
 

Axial chiral vortical effect in a sphere with finite size effect*
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Abstract: We investigate the axial vortical effect in a uniformly rotating sphere subject to finite size. We use the
MIT boundary condition to limit the boundary of the sphere. For massless fermions inside the sphere, we obtain the
exact axial vector current far from the boundary that matches the expression obtained in cylindrical coordinates in
literature. On the spherical boundary, we find both the longitudinal and transverse (with respect to the rotation axis)
components with magnitude depending on the colatitude angle. For massive fermions, we derive an expansion of the
axial conductivity far from the boundary to all orders of mass, whose leading order term agrees with the mass correc-
tion  reported  in  literature.  We also  obtain  the  leading  order  mass  correction  on  the  boundary,  which  is  linear  and
stronger than the quadratic dependence far from the boundary. The qualitative implications on the phenomenology of
heavy ion collisions are speculated.
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I.  INTRODUCTION

Relativistic heavy ion collisions (RHICs) are utilized
to produce quark-gluon plasmas (QGPs) at high temperat-
ure  and  nonzero  baryon  density.  A  typical  (off-central)
collision exposes the QGP thus generated under an ultra-
strong magnetic  field  and endows it  with  a  high angular
momentum. A number of novel transport phenomena [1–15]
have  been  proposed,  including  the  axial-chiral-vortical-
effect (ACVE). The ACVE refers to the axial vector cur-
rent, i.e.,  the  spin  density  of  fermions  in  response to  the
global angular momentum, and it is expected to be detec-
ted  via  the  polarization  of  Lambda  post  hadronization.
The ACVE is also expected inside the core of a fast spin-
ning neutron star [16–18]. In this work, we shall focus on
the theoretical aspect of the ACVE.

In a thermal equilibrium ensemble, the ACVE is rep-
resented in terms of the global angular velocity ω by the
formula 

JA = σω+ · · · , (1)

where the coefficient σ is referred to as the axial vortical
conductivity  and  the  ellipsis  represents  higher  power  in
ω. Based on a pioneer work by Son and Surowka [7, 19]
and a supplemental work by Neiman and Oz [8], the axi-
al  vortical  conductivity  is  restricted  by  thermodynamic
laws to the following general form in the chiral limit,
 

σ =
µ2

V +µ
2
A

2π2 + cT 2, (2)

µV µAwhere  and  are the vector and axial vector chemic-
al potentials, respectively, and the coefficient c in front of
the  temperature  square  has  to  be  determined  by  other
means.

c = 1/6
Besides  the  hydrodynamic  approach,  Eq.  (2)  with

 was first derived by Vilenkin via the solution of a
free Dirac equation in a rotating cylinder [20–22], and the
axial  vortical  conductivity  for  non-interacting  fermions
reads
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σ =
µ2

V +µ
2
A

2π2 +
1
6

T 2. (3)

The  same  expression  was  obtained  by  Landsteiner  et  al.
via  the  Kubo  formula  to  one-loop  order  [23].  There  is
also a large body of literature on the derivation of Eq. (3)
from kinetic theory [24, 25] or holography [26, 27]. Bey-
ond Eq. (3), the authors of [10, 14] discovered higher or-
der corrections to the coefficient c in QED or QCD coup-
ling.  The  authors  of  Ref.  [28] determined  the  higher  or-
der terms in ω, i.e., the ellipsis in Eq. (1) for massless fer-
mions, and ended up with a closed form of the axial-vec-
tor  current,  and the  authors  of  Ref.  [9] derived the  lead-
ing order correction of the fermion mass. A recent calcu-
lation  [29]  of  axial  current  for  massless  fermions  in  a
general thermodynamic equilibrium with rotation and ac-
celeration  (within  a  formalism  “far  from  the  boundary, ”
that is,  without  enforcing  boundary  conditions)  repro-
duces the known results for rotating equilibrium, such as
those in Ref. [28], but it extends them to systems includ-
ing acceleration.

ω = ω ẑ

In this study, we explore the axial vortical effect in a
finite  sphere  of  radius R subject  to  the  MIT  boundary
condition. Our  motivation is  twofold.  First,  a  system ro-
tating  with  constant  angular  velocity  has  to  be  finite  in
the  direction  transverse  to  the  rotation  axis,  as  restricted
by the subluminal linear speed on the boundary. Second,
a  finite  sphere  serves  as  a  better  approximation  to  the
shape of the QGP fireball in heavy ion collisions and the
quark matter core of a neutron star than the infinitely long
cylinder considered in literature. The MIT boundary con-
dition  effectively  separates  the  deconfinement  phase  of
the interior and the confinement phase outside. However,
we  could  neither  include  the  strong  coupling  underlying
the near-perfect fluidity inside an actual QGP fireball nor
describe its rapid expansion, especially in the early stage
of  its  evolution.  Far  from the boundary,  where the finite
size effect can be ignored, we reproduce in spherical co-
ordinates exactly  the  same  form  of  the  axial-vector  cur-
rent  in  the  chiral  limit  derived  in  cylindrical  coordinates
[28]. We also carry out the fermion mass correction to all
orders with the leading order matching the result  in Ref.
[9],  which  was  derived  with  the  Kubo  formulation.  The
infinite  series in powers of  the mass correction indicates
that  the  leading  order  correction  for  the  mass  of  an s
quark  at  the  RIHC  temperature  is  quite  accurate.  More
importantly,  we  obtain  an  analytic  approximation  of  the
axial  vector  current  on  the  spherical  boundary  with  the
aid  of  the  asymptotic  formula  of  the  Bessel  function  of
large argument and large order. For , we find that 

JA = (σ ẑ+σ′eρ)ω, (4)

eρwhere  is the  unit  radial  vector  of  the  cylindrical  co-

(ρ,ϕ,z) T ≫ 1/R
M≪ T ω

ordinate  systems .  For  and  the  fermion
mass , the axial vortical conductivity parallel to 
is 

σ =

{
µ2

2π2 +
1
6

T 2− M
4π

[
µ+2T ln

(
1+ e−

µ

T

)]}
cos2 θ, (5)

ωand that perpendicular to  is 

σ′ =

{
µ2

16π2 +
1

48
T 2− M

32π

[
µ+2T ln

(
1+ e−

µ

T

)]}
sin2θ,

(6)

µA = 0
µV = µ

where θ is the polar angle with respect to the direction of
the angular velocity. Note that we have to set  and

 because  the  MIT  boundary  condition  breaks  the
chiral symmetry even for massless fermions. To the best
of our knowledge, the perpendicular component has nev-
er been reported in literature, and its existence may shed
some light  on the longitudinal  (with respect  to  the beam
direction) polarization in heavy ion collisions.

µA = 0 µ ≡ µV

The organization of the paper is as follows. In Sec. II,
general properties  of  the  axial  vortical  effect  are  dis-
cussed  from  symmetry  perspectives.  In  Sec.  III,  we  lay
out  the  general  formulation of  the  chiral  magnetic  effect
in spherical  coordinates  with  the  MIT  boundary  condi-
tion.  The  axial  vortical  effects  of  massless  and  massive
fermions are  calculated  in  Sec.  IV  and  Sec.  V,  respect-
ively. Sec. VI concludes the paper with a qualitative spec-
ulation  on  the  impact  of  the  finite  size  effect  for  heavy
ion collisions. Some technical details are deferred to Ap-
pendices. We also include two additional Appendices for
self-containment,  one for an alternative derivation of the
closed end formula of the axial-current in cylindrical co-
ordinates and the other one for the mass correction via the
Kubo  formula  under  dimensional  regularization.
Throughout the paper,  we shall  stay with the notation of
Eqs.  (5)  and  (6)  by  setting  and . Further-
more, the size of the sphere is assumed to be sufficiently
large  in  comparison  with  the  length  scale  corresponding
to the temperature or chemical potential for the boundary
condition to be analytically soluble. 

II.  SYMMETRY CONSIDERATION

In  this  section,  we  explore  the  axial  vortical  effect
from symmetry perspectives.  The validity  of  the conclu-
sion reached  here  is  not  limited  to  a  free  Dirac  as  con-
sidered  in  literature  and  the  subsequent  sections  of  this
work.

JA

The axial vortical effect refers to the thermal average
of the spatial component of the axial vector current dens-
ity  in the presence of a nonzero angular momentum.
Taking the direction of the angular momentum as z-axis,
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we have 

⟨JA(r)⟩ = Trϱ(µ,ω)JA(r) ≡ JA(r). (7)

H
Q

Jz

In terms of the field theoretic Hamiltonian , conserved
charge ,  and z-component  of  the  angular  momentum

, the density matrix at thermal equilibrium reads 

ϱ(µ,ω) = Z−1 exp
(
H −µQ−ωJz

T

)
, (8)

Trϱ = 1

where T is the temperature, μ is the chemical potential, ω
is  the  angular  velocity,  and Z is the  normalization  con-
stant such that .

