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Abstract: The Witten effect implies the presence of electric charge of magnetic monople and the possible relation-
ship between axion and dyon. The axion-dyon dynamics can be reliably built based on the quantum electromagneto-
dynamics (QEMD) which was developed by Schwinger and Zwanziger in the 1960's. A generic low-energy axion-
photon effective field theory can also be realized in the language of “generalized symmetries” with higher-form sym-
metries and background gauge fields. In this work, we implement the quantum calculation of the axion-single photon
transition  rate  inside  a  homogeneous  electromagnetic  field  in  terms  of  the  new  axion  interaction  Hamiltonian  in
QEMD. This quantum calculation can clearly imply the enhancement of conversion rate through resonant cavity in
axion  haloscope  experiments.  We  also  show  the  promising  potentials  on  the  cavity  search  of  new  axion-photon
couplings.
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I.  INTRODUCTION

θGa µνG̃a
µν

U(1)PQ

gaγγaFµνF̃µν

θFµνF̃µν

−θe/2π

gaγγaE⃗ · B⃗

It  is  well-known  that  the  strong CP problem  in
quantum chromodynamics (QCD) arises from the source
of  the CP violation  in  the  QCD  Lagrangian  with

. The Peccei-Quinn (PQ) mechanism solves the
strong CP problem  by  introducing  a  pseudo-Goldstone
boson a called  axion  after  the  spontaneous  breaking  of
the  QCD  anomalous  global  symmetry  [1−12].
The  chiral  transformation  of  the  quark  fields  with  PQ
charges  also  leads  to  the  anomaly  under  QED  and  the
coupling  between axion  and  electromagnet-
ic  fields.  In  1979,  E.  Witten  showed that  a CP violating
term  with  a  non-zero  vacuum  angle θ provides
an  electric  charge  for  magnetic  monopoles  [13].
This  so-called  Witten  effect  implies  a  close  relationship
between the axion and magnetic monopole due to the ax-
ion-photon coupling .

These axion-dyon dynamics were first derived by W.
Fischler et  al.  under classical  electromagnetism [14] and
were proposed as a solution to cosmological problems in
recent  years  [15−19]. In  their  works,  however,  the  mag-

gaγγaFµνF̃µν

netic  monopoles  were  treated  as  quasi-classical  external
sources  and  the  quantization  of  electromagnetism  is  not
complete. A reliable quantization in the presence of mag-
netic  monopoles  was  developed  by  J.  S.  Schwinger  and
D. Zwanziger  in  1960's  and  called  quantum electromag-
netodynamics  (QEMD)  [20−22].  Recently,  based  on  the
QEMD framework, Ref. [23] constructed a more generic
axion-photon Lagrangian in the low-energy axion effect-
ive  field  theory  (EFT).  Besides  the  Witten  effect  term,
more anomalous axion-photon interactions and couplings
arise assuming the existence of heavy PQ-charged fermi-
ons with  electric  and  magnetic  charges.  This  is  in  con-
trast  to  the  conventional  axion  EFT  in  the
quantum electrodynamics (QED) framework.  As a result
of  the  above  generic  axion-photon Lagrangian,  the  con-
ventional axion Maxwell equations [24] are further modi-
fied and based on this  some new detection strategies  for
axions have been studied in recent years [25−28].

U(1)EM
U(1) U(1)E×U(1)M

Aµ

The  key  property  of  QEMD  is  to  substitute  the
 gauge group in the Standard Model (SM) by two

 gauge groups  to introduce both elec-
tric  and  magnetic  charges.  Then,  two  four-potentials 
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Bµ

U(1)
and  (instead of only one in QED) are introduced cor-
responding to the two  gauge groups, respectively. A
non-trivial form of equal-time canonical commutation re-
lations  between  them  can  be  built  [22].  This  guarantees
the preservation of the correct degrees of freedom for the
physical photon.

je jm

nµ = (0, n⃗) Fµν

Fd
µν

The other property of QEMD is that it seemingly acts
like non-local quantum field theory (QFT). To obtain the
covariant Maxwell  equations  in  the  presence  of  a  con-
served  electric  current  and  magnetic  current ,  one
needs  to  introduce  an  arbitrary  spacelike  vector

.  The  electromagnetic  field  strength  tensor 
and its dual tensor 1) are then given by
 

F = ∂∧A− (n ·∂)−1(n∧ jm)d, Fd = ∂∧B+ (n ·∂)−1(n∧ je)d,

(1)

(n ·∂)−1

n ·∂(n ·∂)−1(x⃗) = δ(x⃗)
where  the  integral  operator  satisfies

. The second terms on the right-hand
sides  of  Eq.  (1)  likely  induce  a  non-local  property  in
QEMD.  One  can  prove  that  the  non-local  part  does  not
play  any  role  in  the  physical  processes  and  that  the
Lorentz invariance is not violated [29−31].

O(10) µeV

ma

The  QCD  axion  (see  Ref.  [32]  for  a  recent  review)
can  become  a  dark  matter  (DM)  candidate  through  the
misalignment  mechanism  [33, 34].  Conventional  axion
haloscope experiments such as ADMX [35, 36] are built
based  on  the  resonant  cavity  technique  to  search  for

 axion DM. The cosmic axions resonantly con-
vert  into  a  monochromatic  photon  with  enhancement
from  a  high  quality  factor Q when the  resonant  fre-
quency of the cavity is  tuned to the axion mass .  The
mean number of thermal photons in the cavity at a finite
temperature T is given by 

n(ωa,T ) =
1

eωa/kBT −1
, (2)

kB
ma ≳ O(10) µeV T ≈ 20 mK

a→ γ

|0⟩ → |1⟩

where  is  the  Boltzmann  constant.  When
 and ,  the  occupation  number

for  thermal  photons  is  quite  low  and  the  cavity  can  be
treated  as  a  single  photon  emitter.  Although  the  usual
electromagnetic power  radiated  in  the  cavity  is  calcu-
lated in  classical  field theory [24],  the actual  description
is a quantum mechanical process of axion to photon con-
version,  as stated by P.  Sikivie in Ref.  [37].  To describe
this  axion-single  photon  conversion , the  calcula-
tion  of  the  transition  rate  should  be  performed  at  the
quantum level [38, 39]. In this work, we follow Ref. [39]
in  implementing  the  quantum  calculation  of  the  photon

 transition rate  inside  a  homogeneous  electro-
magnetic  field  in  terms  of  the  new  axion  interaction

Hamiltonian based on QEMD. This  quantum calculation
can clearly imply an enhancement of the conversion rate
through  resonance,  which  is  not  certain  in  the  classical
picture. Our work will show the basic method for a gener-
ic cavity search of the new axion-photon couplings.

a→ γ

This paper is organized as follows. In Sec. II,  we in-
troduce  the  generic  axion-photon  interactions.  We  will
show  the  realizations  of  this  theory  in  both  QEMD  and
generalized symmetry.  In  Sec.  III,  we  perform  a  com-
plete  quantum  calculation  of  the  transition  rate
based  on  the  new  axion  interaction  Hamiltonian  in
QEMD. The transition rates  from different  types of  cav-
ity modes are obtained under an external static magnetic
or  electric  background.  We  also  show  the  sensitivity  of
the resonant cavity to axion-photon couplings in Sec. IV.
Our conclusions are drawn in Sec. V. 

