is shown in Fig. 8.

V. OUTLOOK AND CONCLUSIONS

In this study, we investigate the potential for search-
ing for VLLs at a future high-energy muon collider. The
4321 model, which is an ultraviolet-complete model and
extends the SM gauge groups to a larger SU(4)x
SU@B)Y xSUQ)LxU(1) group, is considered in this study.
In the model, a leptoquark is predicted as the primary
source of lepton flavor nonuniversality, while the ultravi-
olet-completion predicts additional vector-like fermion
families. In particular, VLLs are investigated via their
couplings to SM fermions through leptoquark interac-
tions, resulting in third-generation fermion signatures. Fi-
nal states containing at least three b-tagged jets and two ¢
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(color online) Comparison between the predicted VLL mass (left) and the simplified VLL mass reconstruction (right).
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Fig. 8. (color online) Expected 95% CL upper limits on the

product of the VLL pair production cross section at a 3 TeV
muon collider.

lepton multiplicities are considered. To improve the
search sensitivity, BDT, DNN, and graph neural net-
works are trained to discriminate between signals and
backgrounds. As a result, a 95% CL limit can be achieved
for vector-like lepton masses up to 1450 GeV at a 3 TeV
muon collider, with 1% of data corresponding to the tar-
get integrated luminosity.

ACKNOWLEDGMENTS

We thank Conggiao Li for illuminating and construct-
ive discussions on neural network tuning and applica-
tions.

103106-7



Qilong Guo, Leyun Gao, Yajun Mao et al.

Chin. Phys. C 47, 103106 (2023)

References

(9]
[10]
[11]
[12]

[13]

L. Di Luzio, A. Greljo, and M. Nardecchia, Phys. Rev. D
96(11), 115011 (2017), arXiv:1708.08450[hep-ph]

L. Di Luzio, J. Fuentes-Martin, A. Greljo et al., JHEP 11,
081 (2018), arXiv:1808.00942[hep-ph]

A. Greljo and B. A. Stefanek, Phys. Lett. B 782, 131-138
(2018), arXiv:1802.04274[hep-ph]

M. Blanke and A. Crivellin, Phys. Rev. Lett. 121, 011801
(2018)

L. Calibbi, A. Crivellin, and T. Li, Phys. Rev. D 98, 115002
(2018)

CMS Collaboration, arXiv: 2208.09700

D. Schulte, N. Pastrone, and K. Long, CERN Cour. 60 (3),
41-46, 2020

M. Greco, T. Han, and Z. Liu, Phys. Lett. B 763, 409-415
(2016)

Antonio Costantini et al., JHEP 2020, 80 (2020)

D. Buttazzo et al., JHEP 11, 144 (2018)

N. Bartosik et al., arXiv: 2001.04431

T. Sjostrand, S. Ask, J. R. Christiansen ef al., Comput.
Phys. Commun. 191, 159-177 (2015),
arXiv:1410.3012[hep-ph]

M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C 72,
1896 (2012), arXiv:1111.6097[hep-ph]

[26]

[27]
(28]

103106-8

M. Boronat, J. Fuster, I. Garcia et al., Eur. Phys. J. C 78,
144 (2018)

M. Boronat, J. Fuster, 1. Garcia et al., Phys. Lett. B 750, 95
(2015)

J. de Favereau et al. (DELPHES 3 Collaboration), JHEP 02,
057 (2014), arXiv:1307.6346[hep-ex]
https://github.com/delphes/delphes/blob/3.5.0/cards/delphes
_card MuonColliderDet.tcl

V. Di Benedetto et al., J. Inst. 13, P09004 (2018)

CEPC Study Group, arXiv: 1811.10545

A. M. Sirunyan et al., JINST 13, P10005 (2018)

V. Mikuni and F. Canelli, Eur. Phys. J. Plus 135, 463 (2020)
C. Chen, L. Z. Fragonara, and A. Tsourdos, arXiv:
1905.08705

H. Qu and L. Gouskos, Phys. Rev. D 101, 056019 (2020)

K. Cranmer, G. Lewis, L. Moneta et al., 4 tool for creating
statistical models for use with RooFit and RooStats, CERN-
OPEN-2012-016

L. Heinrich, M. Feickert, G. Stark et al., https://doi.
org/10.5281/zenodo.1169739, https://github.com/scikit-
hep/pyhf/releases/tag/v0.7.0rc1