ẑ
Introducing the  basic  vector  of  cylindrical  coordin-

ates  and 

eρ(ϕ) = x̂cosϕ+ ŷsinϕ,

eϕ(ϕ) = −x̂sinϕ+ ŷcosϕ, (9)

the ensemble average (7) can be decomposed into its lon-
gitudinal component 

Jz
A(ρ,ϕ,z|µ,ω) = ẑ · JA(ρ,ϕ,z|µ,ω), (10)

and its transverse components 

J±A(ρ,ϕ,z|µ,ω) = e±(ϕ) · JA(ρ,ϕ,z|µ,ω), (11)

with 

e±(ϕ) =
1
√

2
(eρ± ieϕ), (12)

where  the  dependence  on  the  cylindrical  coordinates,
chemical potential,  and  angular  velocity  is  explicitly  in-
dicated  and  will  be  suppressed  in  subsequent  sections.
We have 

J−A(ρ,ϕ,z|µ,ω) = J+∗A (ρ,ϕ,z|µ,ω), (13)

and consequently 

JρA(ρ,ϕ,z|µ,ω) = eρ(ϕ) · JA(ρ,ϕ,z|µ,ω)

=
√

2ReJ+A(ρ,ϕ,z|µ,ω),

JϕA(ρ,ϕ,z|µ,ω) = eϕ(ϕ) · JA(ρ,ϕ,z|µ,ω)

=
√

2ImJ+A(ρ,ϕ,z|µ,ω). (14)

Assuming that the Hamiltonian and the boundary con-
dition are  invariant  under  spatial  rotation,  spatial  inver-
sion, time reversal, and charge conjugation, we have 

R(α)ϱ(µ,ω)R(α)−1 = ϱ(µ,ω), (15)
 

Pϱ(µ,ω)P−1 = ϱ(µ,ω), (16)
 

T ϱ(µ,ω)T −1 = ϱ(µ,−ω), (17)
 

Cϱ(µ,ω)C−1 = ϱ(−µ,ω), (18)

R(α)
P T C

JA(r)

where  is a Hilbert space operator of a rotation about
the z-axis  by  an  angle α,  and , ,  and are  Hilbert
space  operators  for  spatial  inversion,  time  reversal,  and
charge conjugation, respectively. Together with the trans-
formation laws of the axial vector current  

R(α)JA(ρ,ϕ,z)R(α)−1 =
←→
D (α) ·JA(ρ,ϕ−α,z), (19)

 

PJA(ρ,ϕ,z)P−1 =JA(ρ,ϕ+π,−z), (20)
 

TJA(ρ,ϕ,z)T −1 = −JA(ρ,ϕ,z), (21)
 

CJA(ρ,ϕ,z)C−1 =JA(ρ,ϕ,z), (22)

it follows that 

JA(ρ,ϕ,z|µ,ω) = TrR(α)ϱ(µ,ω)JA(ρ,ϕ,z)R−1(α)

=
←→
D (α) · JA(ρ,ϕ−α,z|µ,ω), (23)

 

JA(ρ,ϕ,z|µ,ω) = TrPϱ(µ,ω)JA(ρ,ϕ,z)P−1

= JA(ρ,ϕ+π,−z|µ,ω), (24)
 

JA(ρ,ϕ,z|µ,ω) = TrT ϱ(µ,ω)JA(ρ,ϕ,z)T −1

= −JA(ρ,ϕ,z|µ,−ω), (25)
 

JA(ρ,ϕ,z|µ,ω) = TrCϱ(µ,ω)JA(ρ,ϕ,z)C−1

= JA(ρ,ϕ,z| −µ,ω), (26)

←→
D (α) 3×3where  is  the  dyadic  notation  of  the  rotation

matrix 
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←→
D (α) =

 cosα −sinα 0
sinα cosα 0

0 0 1

 . (27)

Because of the relations 

es(ϕ) ·←→D (α) = es(ϕ−α), (s = ±1) (28)

es(ϕ+π) = −es(ϕ)and s, Eqs. (23) and (24) imply that the
longitudinal and transverse  components  of  the  axial  cur-
rent  defined  in  Eq.  (10)  and  (11)  are  independent  of  the
azimuthal angle as expected, and the transverse compon-
ent is odd in z, i.e., 

Js
A(ρ,ϕ,−z|µ,ω) = −Js

A(ρ,ϕ,z|µ,ω). (29)

Consequently, there cannot be a transverse axial vor-
tical effect for an infinitely long cylinder because the axi-
al vector current is independent of z. This, however, is not
the case with a sphere as the z dependence cannot be ig-
nored.  The  oddness  with  respect  to z implies  only  zero
transverse axial  vector current on the equatorial  plane of
the sphere. Indeed, the subsequent sections show that the
transverse component of the axial-vector current does ex-
ist  on  the  spherical  boundary  for  a  free  Dirac  field  and
does vanish on the equatorial plane. The other two equa-
tions,  Eqs.  (25) and (26),  imply that  the thermal average
of  the  axial-vector  current  is  always  odd  with  respect  to
the angular velocity and even with the chemical potential.

Before  concluding this  section,  we remark that  some
of the relations above can be readily generalized to a non-
equilibrium density matrix with its time development dic-
tated  by  the  Liouville  theorem.  For  instance1), for  a  ho-
mogeneous  and  expanding  system,  as  long  as  relations
(15),  (16),  and (18) hold initially,  they will  hold always.
Then,  relation  (29)  and  its  implications  discussed  above
remain valid always. 

III.  AXIAL VECTOR CURRENT IN
SPHERICAL COORDINATES

 

A.    Hamiltonian

ω = ωez

The  Hamiltonian  for  a  Dirac  fermion  in  a  uniformly
rotating  system  with  angular  velocity  can  be
written as [28, 31] 

H = H0−ωJz−µ, (30)

H0 = −iα · ∇+βM Jz =where  is  the  free  Hamiltonian, 

1
2
Σ3− i(x∂y− y∂x)

α = γ0γ β = γ0

γµ

 is  the z-component of the total  angular
momentum, μ is the the chemical potential of the system,
M is the mass of the Dirac fermion, and , .
We work in the Dirac representation for gamma matrices

 as follows: 

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
. (31)

ψ,ψ†

The last two terms of Eq. (30) are included in the single
particle  Dirac  Hamiltonian  because  it  is  Eq.  (30),  when
being sandwiched between Dirac fields  

H =
∫

d3rψ†(r)Hψ(r), (32)

e(− H
T

)to define the density operator  for the thermal aver-
age.

In this section, we consider the eigenfunctions of the
Hamiltonian in spherical coordinates. The eigenfunctions
of the Hamiltonian satisfy 

Hψ = (E−ωJz−µ)ψ, (33)

H0

J2

Jz

where E is  the eigen-energy of .  The solutions of  Eq.
(33)  can  be  chosen  as  the  common  eigenfunctions  of
these four  commutative  Hermitian  operators:  Hamiltoni-
an H,  square  of  total  angular  momentum , z-compon-
ent of total angular momentum , and parity operator P.
We list the eigenfunctions in spherical coordinates as fol-
lows, 

ψ j,l= j+ 1
2
,m(r, θ,ϕ) =

 f (r)Z j, j+ 1
2
,m(θ,ϕ)

−ig(r)Z j, j− 1
2
,m(θ,ϕ)

 ,

ψ j,l= j− 1
2
,m(r, θ,ϕ) =

 f (r)Z j, j− 1
2
,m(θ,ϕ)

ig(r)Z j, j+ 1
2
,m(θ,ϕ)

 , (34)

j, l, m j( j+1), (−1)l,m
J2,P, Jz

Z j, j± 1
2
,m(θ,ϕ)

where  denote  the  eigenvalues  of
,  respectively;  the  spinor  spherical  harmonics

 are defined as 

Z j, j+ 1
2
,m(θ,ϕ) =

1√
2( j+1)


√

j−m+1Y j+ 1
2
,m− 1

2
(θ,ϕ)

−
√

j+m+1Y j+ 1
2
,m+ 1

2
(θ,ϕ)

 ,

Z j, j− 1
2
,m(θ,ϕ) =

1√
2 j

 √ j+mY j− 1
2
,m− 1

2
(θ,ϕ)

√
j−mY j− 1

2
,m+ 1

2
(θ,ϕ)

 ,
(35)
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f (r) g(r)and ,  are the radial  wave functions.  Making use
of the following relations, 

σ · r̂Z j, j± 1
2
,m(θ,ϕ) = Z j, j∓ 1

2
,m(θ,ϕ),

σ · ∇
[
f (r)Z j, j± 1

2
,m(θ,ϕ)

]
=

[
f ′(r)+

(
1± j± 1

2

)
f (r)
r

]
Z j, j∓ 1

2
,m(θ,ϕ), (36)

f (r)
one can  obtain  the  following  differential  equation  satis-
fied by  in Eq. (34), 

r2 f ′′(r)+2r f ′(r)+
[
r2(E2−M2)− l(l+1)

]
f (r) = 0, (37)

g(r) f (r)
which is the l-th order spherical Bessel equation. The ra-
dial function  in Eq. (34) can be expressed by , 

g(r) =


1

E+M

[
f ′(r)+

l+1
r

f (r)
]
, for l = j+

1
2
,

− 1
E+M

[
f ′(r)− l

r
f (r)

]
, for l = j− 1

2
.