II.  REALIZATIONS OF GENERIC AXION-
PHOTON INTERACTIONS IN QEMD AND

GENERALIZED SYMMETRY
 

A.    The generic axion-photon interactions in QEMD

Aµ Bµ

U(1)E×U(1)M

In  QEMD  theory,  the  photon  is  described  by  two
four-potentials  and .  Correspondingly,  the  gauge
group  of  QEMD  becomes  which inher-
ently introduces both electric and magnetic charges.  The
equal-time  canonical  commutation  relations  between  the
two four-potentials were obtained as [22] 

[Aµ(t, x⃗),Bν(t, y⃗)] = iϵµνκ0nκ(n ·∂)−1(x⃗− y⃗) , (3)

 

[Aµ(t, x⃗),Aν(t, y⃗)] =[Bµ(t, x⃗),Bν(t, y⃗)]

=− i(g µ
0 nν+g ν

0 nµ)(n ·∂)−1(x⃗− y⃗) .

(4)

FdThe  electromagnetic  field  strength  tensors F and  are
then introduced so that 

n ·F = n · (∂∧A) , n ·Fd = n · (∂∧B) , (5)

nµ = (0, n⃗)

je, jm

where  is an  arbitrary  fixed spatial  vector.  Ap-
parently, the two four-potentials have opposite parities. In
the  absence  of  electric  and  magnetic  currents ,  one
has a simplified form 

F = ∂∧A = −(∂∧B)d , Fd = ∂∧B = (∂∧A)d . (6)

The n-related  terms produce  the  non-locality in  this  the-
ory.  This  non-local  property  can be realized by the  two-
particle  irreducible  representation  in  QFT  theory  with

Tong Li, Rui-Jia Zhang Chin. Phys. C 47, 123104 (2023)

Xd
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(i, j)
both electric charge q and magnetic charge g.  Each two-
particle state  is characterized by the Dirac-Schwing-
er-Zwanziger (DSZ) quantization condition 

qig j−q jgi = 2πN , N ∈ Z . (7)

nµ
Ln

qig j−q jgi
2πN

eiS

Thus, the cluster decomposition principle is obviously vi-
olated  by  the  irreducible  two-particle  state  [31]  and  the
Lorentz  invariance  is  seemingly  violated  in  this  QEMD
theory. However, it  was formally shown that the observ-
ables of the QEMD are Lorentz invariant using the path-
integral approach [29−31]. After all  quantum corrections
have been properly accounted for, the dependence on the
spatial vector  in the action S factorizes into an integer
linking  number  multiplied  by  the  combination  of
charges  in  the  DSZ  quantization  condition .
This n dependent part is then given by  with N being
an  integer.  As S contributes  to  the  generating  functional
in  the  exponential  form ,  this  Lorentz-violating  part
does not play any role in the physical processes.

The  Lagrangian  for  the  anomalous  interactions
between axion a and a photon in QEMD is given by [23] 

L ⊃− 1
4

gaAA a tr[(∂∧A)(∂∧A)d]

− 1
4

gaBB a tr[(∂∧B)(∂∧B)d]

− 1
2

gaAB a tr[(∂∧A)(∂∧B)d] . (8)

gaAA gaBB
U(1)PQU(1)2

E U(1)PQU(1)2
M

Aµ Bµ

gaAB U(1)PQU(1)EU(1)M

ϕFµνFµν

The  first  two  dimension-five  operators  are CP-con-
serving axion interactions. Their couplings  and 
are  governed  by  the  and  an-
omalies, respectively. As  and  have opposite parit-
ies, the third operator is a CP-violating one and its coup-
ling  is determined by the  anom-
aly.  The  inclusion  of  this  term accounts  for  the  intrinsic
CP violation  in  the  dyon  theory.  It  is  also  analogous  to
the  interaction  between  the  electromagnetic  field  and  a
scalar ϕ with  positive  parity  [40].  In  terms  of
classical  electromagnetic  fields,  the  above  axion-photon
Lagrangian becomes1)
 

L ⊃− 1
4

(gaAA−gaBB) a FµνFd µν+
1
2

gaAB a FµνFµν

=(gaAA−gaBB) a B⃗ · E⃗+gaAB a (B⃗2− E⃗2) . (9)

(q,g)
(−q,g)

Note that QEMD theory has an intrinsic source of CP vi-
olation.  This  is  because the  spectrum of  dyon charges  is
not CP invariant  with  only  a  state  and  without  its
CP conjugate  state .  The  intrinsic CP violation  of
high  energy  QEMD is  transferred  to  the  low-energy ax-

(q,g) gaAB

gaAB

a→ γ

ion-photon EFT after integrating out heavy fermionic dy-
ons  with  charges .  The  coefficient  is determ-
ined by the CP violating anomaly coefficient and the 
term in the Lagrangian is a CP-odd term. They reflect the
intrinsic CP violation of QEMD. This is the form of inter-
actions  that  we  will  use  for  the  quantum  calculation  of
the  transition rate below. Taking care of the above
anomalies, one can calculate the coupling coefficients as 

gaAA =
Ee2

4π2vPQ
, gaBB =

Mg2
0

4π2vPQ
, gaAB =

Deg0

4π2vPQ
, (10)

g0

g0 = 2π/e
vPQ U(1)PQ

E(M)

g0≫ e
gaBB≫ |gaAB| ≫ gaAA

where e is  the  unit  of  electric  charge,  is  the  minimal
magnetic  charge  with  in  the  DSZ quantization
condition,  and  is  the  symmetry  breaking
scale.  is the  electric  (magnetic)  anomaly  coeffi-
cient  and D is  the  mixed  electric-magnetic CP-violating
anomaly coefficient.  They  can  be  computed  by  integrat-
ing  out  heavy  PQ-charged  fermions  with  electric  and
magnetic charges. Ref. [23] performed the calculation of
the anomaly coefficients by following Fujikawa's path in-
tegral method [41]. As the DSZ quantization condition in-
dicates ,  we  have  the  scaling  of  the  axion-photon
couplings as .

We  can  propose  a  KSVZ-like  high  energy  QEMD
theory  with  heavy  fermions ψ as  UV  completion  [23].
The Lagrangian for the fermions ψ is 

L ⊃ iψ̄γµDµψ+ yΦψ̄LψR+h.c. , (11)

Dµ = ∂µ− eqψAµ−g0gψBµ
Aµ Bµ

gaAB

where  denotes a  covariant  de-
rivative  with  both  and  four-potentials  multiplied
by the  corresponding  electric  and  magnetic  charges,  and
Φ  is  the  PQ  complex  scalar  field.  The  coefficient 
can be obtained by integrating out the heavy dyons. 