L. Heinrich, M. Feickert, G. Stark et al., Journal Of Open
Source Software 6, 2823 (2021)

T. Junk, Nucl. Instrum. Meth. A 434, 435-443 (1999)

A. Read, J. Phys. G 28, 2693-2704 (2002)


https://doi.org/10.1103/PhysRevD.96.115011
https://doi.org/10.1103/PhysRevD.96.115011
https://arxiv.org/abs/1708.08450
https://doi.org/10.1007/JHEP11(2018)081
https://doi.org/10.1007/JHEP11(2018)081
https://doi.org/10.1007/JHEP11(2018)081
https://doi.org/10.1007/JHEP11(2018)081
https://arxiv.org/abs/1808.00942
https://doi.org/10.1016/j.physletb.2018.05.033
https://doi.org/10.1016/j.physletb.2018.05.033
https://doi.org/10.1016/j.physletb.2018.05.033
https://doi.org/10.1016/j.physletb.2018.05.033
https://arxiv.org/abs/1802.04274
https://doi.org/10.1103/PhysRevLett.121.011801
https://doi.org/10.1103/PhysRevLett.121.011801
https://doi.org/10.1103/PhysRevLett.121.011801
https://doi.org/10.1103/PhysRevLett.121.011801
https://doi.org/10.1103/PhysRevD.98.115002
https://doi.org/10.1103/PhysRevD.98.115002
https://doi.org/10.1103/PhysRevD.98.115002
https://doi.org/10.1103/PhysRevD.98.115002
https://arxiv.org/2208.09700
https://doi.org/10.1016/j.physletb.2016.10.078
https://doi.org/10.1016/j.physletb.2016.10.078
https://doi.org/10.1016/j.physletb.2016.10.078
https://doi.org/10.1016/j.physletb.2016.10.078
https://doi.org/10.1007/JHEP09(2020)080
https://doi.org/10.1007/JHEP09(2020)080
https://doi.org/10.1007/JHEP09(2020)080
https://doi.org/10.1007/JHEP11(2018)144
https://doi.org/10.1007/JHEP11(2018)144
https://doi.org/10.1007/JHEP11(2018)144
https://arxiv.org/2001.04431
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1140/epjc/s10052-018-5594-6
https://doi.org/10.1140/epjc/s10052-018-5594-6
https://doi.org/10.1140/epjc/s10052-018-5594-6
https://doi.org/10.1140/epjc/s10052-018-5594-6
https://doi.org/10.1016/j.physletb.2015.08.055
https://doi.org/10.1016/j.physletb.2015.08.055
https://doi.org/10.1016/j.physletb.2015.08.055
https://doi.org/10.1016/j.physletb.2015.08.055
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://github.com/delphes/delphes/blob/3.5.0/cards/delphes_card_MuonColliderDet.tcl
https://github.com/delphes/delphes/blob/3.5.0/cards/delphes_card_MuonColliderDet.tcl
https://doi.org/10.1088/1748-0221/13/09/P09004
https://doi.org/10.1088/1748-0221/13/09/P09004
https://doi.org/10.1088/1748-0221/13/09/P09004
https://arxiv.org/1811.10545
https://doi.org/10.1088/1748-0221/13/10/P10005
https://doi.org/10.1088/1748-0221/13/10/P10005
https://doi.org/10.1088/1748-0221/13/10/P10005
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://arxiv.org/1905.08705
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.5281/zenodo.1169739
https://doi.org/10.5281/zenodo.1169739
https://github.com/scikit-hep/pyhf/releases/tag/v0.7.0rc1
https://github.com/scikit-hep/pyhf/releases/tag/v0.7.0rc1
https://doi.org/10.21105/joss.02823
https://doi.org/10.21105/joss.02823
https://doi.org/10.21105/joss.02823
https://doi.org/10.21105/joss.02823
https://doi.org/10.1016/S0168-9002(99)00498-2
https://doi.org/10.1016/S0168-9002(99)00498-2
https://doi.org/10.1016/S0168-9002(99)00498-2
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1088/0954-3899/28/10/313

	I INTRODUCTION
	II PHYSICS PROCESSES
	III SIMULATION AND ANALYSIS FRAMEWORK
	IV ANALYSIS METHODS AND RESULTS
	A BDT
	B Simple fully-connected DNNs
	C ABCNet model
	D Results

	V OUTLOOK AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