(38)

f (r) g(r)
k > 0 Ek =

√
k2+M2

We  list  the  solutions  of  and  in Table  1,  with
, , and C the normalization factor.

For  a  spherical  volume  of  radius R,  the  quantization
of the radial momentum k depends on the boundary con-
dition.  An approximate boundary condition for a fireball
of  QGP  is  derived  from  the  MIT  bag  model  [30]  and
reads
 

−iγ · r̂ψ j,l,m||r|=R = ψ j,l,m||r|=R, (39)

−iγ · r̂
γ5γ · r̂ = −γ · r̂γ5

which requires that the solution of the Dirac equation on
the  boundary  implements  the  eigenfunction  of  of
eigenvalue  one.  As ,  the  MIT  boundary

condition  breaks  the  chiral  symmetry  even  for  massless
fermions. In accordance with Eqs. (34) and (36), the radi-
al wave function satisfies 

f (R) = ±g(R), (40)

l = j∓1/2for . For  the  solutions  of  the  free  Dirac  equa-
tion in Table 11), the MIT boundary condition reads 

j j−1/2(kR) = j j+1/2(kR) tanχ, (41)

l = j−1/2for the positive energy state of  and 

j j+1/2(kR) = − j j−1/2(kR) tanχ, (42)

l = j+1/2for the positive energy state of , where 

tanχ =
√

Ek −M
Ek +M

. (43)

The  boundary  conditions  for  the  negative  energy  states
are based on the charge conjugation, i.e., 

ψc
j,l,m = γ

2ψ∗j,l,m. (44)

Employing the integration formula 

∫ R

0
drrJ2

ν (kr) =
R2

2

[
J′2ν (kR)+

(
1− ν2

k2R2

)
J2
ν (kR)

]
, (45)

J′ν(z) Jν(z)
Jν±1(z)

and the formulas of the derivative  in terms of 
and , the normalization constant in Table 1 is read-
ily determined 

|C|2 =



2
R3

(
sec2χ+ csc2χ− 2 j

kR
cotχ

−2 j+2
kR

tanχ
)−1

j−2
j−1/2(kR), for l = j− 1

2
,

2
R3

(
sec2χ+ csc2χ+

2 j
kR

tanχ

+
2 j+2

kR
cotχ

)−1

j−2
j+1/2(kR), for l = j+

1
2
.

(46)

kR≫ 1 j≪ kR
The  boundary  conditions  Eqs.  (41)  and  (42)  can  be

solved approximately for  and  with the aid

f (r) g(r)Table 1.    Solutions of  and .

l = j± 1
2

E = Ek E = −Ek

f (r) C jl(kr) −C
√

Ek −M
Ek +M

jl(kr)

g(r) C
√

Ek −M
Ek +M

jl∓1(kr) C jl∓1(kr)

Axial chiral vortical effect in a sphere with finite size effect Chin. Phys. C 47, 034106 (2023)

0 < E < M κ =
√

M2 −E2

i j−1/2(κR) = −i j+1/2(κR) tanχ′ i j+1/2(κR) = −i j−1/2(κR)tanχ′ il tanχ′ =

√
M−E
M+E

1) For a finite sphere, one has to examine whether there are edge states with . Setting , the MIT boundary conditions Eqs. (41) and (42)

becomes  and  with (z)  the  modified  spherical  Bessel  function  and .  There  is  no

solution for κ in either case and the edge states are ruled out by the MIT boundary condition.

034106-5



of the asymptotic formula of the spherical Bessel function 

jl(x) ≃ 1
x

sin
(
x− lπ

2

)
as x≫max(1, l). (47)

We find 

kR− lπ
2
+χ = nπ, (n ∈ Z) (48)

l = j±1/2for . The summation of k can be converted to an
integral 

∑
k

(...) =
R
π

∫ ∞

0
dk(...), (49)

and  the  normalization  constant  in  Eq.  (46)  under  both
conditions of Eqs. (41) and (42) is simplified to 

|C| =
√

2k
√

R

√
1

tan2χ+1
=

k
√

R

√
Ek +M

Ek
. (50)

 

B.    Quantized Dirac field
The quantized Dirac field can be expressed by the ei-

genfunctions of the Hamiltonian H as follows: 

ψ(r) =
∑
k jlm

[
ak jlmuk jlm(r)+b†k jlmvk jlm(r)

]
, (51)

a†k jlm ak jlm

b†k jlm bk jlm

uk jlm(r) vk jlm(r)

where  and  are the creation and annihilation op-
erators  of  particles,  whereas  and  are  those  of
anti-particles.  The  explicit  forms  of  and 
are 

uk jlm(r) = ψ jlm(r),

vk jlm(r) = γ2ψ∗jlm(r). (52)

We have 

Huk jlm = (Ek −mω−µ)uk jlm,

Hvk jlm = (−Ek +mω−µ)vk jlm, (53)

Ek =
√

k2+M2

a†k jlmak jlm b†k jlmbk jlm

where .  The  ensemble  average  (7)  of
 and  with  the  density  operator  (8)

gives rise to the Fermi-Dirac distribution functions, 

⟨a†k jlmak jlm⟩ =
1

eβ(Ek−mω−µ)+1
,

⟨b†k jlmbk jlm⟩ =
1

eβ(Ek−mω+µ)+1
, (54)

a†k jlmb†k jlm

b†k jlma†k jlm ak jlmbk jlm bk jlmak jlm

and  the  thermal  expectation  values  of ,
, , and  are all zero.

In the following, we calculate the axial vector current
of  the  uniformly  rotating  system of  Dirac  fermions.  The
axial vector current is the ensemble average of the corres-
ponding operator, i.e.,
 

JA =⟨ψ†Σψ⟩
=Jvac

A +
∑
k jlm

(
⟨a†k jlmak jlm⟩u†k jlmΣuk jlm

−⟨b†k jlmbk jlm⟩v†k jlmΣvk jlm

)
=

∑
k jlm

[
1

eβ(Ek−mω−µ)+1
+

1
eβ(Ek−mω+µ)+1

]
u†k jlmΣuk jlm,

(55)

Jvac
A = −

∑
k jlm

v†k jlmΣvk jlm = 0where  is the vacuum term, and

the charge conjugation relation in Eq. (39) has been em-
ployed in the last step. It follows from the relation
 

Z j, j∓ 1
2
,m(θ,ϕ) = ±i(−)m− 1

2 Z∗j, j∓ 1
2
,m(θ,ϕ), (56)

that
 

u†k jlmΣuk jlm = −u†k jl−mΣuk jl−m, (57)

and Eq. (55) becomes
 

JA =
∑
k jlm

[
1

eβ(Ek−mω−µ)+1
− 1

eβ(Ek+mω+µ)+1

]
u†k jlmΣuk jlm.

(58)

Introducing the following ϕ independent functions
 

ζ jlm(θ) ≡ Z†jlm(θ,ϕ)σ3Z jlm(θ), (59)

and
 

η jlm(θ) ≡ Z†jlm(θ,ϕ)σ+Z jlm(θ,ϕ), (60)

we have
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u†k, j, j∓ 1
2
,m(r)Σ3uk, j, j∓ 1

2
,m(r) =|C±|2

[
j2j∓ 1

2

(kr)ζ j, j∓ 1
2
,m(θ)

+ j2j± 1
2

(kr)ζ j, j± 1
2
,m(θ) tan2χk

]
,

(61)

and 

u†k, j, j∓ 1
2
,m(r)Σ+uk, j, j∓ 1

2
,m(r) =|C±|2

[
j2j∓ 1

2

(kr)η j, j∓ 1
2
,m(θ)

+ j2j± 1
2

(kr)η j, j± 1
2
,m(θ) tan2χk

]
,

(62)

|C±|2
η jlm(θ)

with  given by the upper (lower) line of Eq. (46) In
particular, the expression of  can be reduced to 

η j, j− 1
2
,m(θ) =

1
2 j

e−iϕY∗j− 1
2
,m− 1

2

(θ,ϕ)L+Y j− 1
2
,m− 1

2
(θ,ϕ), (63)

and 

η j, j+ 1
2
,m(θ) = − 1

2( j+1)
e−iϕY∗j+ 1

2
,m− 1

2

(θ,ϕ)L+Y j+ 1
2
,m− 1

2
(θ,ϕ),

(64)

with 

L+ = eiϕ
(
∂

∂θ
+ i cotθ

∂

∂ϕ

)
. (65)

Ylm′ (π− θ,ϕ+π) =
(−)lYlm′ (θ,ϕ) η jlm(π− θ) = −η jlm(θ)

η jlm

(
π

2

)
= 0

It  follows  from  the  property 
 that  and  thereby

.