B.    Generalized symmetry realization
QEMD  theory  describes  monopole  dynamics  and

more  axion  couplings  arise  based  on  QEMD,  as  seen  in
the previous section. In contrast, new axion couplings can
also be realized in the language of  higher-form symmet-
ries  in  a  topological  QFT  (TQFT)  [42−44].  The  generic
axion couplings then naturally arise when an axion-Max-
well  theory  couples  to  a  TQFT  [45].  Below,  we  briefly
review  the  spirit  of  generalized  symmetry  [42−44]  and
the realization of generic axion couplings in TQFT.

p+1 M(d−p−1)

We consider a general p-form symmetry in d dimen-
sions. The symmetry transformation as an operator is as-
sociated with a co-dimension  manifold  

Quantum calculation of axion-photon transition in electromagnetodynamics for cavity haloscope Chin. Phys. C 47, 123104 (2023)

B Bµ E1) We use symbol “ ” rather than “B” to denote magnetic field in order not to conflict with the four-potential . To be consistent with it, we also use “ ” to de-
note electric field.
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Ug(M(d−p−1)) , (12)

where g is an element of the symmetry group G. The op-
erators obey the multiplication rule 

Ug(M(d−p−1))Ug′ (M(d−p−1)) = Ug′′ (M(d−p−1)) , (13)

g′′ = gg′ ∈G
Ug(M(d−p−1)) M(d−p−1)

M(d−p−1)

Ug(M(d−p−1))
C(p)

where .  The  dependence  of  operator
 on the manifold  is topological and

remains  unchanged  unless  the  deformation  of 
crosses  an  operator V.  The  topological  operator

 acts  on  a p-dimensional  operator V of  the
manifold  in the form of [44] 

Ug(M(d−p−1))V(C(p)) = g(V)⟨M
(d−p−1),C(p)⟩V(C(p))Ug(M(d−p−1)) ,

(14)

g(V)
⟨M(d−p−1),C(p)⟩

M(d−p−1) C(p)

d = 4
U(1)

U(1)E×U(1)M
d−1 = 3

where  is the representation of the group element g of
V, and  is the linking number for the mani-
folds  and .  It  is  then  natural  to  couple  the
system  to  a  flat  background  gauge  field  of  the  higher-
form symmetry. Using  Maxwell theory for illustra-
tion, one claims there are two one-form  symmetries,
i.e. .  The symmetries  are  generated  by the
integral of -form currents 

UE(M(2)) = eiα
∮

M(2)
je , gE = eiα ∈ U(1)E , (15)

 

UM(M(2)) = eiβ
∮

M(2)
jm , gM = eiβ ∈ U(1)M , (16)

gE(M) U(1)E(M)

q(M(2)) =
∮

M(2) je g(M(2)) =
∮

M(2) jm

where  is  the  element  of  group ,  and  the
electric  and  magnetic  charges  are  given  by

 and ,  respectively.  The
representation then generally becomes 

(gE(M))Q⟨M(2),C(1)⟩ , (17)

where Q denotes the conserved charge. These two operat-
ors act on the Wilson loop operator and the 't Hooft loop
operator, respectively. Thus, we are able to introduce two
two-form  background  gauge  fields  of  higher-form sym-
metries.

Zn

F(2)
A ≡ ∂∧A

U(1)A
U(1)EM

Inspired by this kind of higher-form symmetry realiz-
ation, one can consider an axion-Maxwell theory coupled
to a  TQFT, as shown in Ref. [45]. The gauge field A is
a  one-form  gauge  field  and  is  its  two-form
field  strength  in  the  theory  which  could  be  the

 group  in  the  SM.  The  action  of  the  axion-Max-
well theory in this sector becomes 

S 0 =
1

2g2

∫
F(2)

A F(2)
A −

iKA

8π2 fa

∫
aF(2)

A (F(2)
A )d , (18)

fa KA ∈ Z

Zn

U(1)B

where  is the axion decay constant, and  is a dis-
crete  coupling  constant.  This  axion-Maxwell  theory  is
considered  to  couple  to  a  gauge theory  from a  spon-
taneously broken  gauge theory. In this TQFT sec-
tor, the action of axion theory is
 

S 1 =
in
2π

∫
B(2)(F(2)

B )d − iKB

4π2 fa

∫
aF(2)

B (F(2)
B )d

− iKAB

8π2 fa

∫
aF(2)

A (F(2)
B )d , (19)

F(2)
B ≡ ∂∧B(1)

Zn B(1)

U(1) B(2)

Z(1)
n

S 0+S 1

S 0 S 1

where  is  the  two-form  field  strength  of  a
one-form  gauge  field  associated  with  another

 gauge group, and  is a two-form gauge field as-
sociated  with  one-form  gauge  symmetry.  Then,  the
action  of  theory  with  topological  QFT  couplings  via  an
axion-portal is given by  [45]. The second term in

 and the last two terms in  give more generic axion
interactions.

Zn

aF(2)
B (F(2)

B )d aF(2)
A (F(2)

B )d

Zn B(1)

Bµ

It  turns  out  that  new  axion  interactions  indeed  arise
based  on  different  theories  such  as  QEMD  and  the 
TQFT. In this section we only review the existing frame-
work  in  Ref.  [45]  which  realized  new  TQFT-couplings
via  the  axion-portal  and . Al-
though  they  are  analogous  to  those  arising  based  on
QEMD  theory,  we  are  not  trying  to  identify  it  with  the
QEMD theory. The  gauge field  discussed in Ref.
[45]  and  the  four-potential  of  the  Zwanziger  theory
arise in  completely  different  theories.  They  have  abso-
lutely  different  kinetic  terms  and  transform  with  respect
to  different  gauge  groups.  Phenomenological  studies  of
the  TQFT  theory  require  precise  predictions  in  future
work.
 

III.  QUANTUM CALCULATION OF AXION-
PHOTON TRANSITION IN QEMD

In  this  section  we  follow  Ref.  [39]  to  perform  the
quantum  calculations  of  axion-photon  transitions  in
QEMD under an external  magnetic  field or  electric  field
as background.
 

A.    New axion-modified Maxwell equations
Before performing the quantum calculations, we show

the new axion-modified Maxwell equations in this frame-
work. The  complete  Lagrangian  for  the  generic  interac-
tions  between  an  axion  and  four-potentials  based  on
QEMD is [23]
 

Tong Li, Rui-Jia Zhang Chin. Phys. C 47, 123104 (2023)
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L = 1
2n2 {[n · (∂∧B)] · [n · (∂∧A)d]− [n · (∂∧A)]

· [n · (∂∧B)d]− [n · (∂∧A)]2

− [n · (∂∧B)]2}− 1
4

gaAA a tr[(∂∧A)(∂∧A)d]

− 1
4

gaBB a tr[(∂∧B)(∂∧B)d]

− 1
2

gaAB a tr[(∂∧A)(∂∧B)d]− je

·A− jm ·B+LG , (20)

LG

Fµν Fd µν
where  is  a  gauge-fixing  term.  The  electromagnetic
field strength tensor  and its dual tensor  are then
introduced 

F =∂∧A− (n ·∂)−1(n∧ jm)d ,

Fd =∂∧B+ (n ·∂)−1(n∧ je)d , (21)

je jmwhere  and  are electric  and  magnetic  currents,  re-
spectively.

After  applying  the  Euler-Lagrange equation  of  mo-
tion for the two potentials, one obtains 

1
n2 (n ·∂n ·∂Aµ−n ·∂∂µn ·A−n ·∂nµ∂ ·A−n ·∂ϵµνκλnν∂κBλ)

−gaAA∂νa(∂∧A)d νµ−gaAB∂νa(∂∧B)d νµ = jµe ,

(22)
 

1
n2 (n ·∂n ·∂Bµ−n ·∂∂µn ·B−n ·∂nµ∂ ·B+n ·∂ϵµνκλnν∂κAλ)

−gaBB∂νa(∂∧B)d νµ−gaAB∂νa(∂∧A)d νµ = jµm .

(23)

Fµν Fd µνIn  terms  of  the  field  strength  tensors  and ,  the
above  equations  result  in  the  following  axion  modified
Maxwell equations [23] 

∂µFµν−gaAA∂µaFd µν+gaAB∂µaFµν = jνe , (24)

 

∂µFd µν+gaBB∂µaFµν−gaAB∂µaFd µν = jνm , (25)

where the term responsible for the Witten effect is omit-
ted.  The new Maxwell  equations  in  terms of  the  electric
and magnetic fields are then given by 

∇⃗× B⃗− ∂E⃗
∂t
= j⃗e+gaAA(E⃗×∇⃗a− ∂a

∂t
B⃗)

+gaAB(B⃗×∇⃗a+
∂a
∂t
E⃗) , (26)

 

∇⃗× E⃗+ ∂B⃗
∂t
= j⃗m−gaBB(B⃗×∇⃗a+

∂a
∂t
E⃗)

−gaAB(E⃗×∇⃗a− ∂a
∂t
B⃗) , (27)

 

∇⃗ · B⃗ = ρm−gaBBE⃗ · ∇⃗a+gaABB⃗ · ∇⃗a , (28)

 

∇⃗ · E⃗ = ρe+gaAAB⃗ · ∇⃗a−gaABE⃗ · ∇⃗a , (29)

ρm j⃗mwhereby  the  magnetic  charge  and  current  will  be
ignored below  as  there  no  magnetic  monopole  is  ob-
served. 

B.    Magnetic background
B0Suppose  an  external  magnetic  field  along  the  z-

direction, then, according to Eq. (9), the axion and photon
interaction can be written as 

Laγγ = (gaAA−gaBB)aE⃗ · B⃗0+gaABaB⃗ · B⃗0 , (30)

B⃗0 = ẑB0 , 0 E⃗0 = 0

103/ma

∼ 1/ma

a(x⃗, t) ≈ a0 cosωat =√
2ρa

ma
cosωat

where we have set the external electric field to zero, i.e.,
, . Due to the extremely light mass and

low velocity of the axion DM, its de Brogile wavelength
is of the order of . It is much larger than the typic-
al  size  of  the  cavity  in  haloscope  experiments .
Thus,  the  axion  field  inside  the  cavity  can  be  viewed as
approximately spatially independent  and can be given in
the  form  of  a  cosine  oscillation: 

.  The Hamiltonian for  the above interaction
can be written as follows 

HI =−
∫

d3xLaγγ =

√
2ρa

ma
B0 cos(ωat)

×
ï
(gaBB−gaAA)

∫
d3xẑ · E⃗−gaAB

∫
d3xẑ · B⃗

ò
. (31)

E⃗ B⃗

gaBB−gaAA gaAB E⃗ B⃗

ẑ · E⃗
(gaBB−gaAA)→−gaγγ

We  find  that  the  key  difference  between  the  axion  in
QEMD and QED lies in the axion induced electromagnet-
ic fields. In QEMD, the axion induced fields  and  can
occur simultaneously  due  to  the  presence  of  three  coup-
lings. As a result, the interactions between the axion field
a and  the  electromagnetic  fields  are  divided  into  two
parts:  and , corresponding to  and  re-
spectively.  However,  in  the  traditional  axion  QED,  only
the  term  can  appear  given  the  substitution  of

.∫
d3xẑ · E⃗

∫
d3xẑ · B⃗

A⃗ B⃗

Next,  we  will  use  a  quantization  approach  to  deal
with the integrals  and . In QEMD, the
magnetic field and electric field can be given by using the
curl  of  the  two  vector  potentials  and ,  respectively
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[22] 

−Fd 0i = B⃗ = ∇× A⃗, −F0i = E⃗ = −∇× B⃗ , (32)

A⃗ B⃗

uk(x)

in  the  absence  of  electric  charges  and magnetic  charges.
We can expand the vector potentials  and  in terms of
the  creation  and  annihilation  operators  as  well  as  the
mode functions  

A⃗(x, t) =
∑

k

1√
2ωkV

(aku(A)
k (x)e−iωkt+a†ku(A)∗

k (x)eiωkt) ,

(33)

 

B⃗(x, t) =
∑

k

1√
2ωkV

(aku(B)
k (x)e−iωkt+a†ku(B)∗

k (x)eiωkt) ,

(34)

uk(x)where V is  the  volume  of  a  cavity,  and  the  func-
tions satisfy the equations of motion with the cavity-wall
boundary conditions 

n ·∂
n2 (n ·∂Aµ−∂µn ·A−nµ∂ ·A− ϵµνρσnν∂ρBσ) = 0 , (35)

 

n ·∂
n2 (n ·∂Bµ−∂µn ·B−nµ∂ ·B− ϵµνρσnν∂ρAσ) = 0 . (36)

ak a†kThe operators  and  can annihilate and create a phys-
ical  single-photon state  even  though  two  vector  poten-
tials are introduced to describe a photon. The above equa-
tions of motion are two first-order differential equations.
They  constrain A and B together  with  the  gauge-fixing
condition 

∂2n ·A+∂2n ·B = 0 . (37)

u(A,B)
k

They reduce  the  four  degrees  of A and B to the  two de-
grees of freedom for a massless vector field. Furthermore,
due  to  the  equal-time  commutation  relations  in  Eq.  (3)
and Eq. (4), the total degrees of freedom of a photon can
be further  reduced to  two.  Therefore,  even if  QEMD in-
troduces two potentials A and B,  the degrees of  freedom
of the physical photon are preserved. Using the relations
given by  Eq.  (32),  the  electromagnetic  fields  can  be  ob-
tained.  Although  the  exact  forms  of  are  unknown,
their curl in a cavity can be given by 