Before concluding this section, we point out an inter-
esting property of the MIT boundary condition, which is
not dictated by symmetries: the axial vector current van-
ishes  along  the  equator  of  the  fireball.  Indeed,  Eq.  (40)
implies that 

u†k jlmΣ3uk jlm = f 2(R)Θ jm(θ), (66)

with 

Θ jm(θ) =Z†j, j− 1
2
,m(θ,ϕ)σ3Z j, j− 1

2
,m(θ,ϕ)

+Z†j, j+ 1
2
,m(θ,ϕ)σ3Z j, j+ 1

2
,m(θ,ϕ). (67)

Θ jm(θ)
Pµl (cosθ) Pµl (0)
Writing  in terms of associated Legendre functions

 and  using  the  explicit  form  of ,  we  find
that 

Θ jm

(
π

2

)
= 0. (68)

See Appendix A for details of the proof. 

IV.  AXIAL CHIRAL VORTICAL EFFECT OF
MASSLESS FERMIONS WITH

FINITE-SIZE EFFECT
 

A.    Axial vector current far from the boundary
M = 0 Ek = k

l = O(1) T ≫ 1/R k ∼ T
kR≫ 1

For massless  fermions,  and  in Table 1.
Far from the boundary, the main support of the axial vec-
tor current comes from the spherical Bessel function with

. Together with the condition  and ,
we have  for typical radial momentum and the ap-
proximation  in  the  last  paragraph  of  Sec.  III.A  becomes
useful. Using the relations 

1
ex +1

= 1− 1
e−x +1

. (69)

the z-component of Eq. (55) reads 

Jz
A=

R
2π

∫ ∞

−∞
dk

∑
jlm

[
1

eβ(k−mω−µ)+1
− 1

eβ(k+mω−µ)+1

]
u†k jlmΣ3uk jlm,

(70)

(−∞,∞)

where  we  have  turned  the  summation  over k to  integral
according to  Eq.  (49)  and  extended  the  integration  do-
main to  via Eq. (69).

The Taylor expansion of the axial current in Eq. (70)
reads 

Jz
A =

∞∑
n=0

Cnω
2n+1, (71)

where the coefficient 

Cn ≡−
R

(2n+1)!πT 2n+1

∫ ∞

−∞
dk f (2n+1)

(
k−µ

T

)∑
j

j∑
m=− j

m2n+1

×
(
u†k, j, j− 1

2
,mΣ3uk, j, j− 1

2
,m+u†k, j, j+ 1

2
,mΣ3uk, j, j+ 1

2
,m

)
=− 4

(2n+1)!πT 2n+1

∫ ∞

−∞
dkk2 f (2n+1)

(
k−µ

T

) ∞∑
l=0

j2l (kr)

l∑
m′=−l

(
m′+

1
2

)2n+1

|Ylm′ (θ,φ)|2 ,

(72)

f (x) = 1/(ex +1)with  the Fermi-Dirac  distribution  func-
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f (n)(x)tion  and  its n-th  derivative.  In  the  second step  of
Eq.  (72),  we  have  substituted  the  explicit  form  of  the
wave function in  Eq.  (51)  together  with  Eq.  (35)  for  the
spinor spherical  harmonics.  Applying  the  addition  for-
mula 

j0
(
k
∣∣∣r− r′

∣∣∣) = 4π
∞∑

l=0

j0(kr) j0
(
kr′

) l∑
m′=−l

Y∗lm′ (θ,φ)Ylm′
(
θ′,φ′

)
,

(73)

r′ = r θ′ = θ ϕ′ = ϕ+ ϵfor , , and , we find 

Cn =i
(−)n

(2n+1)!π2T (2n+1)

d2n+1

dϵ2n+1[
ei ϵ

2

ξ

∫ ∞

−∞
dkk f (2n+1)

(
k−µ

T

)
sin(kξ)

]∣∣∣∣∣∣
ϵ=0

, (74)

ξ ≡ 2r sinθ sin
ϵ

2
2nwhere .  After  times  of  integration  by

part with respect to k, we obtain that 

Cn =
i

(2n+1)!π2T (2n+1)

d2n+1

dϵ2n+1{
ei ϵ

2 ξ2n−2
∫ ∞

−∞
dkk f ′

(
k−µ

T

)
[−2ncos(kξ)+kξ sin(kξ)]

}∣∣∣∣∣∣
ϵ=0

.

(75)

(2n+1)
Cn

Only the -th  power of ξ inside the curly brackets
contributes to . Together with the integrals 

∫ ∞

−∞
dx f ′(x) = −1,

∫ ∞

−∞
dxx2 f ′(x) =

π2

3
, (76)

we have 

Cn =
1

2π2

[
(n+1)

(
µ2+

π2

3
T 2

)
ρ2n+

1
12

n(2n−1)ρ2n−2
]
,

(77)

ρ = r sinθwith .  Substituting  into  Eq.  (71)  and  summing
up the series, we end up with 

Jz
A =

(
1
6

T 2+
µ2

2π2

)
ω

(1−ω2ρ2)2 +
ω3

24π2

1+3ω2ρ2

(1−ω2ρ2)3 , (78)

which is  in  agreement  with  the  closed-end  formula  de-
rived in cylindrical coordinates in Ref. [28]. An alternat-
ive  derivation  in  cylindrical  coordinates  is  presented  in
Appendix B. To the cubic order in ω, Eq. (78) yields the
formula derived in Ref. [28]. As is shown in the step from

Ek = k

Eq. (74) to Eq. (75), the key reason for having the closed
form  of  the  axial  current  Eq.  (78)  is  that  the  density  of
states for massless fermions is proportional to an integer
power of the energy  so that the integration by part
terminates  with  a  finite  number  of  terms  for  arbitrary n.
This is no longer the case for massive fermions.

ω = 0.01T
ωr sinθ = 1

1/ω

r/R > ωr

Equation  (78)  is  plotted  in Fig.  1,  where  we  set
,  a  rough  estimate  of  the  vorticity  of  the  QGP

fireball created in RHICs. The pole at  occurs
where  the  linear  speed  of  rotation  reaches  the  speed  of
light and the linear speed beyond the pole becomes super-
luminal, which is not admissible. Therefore, the Hamilto-
nian in Eq. (30) applies only to a finite volume, which in
the case of the sphere discussed in this section requires its
radius below . The axial vector current in Eq. (78) is
thereby free  from the  pole  within  the  sphere,  but  the  fi-
nite size effect becomes significant. Unless the finite size
effect falls to zero faster than a power series in ,
its contribution will be of the same order of importance as
that of the higher order terms of Eq. (78).

j≪ kR

Regarding  the  transverse  component  far  from  the
boundary, the typical contribution to the thermal average
comes from ,  and the  sum over k in  Eq.  (55)  and
wave  function  normalization  can  be  approximated  by
Eqs.  (49)  and  (50),  respectively.  Following  Eqs.  (60),
(63), (64), and (65), we obtain 

J+A =
2
π

∫ ∞

0
dkk2

∑
j,m

gm(k)
[

j2j− 1
2

(kr)η j, j− 1
2
,m(θ)

+ j2j+ 1
2

(kr)η j, j+ 1
2
,m(θ)

]
=

2
π

∫ ∞

0
dkk2

 ∞∑
l=0

e−iϕ

2l+1

∑
m′

gm′+1
2
(k)

[
j2l (kr)Y∗lm′ (θ,ϕ)L+Ylm′ (θ,ϕ)

]
 

 

Jz
A

T 3

ω = 0.01T ρT

µ/T

ρT

Fig.  1.    (color  online)  Ratio  of  axial  vector  current  over
 of  massless  fermions  far  from  the  boundary  in  Eq.  (78)

with the angular velocity  as a function of , where
ρ and T are  the  radius  and  temperature,  respectively.  The
black, blue, and red lines indicate  = 0.5, 1.0, and 1.5, re-
spectively. The inner panel is for = 0–1.0.