∇×u(A)
k = ωkuBk , ∇×u(B)

k = ωkuEk , (38)

uBk uEkwhere  and  are  the  actual  electromagnetic  field

1
V

∫
d3x|uE,Bk |2 = 1

u(A)
k u(B)

k
uBk

uEk

modes  inside  the  cavity  with  the  normalization
. Thus, we do not need to explicitly ex-

press the forms of  or  to do the following trans-
ition  calculation  but  only  show the  results  using  and

.
|0⟩ → |1⟩

B⃗0

One can then calculate the  photon transition
matrix element as well as the transition probability inside
the cavity under an external magnetic field  [39]. Up to
the first order, we have 

P ≈
∣∣∣∣⟨1|∫ t

0
dtHI |0⟩

∣∣∣∣2
≈ ρa

m2
a
B2

0V
ï
(gaBB−gaAA)2

∑
k

ωkCEk

+g2
aAB

∑
k

ωkCBk +2gaAB(gaBB−gaAA)
∑

k

ωkCEBk

ò
× sin2[(ωk −ωa)t/2]

4[(ωk −ωa)/2]2 , (39)

CE,Bk , CEBl

where the relations in Eq. (38) are plugged into the above
result,  and  are the form factors  that  character-
ize the coupling strength of the cavity mode k to the ax-
ions 

CEk =
|
∫

d3xẑ ·uEk |2
V
∫

d3x|uEk |2
, CBk =

|
∫

d3xẑ ·uBk |2
V
∫

d3x|uBk |2
,

CEBk =
Re

[∫
d3xẑ ·uEk

∫
d3xẑ ·uB∗k

]
V
»∫

d3x|uEk |2
∫

d3x|uBk |2
. (40)

In  practice,  the  transition  emission  process  of  a  single
photon is expected to take a long time t.  The time factor
can thus approximately become 

sin2[(ωk −ωa)t/2]
4[(ωk −ωa)/2]2 ≈ πtδ(ωk −ωa)/2 . (41)

Finally, the transition rate in the cavity can be obtained as 

R =dP/dt =
π

2
ρa

m2
a
B2

0VQ
î
(gaBB−gaAA)2CEωa

+g2
aABCBωa

+2gaAB(gaBB−gaAA)CEBωa

ó
, (42)

∑
k CE,Bk ωkδ(ωk −ωa) ≈ QCE,Bωa

,
∑

k CEBk ωkδ(ωk −ωa) ≈
QCEBωa

gaAA , 0,gaBB = gaAB = 0

π/2

where the discrete summation over the cavity modes k is
converted  into  continuous  integrals  with

.  Note  that  the  result  of  this  quantum  calculation
under  the  assumption  of  is lar-
ger than the classical result of the conventional axion cav-
ity  haloscope  [24, 46]  by  a  factor  of .  We  presume
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ωk ≈ ωa

Ez = 0, Bz , 0
Bz = 0, Ez , 0
Ez = 0, Bz = 0

that  this  is  due  to  the  underlying  differences  between
classical physics  and  quantum physics.  For  a  given  cav-
ity in a haloscope experiment, Q is assumed to be univer-
sal  for any terms at  the same moment t and we can thus
factor Q out of the parentheses. This result clearly shows
the  enhancement  of  the  axion-photon  transition  by  the
cavity's quality factor when . The modes existing
in a cylindrical cavity include TE modes (transverse elec-
tric  modes  with )  and  TM  modes  (trans-
verse magnetic modes with ), and there may
also  be  some  TEM  modes  ( )  embedded.
Based on  the  different  types  of  cavity  modes,  the  trans-
ition rate R in Eq. (42) can then be simplified as 

RTE =
π

2
ρa

m2
a
B2

0VQg2
aABCBωa

, with CE =CEB = 0 ,

RTM =
π

2
ρa

m2
a
B2

0VQ(gaBB−gaAA)2CEωa
, with CB =CEB = 0 .

(43)

B0
Bz

Bz Ez

In  principle,  which  modes  appear  in  the  cavity  depends
on the choice of the direction of the external field. For ex-
ample, when the orientation of  is chosen toward the z
axis,  only  induces  an  axion  signal  for  TE  modes,  as
we show above. A similar conclusion also holds for TM
modes. Therefore,  if  we  change  the  direction  of  the  ex-
ternal field, components other than  or  will appear.

Note  that  this  approach  has  assumed  that  the  final-
state  photon  state  is  empty  before  the  transition  induced

nγ
nγ +1

by axions. There is normally an ambient bath of thermal
photons  in  a  detector  with  a  photon  occupation  number

. One may think that a large occupation number could
further  boost  the  conversion  rate  by  a  factor  of .
However, based on the argument in Ref. [47], there is al-
ways a back-conversion of photons to axions in this case.
As a result, the boost factor effect for the average photon
production  rate  cancels.  Thus,  the  transition  rate  is  the
same both with and without the ambient  bath of thermal
photons.

In  a  cavity,  the  distribution  of  the  electromagnetic
field is usually quite different from that in vacuum. A cyl-
indrical  microwave  resonant  cavity  can  be  viewed  as  a
circular waveguide of length L with a short circuit at both
ends. Two  movable  bulk  copper  rods  can  be  placed  in-
side the cavity to achieve the tuning frequency [35]. The
internal distribution of the electromagnetic field must sat-
isfy  both  the  Helmholtz  equation  and  the  corresponding
boundary conditions,  including those at  the ends and for
the walls of the cavity. The Helmholtz equation is 

∇2u(r,ϕ,z)+ k2u(r,ϕ,z) = 0,

E⃗(r,ϕ,z) or B⃗(r,ϕ,z) = ẑu(r,ϕ,z) , (44)

where only the z-component of the modes couples to the
axion field according to the definition of the form factors
in Eq. (40). Their solutions for different modes satisfy the
following conditions

TE modes (Ez = 0, Bz = u(r,ϕ,z)) :


r,

∂u(r,ϕ,z)
∂r

∣∣∣∣
r=a
= 0

ϕ, u(r,ϕ,z) = u(r,ϕ+2πm,z)

z, u(r,ϕ,z)
∣∣∣∣
z=0, L

= 0 ,

(45)

 

TM modes (Bz = 0, Ez = u(r,ϕ,z)) :


r, u(r,ϕ,z)

∣∣∣∣
r=a
= 0

ϕ, u(r,ϕ,z) = u(r,ϕ+2πm,z)

z,
∂u(r,ϕ,z)

∂z

∣∣∣∣
z=0, L

= 0 ,

(46)

m = (0,±1,±2, · · · )where a is the radius of the circular cross section, L is the length of the cavity along the z-axis, and 
represents a series of integers required by the periodic boundary conditions. The solutions of the above differential equa-
tions yield a series of possible electromagnetic resonant modes that can exist inside the cavity
 

TEmnp : ẑ ·uBk (r,ϕ,z) = Bz(r,ϕ,z)mnp = BmnpJm(kρr)

{
cosmϕ

sinmϕ

}
sin

( pπz
L

)
,

TMmnp : ẑ ·uEk (r,ϕ,z) = Ez(r,ϕ,z)mnp = EmnpJm(kρr)

{
cosmϕ

sinmϕ

}
cos

( pπz
L

)
,

(47)
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Bmnp Emnpwhere  and  are dimensionless  coefficients  en-
suring mode normalization.

m = (0,1,2, · · · ), n = (1,2,3, · · · ), p = (1,2,3, · · · )
m = (0,1,2, · · · ), n = (1,2,3, · · · ),

p = (0,1,2, · · · )
kρ = (x′m,n/a)

kρ = (xm,n/a) x′

Jm(x)
J′m(x)

m = p = 0

TM010

m = 0, p = 1,3,5, · · ·
TM010

TE011 TM010
E010

B011

From these solutions, it can be seen that the modes in-
side the cavity are represented by three integers m, n and
p under  fixed  boundary  conditions.  For  the  TE  modes,
they  are ,
and  for  the  TM  modes 

.  The  eigenvalue  of  the  radial  part  of  the
Helmholtz  equation  is  for  TE  modes  or

 for TM modes with x and  being the n-th
zero  points  of  the  Bessel  function  and its  first  de-
rivative ,  respectively.  In  this  way,  the  form factor
can be obtained by plugging the above solutions into their
definitions in Eq. (40) and integrating over the volume of
the cavity.  For the TM modes,  only when ,  the
integrals in the z and ϕ directions are non-zero. Therefore,
we only consider the  mode. For the TE modes, un-
like for the TM modes, they satisfy the second boundary
condition in the r direction and the derivative of the field
is zero  at  the  cavity  wall.  This  leads  to  its  vanishing  in-
tegral  over  the  cavity  wall,  even  if  those  in  the z and ϕ
directions  are  non-zero  ( ). Figure  1
shows  the  radial  distributions  of  two  modes,  and

.  For  the  mode,  the  amplitude  of  the  field
strength  decreases  from the  maximum at  the  cavity
center  to  zero  at  the  cavity  wall.  The field  strength 
decreases  to  zero  at  the  red  circle  and  instead  increases
outside the circle, resulting in the cancellation of the cav-
ity response to the axion.

CB = 0
RTE

B0 (gaBB−gaAA)
≈ gaBB

RTM

Thus, one can conclude that in a cylindrical cavity the
TE mode has no coupling with the axion, i.e. , and

 in Eq. (43) is zero. This means that under an extern-
al  magnetic  field ,  only  the  coupling 

 can be measured through the TM mode. For illus-
tration purposes, we show the transition rate  in terms

of practical units as 

RTM ≈3.63 Hz
Å

ρa

7.1×10−25 g/cm3

ãÇ
10−5 eV

ma

å2Å
B0

10 mT

ã2

·
Å

V
0.001 m3

ãÅ
Q

105

ãÅ
gaBB

10−12 GeV−1

ã2
Ç

CEωa

1

å
,

(48)

7.1×10−25 g/cm3

0.4 GeV/cm3

gaγγ

where  the  density  corresponds  to  the
dark  matter  local  density  [48].  Given  this
parameter  setup,  the  axion  cavity  can  be  viewed  as  a
device that emits a single photon at a slow rate. The res-
olution of existing linear detectors is large enough to de-
tect this signal. This approach is exactly the same as that
used for measuring the conventional axion coupling 
in axion electrodynamics. 

C.    Electric background

E0

When  the  external  magnetic  field  is  replaced  by  an
external electric field , Eq. (30) can be rewritten as 

Laγγ = (gaAA−gaBB)aB⃗ · E⃗0−gaABaE⃗ · E⃗0 . (49)

Similarly,  the  photon  emission  rates  for  the  TE and  TM
modes in the axion cavity can be obtained as 

RTE =
π

2
ρa

m2
a
E2

0VQ(gaBB−gaAA)2CBωa
,

with CE =CEB = 0 ,

RTM =
π

2
ρa

m2
a
E2

0VQg2
aABCEωa

, with CB =CEB = 0 . (50)

 

TM010 TE011

z = L/2
Fig. 1.    (color online) Radial distributions of  (left) and  (right), where the transverse cross-section of the TE mode is taken
at .
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B0 E0

gaAB

RTM

We find that replacing  with  is associated with ex-
changing  the  couplings  constrained  by  the  TE  and  TM
modes.  Now,  the  sensitivity  to  is  still  given  by  the
transverse  magnetic  wave,  which  couples  to  the  axion.
Similar  to  Eq.  (48),  the  transition rate  under an ex-
ternal electric field is given by 

RTM =0.41 Hz
Å

ρa

7.1×10−25 g/cm3

ãÇ
10−5 eV

ma

å2

×
Å

E0

103 kV/m

ã2

·
Å

V
0.001 m3

ã
×
Å

Q
105

ãÅ
gaAB

10−12 GeV−1

ã2
Ç

CEωa

1

å
. (51)

 

IV.  SENSITIVITY OF RESONANT CAVITY TO
AXION-PHOTON COUPLINGS IN QEMD

B0 (gaBB−gaAA) ≈ gaBB

E0 gaAB

CEωa

Based on  the  above  arguments,  we  propose  the  fol-
lowing scheme for detecting axion interactions in QEMD
with a cavity haloscope. One can apply an external mag-
netic  field  to  measure  the  coup-
ling  or  an  external  electric  field  to  measure  the 
coupling. The corresponding sensitivities are given by the
experimental configuration and the form factor  in the
TM mode.

TM0n0 CEωa

CEωa
=CE0n0 = 4/(x0,n)2

TM010

CE010 = 0.69
kρ kz

ωa = k =
»

k2
ρ + k2

z

ωa = (x0,1)/a TM010 x0,1 = 2.4

ωa ≈ 9.5×10−6

ma = ωa

For the  mode, the form factor  has a simple
analytic  result: .  Once  the  mode  is
fixed, the value of the form factor can be determined and
is  independent  of a and L.  For ,  one  determines

 [37]. Note  that  the  axion  energy  is  determ-
ined by the eigenvalues  and  of the Helmholtz equa-
tion in Eq. (46), that is, , which simpli-
fies  to  for  the  mode  with .
This means that the axion mass corresponding to the ex-
perimentally  measured  axion  coupling  is  only  related  to
the  radius a of  the  cavity.  When a is  5  cm,  one  has

 eV.  To  determine  the  sensitivity  in  other
mass regions, tuning is required by changing the value of
a.  In  practical  experiments,  such  as  ADMX  [35],  two
movable bulk copper rods are placed inside the cavity to
achieve tuning. Here, we do not intend to explore the de-
tails of  the  techniques  for  adjusting  the  resonant  fre-
quency by changing the cavity structure, but only provide
the  cavity  radius a required  for  the  resonance  condition
when the axion mass is .