Shu-Yun Yang, Ren-Hong Fang, De-Fu Hou et al. Chin. Phys. C 47, 034106 (2023)

034106-8



−
∞∑

l=1

e−iϕ

2l+1

∑
m′

gm′+ 1
2
(k)

[
j2l (kr)Y∗lm′ (θ,ϕ)L+Ylm′ (θ,ϕ)

]
=

2
π

∫ ∞

0
dkk2e−iϕg 1

2
(k) j20(kr)Y∗00(θ,ϕ)L+Y00(θ,ϕ) = 0,

(79)

where 

gm(k) ≡ 1
eβ(k−mω−µ)+1

+
1

eβ(k−mω+µ)+1
. (80)

The absence of the transverse components is expected be-
cause  the  finite  size  effect  can  be  neglected  in  the  bulk,
and  the  spherical  and  cylindrical  shapes  of  the  volume
make no difference there. 

B.    Axial vector current on the boundary

uk jlm l = j−1/2 l = j+1/2

M = 0

Regarding the boundary of a QGP fireball, we have to
distinguish  the  radial  momentum k of  the  wave  function

 for  and  because of  the  differ-
ent  quantization  conditions  in  Eqs.  (41)  and  (42).  Based
on Table 1 and Eq. (50), for , 

u†k, j, j±1/2,mΣ3uk, j, j±1/2,m =
Θ jm(θ)

R3

(
2± 2 j+1

kR

) .
(81)

T ≫ 1/R

The  radial  momentum k of  Eq.  (81)  follows  from  Eqs.
(41) and (42). The axial vector current on the boundary is
obtained  upon substitution  of  Eq.  (81)  into  Eq.  (55).  An
analytic  expression  of  the  boundary  axial  vector  current
can be derived for the linear order term of the Taylor ex-
pansion in ω, i.e., the chiral conductivity, at high temper-
ature, i.e. . We have 

Jz
A =−

ω

R3T


∑

λ=±1,n, j

f ′
λk−n j−µ

T


2− 2 j+1

k−n jR

+
∑

λ=±1,n, j

f ′
λk+n j−µ

T


2+

2 j+1
k+n jR


j∑

m=− j

mΘ jm(θ)+O(ω3), (82)

k∓n j −
+

where  stands for the solutions of Eq. (41) (" " sign)
or Eq. (42) (" " sign). According to the definition in Eq.
(67) and the explicit form of the spinor spherical harmon-
ics in Eq. (35), 

j∑
m=− j

mΘ jm(θ) =
2 j+1

4π
+ρ j−1/2(θ)−ρ j+1/2(θ), (83)

where 

ρl(θ) ≡
2

2l+1

l∑
m′=−l

(m′)2|Ylm′ (θ,ϕ)|2

= − 2
2l+1

d2

dϵ2

l∑
m′=−l

Y∗lm′ (θ,ϕ)Ylm′ (θ,ϕ+ ϵ)

∣∣∣∣∣∣∣
ϵ=0

= − 1
2π

d2

dϵ2 Pl

(
1−2sin2 θ sin2 ϵ

2

)∣∣∣∣∣∣
ϵ=0
=

l(l+1)
4π

sin2 θ,

(84)

and  the  addition  formula  of  the  spherical  harmonics  has
been employed. Combining Eqs. (82), (83), and (84), we
arrive at 

Jz
A =−

ω

4πR3T
cos2 θ

∑
λ=±1,n, j

 f ′
λk−n j−µ

T

 2 j+1

2− 2 j+1
k−n jR

+ f ′
λk+n j−µ

T

 2 j+1

2− 2 j+1
k+n jR

 . (85)

T ≫ 1/R µ≫ 1/R kR≫ 1
To evaluate the summation over k and j under the condi-
tion  or ,  we  notice  that and  the
wave  functions  of  the  large j become important  because
of the centrifugal force. The asymptotic formula Eq. (47)
is  no longer  sufficient  to  serve the purpose,  and one has
to switch to the Debye formula [32] for the Bessel func-
tion of a large argument and large order1), 

Jν(νsecβ) �
√

2
νπ tanβ

cos
(
ν tanβ− νβ− π

4

)
, ν≫ 1,

(86)

which implies 

jl(kR) =
√

π

2kR
Jl+ 1

2
(kR)

=
1(

l+
1
2

) √
secβ tanβ

cos
[(

l+
1
2

)
(tanβ−β)− π

4

]
,

(87)

Axial chiral vortical effect in a sphere with finite size effect Chin. Phys. C 47, 034106 (2023)
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for a spherical Bessel function. Then, the MIT boundary
conditions in Eqs. (41) and (42) become 

1
j
√

secβ tanβ
cos

[
j(tanβ−β)− π

4

]
=± 1

( j+1)
√

secβ′ tanβ′
cos

[
( j+1)(tanβ′−β′)− π

4

]
, (88)

with 

jsecβ = ( j+1)secβ′ = kR. (89)

β′

The large j serves as the guideline to sort the order of ap-
proximation. Eq. (89) gives rise to the leading order rela-
tion between β and  

β′ = β− 1
j

cotβ. (90)

1/ j
Substituting Eq.  (90)  to  the  RHS  of  Eq.  (88)  and  drop-
ping  the  terms  beyond  the  order  of ,  the  boundary
condition is reduced to 

cos
[

j(tanβ−β)− π
4

]
= ±cos

[
j(tanβ−β)− π

4
−β

]
, (91)

with the solutions 

j(tanβ−β)− β
2
=

(
n+

1
4

)
π, (92)

for the upper sign and 

j(tanβ−β)− β
2
=

(
n+

3
4

)
π, (93)

for the lower sign, where n is a positive integer. Together
with the relation between β and the radial momentum k in
Eq. (89), we have [33] 

δn =
R
π

sinβδk ≃ R
π

√
1−

( j
kR

)2
δk, (94)

to the leading order of a large j for both signs in Eq. (88).
Converting the summation over k and j in Eq. (85) to in-
tegrals,  we  obtain  the  leading  order  axial  vector  current
on the boundary 

Jz
A �−

ω

4π2R2T
cos2 θ

∫ ∞

0
dk

∑
j

√
1−

( j
kR

)2

 j

1− j
kR

+
j

1+
j

kR


∑
λ=±1

f ′
(
λk−µ

T

)

�− ω

4π2T
cos2 θ

∫ ∞

0
dkk2

∑
λ=±1

f ′
(
λk−µ

T

)∫ 1

0
du

√
1−u2

( u
1−u

+
u

1+u

)
=− ω

2π2T
cos2 θ

∫ ∞

0
dkk2

∑
λ=±1

f ′
(
λk−µ

T

)∫ 1

0
du

u
√

1−u2

=− ω

2π2T
cos2 θ

∫ ∞

0
dkk2

∑
λ=±1

f ′
(
λk−µ

T

)
=

(
1
6

T 2ω+
µ2

2π2ω

)
cos2 θ. (95)

θ = 0,π

Therefore,  the  longitudinal  axial  vortical  conductivity
vanishes  along  the  equator,  which  is  consistent  with  the
general  statement  according to Eq.  (68)  and matches the
axial  vortical  conductivity  far  from  the  boundary  at  the
poles ( ).

JA

Θ jm(θ)

To the linear order in ω, the transverse component of
the  axial  vector  current  is  obtained  by  replacing

 of the formula for the longitudinal component Eq.
(82) by 

η j, j− 1
2
,m(θ)+η j, j+ 1

2
,m(θ)

=
1
2 j

e−iϕY∗j− 1
2
,m− 1

2

(θ,ϕ)L+Y j− 1
2
,m− 1

2
(θ,ϕ)

− 1
2( j+1)

e−iϕY∗j+ 1
2
,m− 1

2

(θ,ϕ)L+Y j+ 1
2
,m− 1

2
(θ,ϕ), (96)

i.e. 

J+A =−
ω

R3T


∑

λ=±1,n, j

f ′
λk−n j−µ

T


2− 2 j+1

k−n jR

+
∑

λ=±1,n, j

f ′
λk+n j−µ

T


2+

2 j+1
k+n jR


×

j∑
m=− j

m
[

1
2 j

e−iϕY∗j− 1
2
,m− 1

2

(θ,ϕ)L+Y j− 1
2
,m− 1

2
(θ,ϕ)

− 1
2( j+1)

e−iϕY∗j+ 1
2
,m− 1

2

(θ,ϕ)L+Y j+ 1
2
,m− 1

2
(θ,ϕ)

]
.