In an external magnetic field, the signal power is giv-
en by 

Psignal = maRTM =
π

2
ρa

ma
B2

0VQg2
aBBCE010 , (52)

ma V = πa2L = πL(x0,1/ma)2 ma

gaBBB0→ gaABE0

Teff

O(102)

where  the  cavity  volume V is  regarded  as  a  function  of
, i.e. , to ensure that  corres-

ponding  to  each  sensitivity  is  always  at  the  resonant
point. Similarly, the signal power under an external elec-
tric  field  can  be  obtained  by  making  a  replacement

. A typical  detection device with an ax-
ion cavity consists of a main cavity and an amplification
chain. The main source of noise comes from the cryogen-
ic high  electron  mobility  transistor  (HEMT).  It  contrib-
utes to an effective noise temperature  of around a few
Kelvins, but this will be further enhanced to above 10 K
due to  the  microwave  loss  in  the  channel  as  the  mi-
crowave signal  is  emitted  from  the  cavity  and  then  re-
ceived by HEMT [39]. Currently, many axion cavity ex-
periments have applied Josephson Parametric Amplifiers
(JPA) for enhancing detection sensitivity. For example, in
ADMX, one can control the noise temperature to the or-
der of  mK [35]. Therefore, the signal-to-noise ra-
tio is given by 

SNR =
Psignal

kBTeff

…
t
b
, (53)

kB

b = f /Q
gaBB gaAB Q = 105

gaBB gaAB
B0 = 10

E0 = 104 gaBB
Teff = 0.5

gaAB Teff = 0.1
ma ma

ma

10−6 ∼ 10−4

gaγγ
gaBB

B0 = 7.5 Teff = 0.5
gaBB

gaAB E0

gaBB

gaBB
10−6 ∼ 10−4

where  is  the Boltzmann constant, t is  the observation
time and the ratio of the frequency and the Q factor is the
detector  bandwidth .  To  estimate  the  sensitivity
of the cavity experiment to  or , we take 
and  limit  SNR to  5.  The  results  of  the  sensitivity  bound
are shown in Fig. 2. Assuming an observation time of 90
s  [49] and  a  cavity  length  of  1  m,  we  obtain  the  corres-
ponding bounds on the couplings  and  under an
external magnetic field of  T and an electric field
of  kV/m,  respectively.  For , the  temperat-
ure parameter inside the cavity is assumed to be 
K, and for  it  is  K. It  should be noted that

 cannot be arbitrarily small or large as the smaller 
is, the larger the cavity radius a is required to be to satis-
fy  the  resonance  condition,  and  vice  versa  for  larger
masses  of  the  axion.  In  contrast,  when  is  too  small,
the  transition  rate R increases  sharply  to  the  GHz  level
and exceeds  the  detector  resolution.  Thus,  we  only  con-
sider  axions  within  the  mass  range of  eV.  It
turns  out  that  the  theoretical  predictions  for  new  axion
couplings can be probed in this mass range. The results of
current cavity experiments such as ADMX for measuring
a conventional axion coupling  can be applied to con-
fine the  coupling. The existing ADMX bound given
by  T and  K has already excluded a part
of the parameter space of the  coupling. To measure

,  a  strong  electric  field  and  a  lower  temperature
are both  required.  The  same  constraint  as  for  the  helio-
scope search also holds for the new  coupling. In Fig.
2,  we  add  a  CAST  constraint  [50] for  reference.  It  ex-
cludes the theoretically predicted  coupling in the ax-
ion mass range of  eV. 
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V.  CONCLUSION

U(1)
Aµ Bµ

gaγγ

Zn

Motivated  by  the  Witten  effect,  the  axion-dyon dy-
namics can  be  reliably  built  based  on  quantum  electro-
magnetodynamics. Two  gauge groups and two four-
potentials  and  are introduced to describe the elec-
tric charge,  magnetic  charge  and  photon  in  this  frame-
work.  As  a  result,  three  anomalous  interactions  between
an axion and photon arise in contrast to the conventional
axion-photon  coupling .  We  also  review  a  generic
low-energy  axion-photon  effective  field  theory  that  can
also be realized in the language of “generalized symmet-
ries” with higher-form symmetries and gauge fields based
on  TQFT.

In this work, we provide a complete quantum calcula-
tion of the axion-single photon transition rate inside a ho-
mogeneous electromagnetic field in terms of the new ax-
ion interaction Hamiltonian in QEMD. This quantum cal-

B0 (gaBB−gaAA) ≈ gaBB

E0

gaAB

CE010

culation can clearly imply an enhancement of the conver-
sion  rate  through  the  resonant  cavity  in  axion  haloscope
experiments.  Our  work  provides  the  basic  method  for  a
generic  cavity  search  of  new  axion-photon  couplings  in
the QEMD framework. We find that an external magnet-
ic field  can be set to measure the 
coupling  or  an  external  electric  field  to  measure  the

 coupling.  The  corresponding  sensitivity  bounds  are
given by the experimental configuration of the cavity and
the  form  factor  in  the  TM  mode  for  QEMD  axion
couplings.
 

ACKNOWLEDGMENTS

We  thank  Anton  V.  Sokolov,  Andreas  Ringwald,  Yu
Gao and  Qiaoli  Yang  for  useful  comments  and  discus-
sion.

 

 

References 

 R.  D.  Peccei  and  H.  R.  Quinn, Phys.  Rev.  Lett. 38, 1440
(1977)

[1]

 R.  D.  Peccei  and  H.  R.  Quinn, Phys.  Rev.  D 16, 1791
(1977)

[2]

 S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)[3]
 F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)[4]
 V. Baluni, Phys. Rev. D 19, 2227 (1979)[5]
 R.  J.  Crewther,  P.  Di  Vecchia,  G.  Veneziano et  al., Phys.
Lett. B 88, 123 (1979)

[6]

 J. E. Kim, Phys. Rev. Lett. 43, 103 (1979)[7]
 M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B 166, 493 (1980)

[8]

 M.  Dine,  W.  Fischler,  and  M.  Srednicki, Phys.  Lett.  B
104, 199 (1981)

[9]

 A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980)[10]

 C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006)[11]
 J. M. Pendlebury et al, Phys. Rev. D 92, 092003 (2015)[12]
 E. Witten, Phys. Lett. B 86, 283 (1979)[13]
 W. Fischler and J. Preskill, Phys. Lett. B 125, 165 (1983)[14]
 M. Kawasaki, F. Takahashi, and M. Yamada, Phys. Lett. B
753, 677 (2016)

[15]

 Y. Nomura, S. Rajendran, and F. Sanches, Phys. Rev. Lett.
116, 141803 (2016)

[16]

 M.  Kawasaki,  F.  Takahashi,  and  M.  Yamada, JHEP
2018, 053 (2018)

[17]

 N. Houston and T. Li, arXiv: 1711.05721[18]
 R.  Sato,  F.  Takahashi,  and  M.  Yamada, Phys.  Rev.  D
98, 043535 (2018)

[19]

 J. S. Schwinger, Phys. Rev. 144, 1087 (1966)[20]
 D. Zwanziger, Phys. Rev. 176, 1489 (1968)[21]
 D. Zwanziger, Phys. Rev. D 3, 880 (1971)[22]
 A. V. Sokolov and A. Ringwald, arXiv: 2205.02605[23]

 

|gaAB| gaBB

|gaAB| gaBB

Fig. 2.    (color online) The expected sensitivity of  (red solid line) and  (black solid line) in the cavity haloscope experiment.
The dashed lines indicate the corresponding theoretical predictions (red for , black for ). Existing limits from ADMX (2021)
[35], ADMX SLIC [51] and CAST [50] are also shown for comparison.