(97)

m = m′+
1
2

l = j± 1
2

The  summation  over m can  be  carried  out  in  a  similar
manner to that in Eq. (84), and we find, with 

and , that
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∑
m′

(
m′+

1
2

)
Y∗lm′ (θ,ϕ)L+Ylm′ (θ,ϕ)

=i lim
(θ′,ϕ′)→(θ,ϕ)

e
i
2
ϕ′ ∂

∂ϕ′
e−

i
2
ϕ′L+

∑
m′

Y∗lm′ (θ
′,ϕ′)Ylm′ (θ,ϕ)

=i
2l+1

4π
lim

(θ′,ϕ′)→(θ,ϕ)
e

i
2
ϕ′ ∂

∂ϕ′
e−

i
2
ϕ′
(
∂

∂θ
+ i cotθ

∂

∂ϕ

)
.Pl[cosθ′ cosθ+ sinθ′ sinθcos(ϕ′−ϕ)]

=− l(l+1)(2l+1)
16π

sin2θ, (98)

where the derivative formula of the Legendre polynomial 

P′l(1) =
l(l+1)

2
(99)

is employed. Approximating the sum over n and j by in-
tegrals  of  Eqs.  (97)  and  (98),  we  obtain  the  transverse
component of the axial vector current 

J+A =
ω

32π2R2 sin2θ
∫ ∞

0
dk

∑
j

√
1−

( j
kR

)2

 j

1− j
kR

+
j

1+
j

kR


∑
λ=±1

f ′
(
λk−µ

T

)

=
ω

32π2 sin2θ
∫ ∞

0
dkk2

∑
λ=±1

f ′
(
λk−µ

T

)
∫ 1

0
du

√
1−u2

( u
1−u

+
u

1+u

)
=

1
16π2

(
π2

3
T 2+µ2

)
ωsin2θ,

(100)

which is of the same order of magnitude as the longitud-
inal component. Restoring the cylindrical coordinates via 

cosθ =
z√

ρ2+ z2

sinθ =
ρ√
ρ2+ z2

(101)

we have 

J+A =
1

8π2

(
π2

3
T 2+µ2

)
ρz√
ρ2+ z2

(102)

which is independent of the azimuthal angle and odd in z
and is consistent with the symmetry argument in Sec. II. 

V.  AXIAL CHIRAL VORTICAL EFFECT OF
MASSIVE FERMIONS WITH

FINITE-SIZE EFFECT
 

A.    Mass correction of axial vector current
far from the boundary

JA

For massive fermions, the same approximation of the
MIT boundary condition applied to massless fermions re-
duces the axial vector current  in Eq. (55) far from the
boundary to 

JA =
R
2π

∫ ∞

−∞
dk

∑
jlm

[
1

eβ(Ek−mω−µ)+1

− 1
eβ(Ek+mω−µ)+1

]
u†k jlmΣuk jlm, (103)

Ek =
√

k2+M2 dkk2 = dEkEk

√
E2

k −M2

Ek

Jz
A

with .  As ,  the
density of states is no longer an integer power of the en-
ergy , and a closed-end formula such as Eq. (78) does
not exist. We shall stay with the linear response of  to
ω in what  follows  and  calculate  the  axial  vertical  con-
ductivity. It is straightforward to verify that the combina-
tion 

u†k, j, j−1/2,mΣuk, j, j−1/2,m+u†k, j, j+1/2,mΣuk, j, j+1/2,m, (104)

with the radial wave functions in Table 1 and the normal-
ization  constant  Eq.  (50)  at  a  given k,  is  independent  of
the  mass M and  thereby  takes  the  same  massless  form.
For the longitudinal component, the spinor spherical har-
monics part can be reduced the same way as in Sec. IV.A,
and Eq. (103) becomes, to the order ω, 

Jz
A =−

4ω
πT

∫ ∞

0
dkk2

[
f
′
(E−µ

T

)
+ f

′
(E+µ

T

)]
∞∑

l=0

j2l (kr)
l∑

m′=−l

(
m′+

1
2

)
|Ylm′ (θ,φ)|2 . (105)

Using the relation of Eq. (73), Eq. (105) becomes 

Jz
A =

1
2π2 T 2ω

∫ ∞

M/T

∑
λ=±1

λx

√
(λx)2−

( M
T

)2 eλx−µ/T

(eλx−µ/T +1)2 dx,

(106)

x = E/T E =
√

k2+M2
where we have transformed the integration variable from
k to  with .  The  integral  Eq.  (106)
can be converted to a contour integral by the observation
that 
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∫ ∞

M/T

∑
λ=±1

λx

√
(λx)2−

( M
T

)2 eλx−µ/T

(eλx−µ/T +1)2 dx

=Re


∫ ∞+i0+

−∞+i0+
z

√
z2−

( M
T

)2 ez−µ/T

(ez−µ/T +1)2 dz


=Re[I+ I′], (107)

√
z2− M2

T 2 I′

where  the  first  two  terms  of  the  Taylor  expansion  of

 in the powers of M are included in , i.e.,
 

Re[I′] =Re
[∫ ∞+i0+

−∞+i0+

[
z2− a2

2

]
ez−µ/T

(ez−µ/T +1)2 dz
]

=

[∫ ∞

−∞

[(
x+

µ

T

)2
− a2

2

]
ex

(ex +1)2 dx
]

=
π2

3
+
µ2

T 2 −
a2

2
, (108)

a =
M
T

with .  Then,  the  integrand  of I vanishes suffi-
ciently fast  at  infinity so that  the integration path can be
closed from infinity on the upper or lower z-plane and the
integral equals the sum of residues at the poles of the dis-
tribution  function  within  the  contour.  Closing  the  path
from the upper plane, we have the poles 

z =
µ

T
+ (2n+1)iπ ≡ ivn, (109)

n = 0,1,2, ...within the contour, i.e., . Consequently, 

I =
∫ ∞+i0+

−∞+i0+

[
z
√

z2−a2− z2+
a2

2

]
ez−µ/T

(ez−µ/T +1)2 dz,

= 2Re

π ∞∑
n=0

vn

(1+ a2

v2
n

) 1
2

+

(
1+

a2

v2
n

)− 1
2

−2


 , (110)

Combining Eqs. (106), (107), and (108), we have 

Jz
A = σω, (111)

with the axial vertical conductivity of massive fermions 

σ=
1
6

T 2+
µ2

2π2 +
T 2

π2 Re

π ∞∑
n=0

vn

(
(1+

a2

v2
n

)
1
2 + (1+

a2

v2
n

)−
1
2 −2

) .
(112)

The binomial expansions of the square roots in Eq. (112)
enable us to write 

σ =
1
6

T 2+
µ2

2π2 −
M2

4π2 +T 2
∞∑

r=2

[(r−1)(2r−3)!!](−1)r

r!2r−1

(2π)−2rζ

(
2r−1,

1
2
+

b
2πi

)
a2r, (113)

ζ(...)where  denotes the Hurwitz zeta function defined by 

ζ(s,b) =
∞∑

n=0

1
(n+b)s . (114)

√
π2+ (µ/T )2

Away  from  the  branch  points  of  the  square  roots  in  the
summands, the  infinite  series  Eq.  (110)  converges  uni-
formly with respect  to a, and thereby,  the radius of con-
vergence of the power series Eq. (113) corresponds to the
absolute value of the closest branch point to the origin of
the  complex a-plane, i.e., .  This  can  also  be
inferred  from  the  asymptotic  behavior  of  the  expansion
coefficients of Eq. (113). We also obtain Eq. (113) in Ap-
pendix B by using a cylindrical coordinate system and in
Appendix C by the Kubo formula via a thermal diagram,
which shows  that  this  result,  derived  by  different  meth-
ods, is robust. In particular, the thermal diagram requires
UV regularization,  but  the result  is  independent  of  regu-
larization schemes.

At  zero  temperature,  the  summation  over n in  Eq.
(112) can be converted to an integral, and we obtain that 

σ =
µ2

2π2 −
M2

4π2 +

∫ ∞−iµ

−iµ
dξ

√ξ2+M2+
ξ2√

ξ2+M2
−2ξ


=


0 (µ < M)

1
2π2 µ

√
µ2−M2 (µ > M)

. (115)

µ < M

T → 0 µ > M

M = 0

The  zero σ for  is  obvious  from  Eq.  (105),  where
the derivative of the distribution function vanishes expo-
nentially in the limit  for all k. The case with 
returns  the  massless  result  derived  in  Sec.  IV.A  for

.

Jz(n)
A

Jz(1)
A Jz(0)

A
M = 0 Jz(1)

A M2

Jz(1)
A

Jz(n)
A M2n

The axial vector current with mass correction is plot-
ted in Fig. 2, where the solid line is , and the dashed
line  is .  Here,  is  the  axial  vector  current  at

,  is the axial vector current with only  cor-
rection (the result of  is also obtained in Ref. [9]), and

 is  the  result  including  mass  correction  up  to .
Their concrete expressions are 

Jz(0)
A =

(
T 2

6
+
µ2

2π2

)
ω, Jz(1)

A =

(
T 2

6
+
µ2

2π2

)
ω− M2

4π2ω,
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Jz(n)
A =

(
T 2

6
+
µ2

2π2

)
ω− M2

4π2ω+T 2ω

n∑
r=2

Ar M2r. (116)

Jz(n)
A /Jz(0)

A
M/T

M/T Jz(n)
A /Jz(0)

A

Jz(1)
A /Jz(0)

A µ/T

We  can  see  clearly  that  decreases  with
. This is because the presence of mass generally in-

hibits the fluidity,  thus suppressing the vortical  conduct-
ivity.  While  the  presence  of  chemical  potential  slows
down  this  inhibition,  when  we  fix ,  and

 increase with increasing .
M = 150

µ/T = 1.0 n = 2000
An s quark  is  taken  as  an  example.  We  set 

MeV, , and  and list the numerical val-
ues of the mass correction in Table 2.

O(M2)

O(M)

Far  from the boundary,  the  mass  correction for  the s
quark is modest for the selected temperature and chemic-
al potential and is dominated by the leading order 
correction. On the boundary, the leading order mass cor-
rection  is ,  as  shown below.  The mass  suppression
for the s quark is thereby much stronger there.

gm(k) Ek

For the transverse component of the axial vector cur-
rent  of  massive  fermions  far  from  the  boundary,  all  we
need is to replace k in  of Eq. (79) with , and the
result remains zero, the same as in the massless case. 

B.    Mass correction of axial vector
current on the boundary

T ≫ 1/R

An analytical result can also be obtained for the lead-
ing order  mass  correction  on  the  spherical  boundary  un-
der  the  same approximation  of  Sec.  IV.B, i.e., .
For  massive  fermions,  it  follows  from  Eq.  (46)  that  Eq.
(81) is replaced by 

u†k, j, j±1/2,mΣ3uk, j, j±1/2,m =
Θ jm(θ)

2R3b
(
b± j

kR

) , (117)

b = Ek/
√

E2
k −M2

2 j+2 ≃ 2 j

O(ω)

with ,  where  we  have  substituted  Eq.
(43)  for  the  trigonometric  functions  in  the  normalization
constant  Eq.  (46)  and  made  the  approximation

in  the  last  term  inside  the  parentheses  for  a
large j. The  conversion  from  the  sum  of  the  radial  mo-
mentum into an integral proceeds in the same way as for
the massless case in Sec. IV.B, and we obtain the follow-
ing form of the axial vector current to the order 

Jz
A =−

ω

4π2T
cos2 θ

∫ ∞

0
dkk2

∑
λ=±1

f ′
(
λEk −µ

T

) 1
b∫ 1

0
du

√
1−u2

( u
b−u

+
u

b+u

)
. (118)

The integration over u can be carried out readily 

1
b

∫ 1

0
du

√
1−u2

( u
b−u

+
u

b+u

)
=2−2

√
b2−1tan−1 1

√
b2−1

=2− πM
Ek
+O

 M2

E2
k

 . (119)

O(M) O(M2)

Ek = k

Consequently,  the  leading  order  mass  correction  is
,  stronger  than  for  the  mass  correction  far

from the boundary. Substituting Eq. (119) into Eq. (118)
and setting , we find 

Jz
A = Jz(0)

A + Jz(1)
A + ..., (120)

Jz(0)
Awhere  the  first  term, ,  is  the  axial-vector  current  of

massless fermions given by Eq. (95), and the leading or-
der mass correction reads 

Jz(1)
A =

Mω

4πT
cos2 θ

∫ ∞

0
dkk

[
f ′

(
k−µ

T

)
+ f ′

(
k+µ

T

)]
= −Mω

4π

[
µ+2T ln

(
1+ e−

µ

T

)]
cos2 θ, (121)

M = 150
µ/T = 1.0 n = 2000

Table 2.    Mass correction of axial current when  MeV,
, .

T/MeV Jz(1)
A /Jz(0)

A Jz(n)
A /Jz(0)

A

T 2ω

n∑
r=2

Ar M2r

/Jz(0)
A

100 0.737754 0.741961 4.20713×10−3

150 0.883446 0.884285 8.38337×10−4

200 0.934439 0.934704 2.65816×10−4

250 0.958041 0.95815 1.08964×10−4

 

Jz(n)
A

M2n Jz(0)
A

Jz(n)
A /Jz(0)

A M/T

µ/T

Jz(1)
A /Jz(0)

A

Jz(n)
A /Jz(0)

A

Fig.  2.    (color  online)  Ratio  of  axial  vector  current  in-
cluding mass correction up to  over massless current 
( )  as  a  function  of  the  product  of M over T ( ),
where  the  black,  blue,  green,  and  red  lines  indicate =0,
0.5, 1.0, and 1.5, respectively. The dashed lines are ,
and the solid lines are .
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which  is  an  even  function  of μ.  Adding  Eqs.  (95)  and
(121),  we  have  the  longitudinal  axial  vector  current  on
the boundary up to the leading order mass correction. 

Jz(B)
A =

{
T 2

6
+
µ2

2π2 −
M
4π

[
µ+2T ln

(
1+ e−

µ

T

)]}
ωcos2 θ,

(122)

Jz(B)
A

T → 0

where is  the  axial  vector  current  with  only  leading
order  mass  correction  on  the  boundary.  We  can  clearly
observe that the mass correction is stronger on the bound-
ary than that far from the boundary. The coefficient of ω
of  Eq.  (116)  gives  rise  to  the  axial  vortical  conductivity
on  the  boundary,  Eq.  (5),  presented  in  the  introduction.
As , 

1
T

f ′
(
λEk −µ

T

)
→ δ (λEk −µ) . (123)

With  the  aid  of  the  integral  Eq.  (119),  together  with  the
definition of b, we obtain a closed-end formula of the axi-
al  vortical  conductivivity  to  all  orders  of  mass  on  the
boundary 

σ =



0 (µ < M)
1

2π2 µ
√
µ2−M2

1− M√
µ2−M2

tan−1

√
µ2−M2

M

cos2 θ (µ > M)

.

(124)

in parallel to Eq. (115) in the bulk.

cos2 θ
1
8

sin2θ

It  is  straightforward  to  extend  the  above  analysis  to
the transverse component. Starting with Eq. (62) and go-
ing  through  the  gymnastics  from Eq.  (118)  to  Eq.  (116)
with  replaced  by ,  we  find  the  transverse
axial vector current on the boundary up to the leading or-
der of mass correction, i.e., 

J+(B)
A =

{
T 2

48
+

µ2

16π2 −
M

24π

[
µ+2T ln

(
1+ e−

µ

T

)]}
ωsin2θ.

(125)

At zero temperature, we have 

J+(B)
A =



0 (µ < M)
1

16π2 µ
√
µ2−M2

1− M√
µ2−M2

tan−1

√
µ2−M2

M

ωsin2θ (µ > M)

.

(126)

This is valid up to all orders of the mass M. 

VI.  CONCLUDING REMARKS

O(M) O(M2)

Our study can be summarized as follows. We started
with a general discussion of the axial vortical effect from
symmetry perspectives and investigated the axial vortical
effect of a free Dirac field in a finite sphere rotating with
a  given  angular  velocity ω.  For  massless  fermions  far
from the boundary, we were able to reproduce the closed-
end formula derived within a cylinder in literature. On the
boundary, the axial vector current displays both longitud-
inal and  transverse  components  with  respect  to  the  rota-
tion axis, and the magnitude of each component depends
on  the  colatitude  angle  of  the  spherical  coordinates.  For
massive fermions, we obtained the mass correction of the
chiral  conductivity  far  from and on the  boundary.  In  the
former  case,  we  expanded  the  chiral  conductivity  to  all
orders of mass with the leading order correction in agree-
ment  with  what  was  reported  in  literature.  In  the  latter
case, we found that the leading order mass correction was
stronger than that of the former,  versus . To
the best of our knowledge, the axial vortical effect on the
boundary,  especially  the  emergence  of  the  transverse
component, has not been explored in literature.

cos2 θ

While the values of the above results are mainly the-
oretical and cannot describe quantitatively the ACVE of a
strongly interacting and expanding fireball of QGP, some
qualitative speculations on the finite  size effect  in heavy
ion  collisions  remain  instructive.  The  quadrupole  factor

 in  Eq.  (5)  would  suppress  the  global  polarization
(z-component of Eq. (4)) and the perpendicular compon-
ent in Eq. (4) would contribute to the polarization in the
reaction plane shown in Fig.  3, e.g., the longitudinal po-
larization (the polarization along the beam).