Tong Li, Rui-Jia Zhang Chin. Phys. C 47, 123104 (2023)

123104-10

https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1103/PhysRevD.92.092003
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/0370-2693(83)91260-1
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1016/j.physletb.2015.12.075
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1007/JHEP01(2018)053
https://doi.org/10.1007/JHEP01(2018)053
https://doi.org/10.1007/JHEP01(2018)053
https://doi.org/10.1007/JHEP01(2018)053
https://doi.org/10.1007/JHEP01(2018)053
https://doi.org/10.1007/JHEP01(2018)053
https://doi.org/10.1007/JHEP01(2018)053
https://doi.org/10.1007/JHEP01(2018)053
https://arxiv.org/1711.05721
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRevD.98.043535
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.144.1087
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://arxiv.org/2205.02605


 P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983)[24]
 T. Li, R.-J. Zhang, and C.-J. Dai, JHEP 2023, 088 (2023)[25]
 M. E. Tobar, C. A. Thomson, B. T. McAllister et al., arXiv:
2211.09637

[26]

 B.  T.  McAllister,  A.  Quiskamp,  C.  O’Hare et  al.,  arXiv:
2212.01971

[27]

 T. Li, C.-J. Dai, and R.-J. Zhang, arXiv: 2304.12525[28]
 R.  A.  Brandt,  F.  Neri,  and  D.  Zwanziger, Phys.  Rev.  Lett.
40, 147 (1978)

[29]

 R.  A.  Brandt,  F.  Neri,  and  D.  Zwanziger, Phys.  Rev.  D
19, 1153 (1979)

[30]

 A. V. Sokolov and A. Ringwald, arXiv: 2303.10170[31]
 L.  Di  Luzio,  M.  Giannotti,  E.  Nardi et  al., Phys.  Rept.
870, 1 (2020)

[32]

 J.  Preskill,  M.  B.  Wise,  and  F.  Wilczek, Phys.  Lett.  B
120, 127 (1983)

[33]

 M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983)[34]
 N. Du, et al, Phys. Rev. Lett. 120, 151301 (2018)[35]
 C. Bartram, et al, Phys. Rev. Lett. 127, 261803 (2021)[36]
 P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021)[37]
 M.  Beutter,  A.  Pargner,  T.  Schwetz et  al., JCAP 02, 026
(2019)

[38]

 Q. Yang, Y. Gao, and Z. Peng, arXiv: 2201.08291[39]
 C.  M.  Donohue,  S.  Gardner,  and  W.  Korsch,  arXiv:
2109.08163

[40]

 K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979)[41]
 A. Kapustin and N. Seiberg, JHEP 04, 001 (2014)[42]
 N. Seiberg, JHEP 07, 070 (2010)[43]
 D.  Gaiotto,  A.  Kapustin,  N.  Seiberg et  al., JHEP 02, 172
(2015)

[44]

 T.  D.  Brennan,  S.  Hong,  and  L.-T.  Wang,  arXiv:
2302.00777

[45]

 L.  Krauss,  J.  Moody,  F.  Wilczek et  al., Phys.  Rev.  Lett.
55, 1797 (1985)

[46]

 A.  N.  Ioannisian,  N.  Kazarian,  A.  J.  Millar et  al., JCAP
09, 005 (2017)

[47]

 R.  L.  Workman et  al.  (Particle  Data  Group), PTEP
2022, 083C01 (2022)

[48]

 C. Hagmann, P. Sikivie, N. S. Sullivan et al., Phys. Rev. D
42, 1297 (1990)

[49]

 V. Anastassopoulos et al., Nature Phys. 13, 584 (2017)[50]
 N. Crisosto, P. Sikivie, N. S. Sullivan et al., Phys. Rev. Lett.
124, 241101 (2020)

[51]

Quantum calculation of axion-photon transition in electromagnetodynamics for cavity haloscope Chin. Phys. C 47, 123104 (2023)

123104-11

https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://doi.org/10.1007/JHEP03(2023)088
https://arxiv.org/2211.09637
https://arxiv.org/2212.01971
https://arxiv.org/2304.12525
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevLett.40.147
https://doi.org/10.1103/PhysRevD.19.1153
https://doi.org/10.1103/PhysRevD.19.1153
https://doi.org/10.1103/PhysRevD.19.1153
https://doi.org/10.1103/PhysRevD.19.1153
https://doi.org/10.1103/PhysRevD.19.1153
https://doi.org/10.1103/PhysRevD.19.1153
https://doi.org/10.1103/PhysRevD.19.1153
https://doi.org/10.1103/PhysRevD.19.1153
https://arxiv.org/2303.10170
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1088/1475-7516/2019/02/026
https://doi.org/10.1088/1475-7516/2019/02/026
https://doi.org/10.1088/1475-7516/2019/02/026
https://doi.org/10.1088/1475-7516/2019/02/026
https://doi.org/10.1088/1475-7516/2019/02/026
https://doi.org/10.1088/1475-7516/2019/02/026
https://doi.org/10.1088/1475-7516/2019/02/026
https://doi.org/10.1088/1475-7516/2019/02/026
https://arxiv.org/2201.08291
https://arxiv.org/2109.08163
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP07(2010)070
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/2302.00777
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1103/PhysRevLett.55.1797
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1088/1475-7516/2017/09/005
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1103/PhysRevLett.124.241101
https://doi.org/10.1103/PhysRevLett.124.241101
https://doi.org/10.1103/PhysRevLett.124.241101
https://doi.org/10.1103/PhysRevLett.124.241101
https://doi.org/10.1103/PhysRevLett.124.241101
https://doi.org/10.1103/PhysRevLett.124.241101
https://doi.org/10.1103/PhysRevLett.124.241101
https://doi.org/10.1103/PhysRevLett.124.241101

	I INTRODUCTION
	II REALIZATIONS OF GENERIC AXION-PHOTON INTERACTIONS IN QEMD AND GENERALIZED SYMMETRY
	A The generic axion-photon interactions in QEMD
	B Generalized symmetry realization

	III QUANTUM CALCULATION OF AXION-PHOTON TRANSITION IN QEMD
	A New axion-modified Maxwell equations
	B Magnetic background
	C Electric background

	IV SENSITIVITY OF RESONANT CAVITY TO AXION-PHOTON COUPLINGS IN QEMD
	V CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