ŷ
90◦ y = −z′ = −r cosθ′ z = y′ =
r sinθ′ sinϕ′ x = x′ = r sinθ′ cosϕ′

θ′

ϕ′

To  observe  the  latter  effect  clearly,  we  assume  that
the beam is  along  and rotate  the coordinate system by

 around  the x-axis, i.e., , 
, and , with r being the ra-

dial  coordinate.  In  terms  of  the  polar  angle, , and  azi-
muthal  angle  associated  with  the  primed  coordinates,
the  longitudinal  component  in  Eqs.  (4)  and (5)  takes  the

 

x′Fig. 3.     and the beamline define the reaction plane.
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form 

JA · ẑ′ = −bsin2θ′ sinϕ′ (127)

b =
{
µ2

16π2 +
1

48
T 2− M

32π

[
µ+2T ln

(
1+ e−

µ

T

)]}
ω

ϕ′

θ′

η = − ln tan
θ′

2

with .  As

the fragmenthadrons, e.g.,  Λ  hyperons  originating  from
the  boundary  layer,  are  more  likely  flying  in  the  radial
direction, Eq.  (127)  maps  out  the  longitudinal  polariza-
tion profile of these hadrons, with being the angle of the
transverse  momentum  with  respect  to  the  reaction  plan
and being  related  to  the  pseudorapidity  via

.

More investigations are required for the finite size ef-
fect discovered in this work to be practical with respect to
the phenomenology  of  heavy  ion  collisions.  These  in-
clude exploring the ACVE with the solution of the Dirac
equation in an expanding sphere and/or incorporating the
anisotropic ACVE  conductivity  in  Eq.  (4)  in  hydro-
dynamic  models.  We  hope  to  report  the  progress  along
this line in the near future. 
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APPENDIX A: AXIAL VECTOR CURRENT
ALONG THE EQUATOR

Z†j,l,m(θ,ϕ)
To prove Eq. (68),  we substitute the explicit  form of

 into Eq. (67), i.e.,
 

Θ jm(θ) =
1
2 j

[
( j+m)

∣∣∣∣Y j− 1
2
,m− 1

2
(θ,ϕ)

∣∣∣∣2− ( j−m)
∣∣∣∣Y j− 1

2
,m+ 1

2
(θ,ϕ)

∣∣∣∣2 ]
+

1
2( j+1)

[
( j−m+1)

∣∣∣∣Y j+ 1
2
,m− 1

2
(θ,ϕ)

∣∣∣∣2
−( j+m+1)

∣∣∣∣Y j+ 1
2
,m+ 1

2
(θ,ϕ)

∣∣∣∣2 ].
(A1)

Θ jm(θ)
m > 0 j = l+1/2 m = µ+1/2

As  is odd in m, we only need to consider the case
with .  Setting  and  and using
the expression of spherical harmonics in terms of the as-
sociated Legendre function, we have 

Θ jm(θ) =
1

4π(l+µ+1)
(l−µ)!
(l+µ)!

[(l+µ+1)2Pµl (cosθ)2

−Pµ+1
l (cosθ)2+ (l−µ+1)2Pµl+1(cosθ)2

−Pµ+1
l+1 (cosθ)2], (A2)

µ ⩾ 0with . It follows from the generating function of Le-
gendre polynomials 

1
√

1−2zt+ t2
=

∞∑
l=0

tlPl(z), (A3)

and the definition 

Pµl (z) = (−)µ(1− z2)
µ

2
dµPl(z)

dzµ
, (A4)

that 

(−)µ(2µ−1)!!(1− z2)
µ

2 tµ(1−2zt+ t2)−
1
2
−µ =

∞∑
l=µ

tlPµl (z).

(A5)

z = 0 tlSetting  and comparing the coefficients of  on both
sides, we obtain that [34] 

Pµl (0) =
2µ
√
π

Γ

(
l−µ

2
+1

)
Γ

(
−l−µ+1

2

) .
(A6)

It is straightforward to verify that 

Pµ+1
l+1 (0) = −(l+µ+1)Pµl (0), (A7)

and 

Pµ+1
l (0) = (l−µ+1)Pµl+1(0). (A8)

Equation (68) is thereby proved. 

APPENDIX B: AXIAL VECTOR CURRENT IN
CYLINDRICAL COORDINATE SYSTEM

ω = ωez

In this  appendix,  we  first  solve  the  free  Dirac  equa-
tion in a cylindrical coordinate system and then calculate
the  axial  vector  current  of  the  system  of  massive  Dirac
fermions,  which  uniformly  rotates  with  angular  velocity

 along the z-axis. We consider only the axial vec-
tor current far from the boundary and thereby ignore the
finite size effect. 

1.    Solution of the free Dirac equation in

cylindrical coordinate system
We  work  in  the  chiral  representation  of  gamma

matrices as adopted in Ref. [35], 
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γ0 =

(
0 1
1 0

)
,

γi =

(
0 σi
−σi 0

)
,

γ5 =

(
−1 0
0 1

)
, (B1)

σi(i = x, y, z)
Ψ(t, r)

with  being  the  three  Pauli  matrices.  The
equation of motion for the free Dirac field  can be
written as 

i
∂

∂t
Ψ(t, r) = ĤΨ(t, r), (B2)

Ĥ = −iγ0γ · ∇+γ0M
Ψ(t, r)
Ψ(t, r) = e−iEtψ(r)

with  the  Hamiltonian  and  the  Dirac
fermion mass M. Suppose that  is an energy eigen-
state  with  eigenvalue E, i.e., ;  then,  Eq.
(B2) becomes 

Ĥψ(r) = Eψ(r), (B3)

Ĥ, p̂z, Ĵz,Σ · p̂
Σ = diag(σ,σ) p̂= −i∇ Ĵ = r× p̂+

1
2
Σ p̂z, Ĵz

p̂ Ĵ

ψ = (ψ1,ψ2)T ψ1,ψ2

which is  the energy eigenvalue equation of  the Hamilto-
nian. It can be proved that these four Hermitian operators,

,  are  commutative  with  each  other,  where
, , , and  are the

z-components of  and  , respectively. In the following,
we  will  calculate  the  common  eigenstates  of  these  four
operators  in  a  cylindrical  coordinate  system.  We  set

,  where  are  both  two-component
spinors;  then,  Eq.  (B3) can be replaced by the following
two equations, 

(∇2+E2−M2)ψ1 = 0, (B4)
 

ψ2 =
1
M

(E− iσ · ∇)ψ1. (B5)

∇2In a cylindrical coordinate system, the form of  is 

∇2 =
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂ϕ2 +
∂2

∂z2 . (B6)

ψ1 ψ1Now, we solve  from Eq. (B4).  can be chosen as 

ψ1 =

(
f (r)ei( j− 1

2
)ϕ

g(r)ei( j+ 1
2
)ϕ

)
eizpz , (B7)

p̂z −i∂ϕ+
1
2
σz

pz

which  is  the  common  eigenstate  of  and 

with  eigenvalues  and j. Plugging Eq.  (B7)  into  Eq.
(B4) gives 


d2

dr2 +
1
r

d
dr
+

E2−M2− p2
z −

(
j− 1

2

)2

r2


 f (r) = 0,

(B8)
 

d2

dr2 +
1
r

d
dr
+

E2−M2− p2
z −

(
j+

1
2

)2

r2


g(r) = 0,

(B9)

(
j∓ 1

2

)
ψ1 r = 0 r =∞

E2 > M2+ p2
z

α =
√

E2−M2− p2
z E =

λ
√

M2+ p2
z +α2 λ = ±1

ψ1

which  are  the  Bessel  equations  of  order .  The
boundary conditions of  at  and  require that

.  We can  introduce  a  transverse  momentum
;  then,  the  eigen-energy  becomes 

,  with  corresponding to the posit-
ive and negative modes. Now, one can obtain  as 

ψ1 =

 J j− 1
2
(αr)ei( j− 1

2
)ϕ

AJ j+ 1
2
(αr)ei( j+ 1

2
)ϕ

eizpz , (B10)

−iΣ · ∇
where A is a constant to be determined. As ψ is also an ei-
genstate of , then 

−iΣ · ∇ψ = sϵψ (B11)

ϵ =
√
α2+ p2

z

s = ±1
−iσ · ∇ψ1 = sϵψ1

A =
i
α

(sϵ − pz)

where  is the  magnitude  of  the  total  mo-
mentum and  correspond to the two opposite heli-
cities.  From Eq.  (B11),  one  can  obtain ,
which leads to  and
 

ψ2 =
1
M

(E+ sϵ)ψ1. (B12)

Finally,  we  obtain  the  eigenfunctions  and  corresponding
eigen-energy as follows, 

Ψ
(λ)
ϵpz js(t,r,ϕ,z) =

1

4π
√

X
e−itλ

√
X+izpz


√

(X−λsϵ)(ϵ + spz)J j− 1
2
(αr)ei( j− 1

2
)ϕ

is
√

(X−λsϵ)(ϵ − spz)J j+ 1
2
(αr)ei( j+ 1

2
)ϕ

λ
√

(X+λsϵ)(ϵ + spz)J j− 1
2
(αr)ei( j− 1

2
)ϕ

iλs
√

(X+λsϵ)(ϵ − spz)J j+ 1
2
(αr)ei( j+ 1

2
)ϕ

 , (B13)

 

E(λ)
ϵpz js = λ

√
M2+ ϵ2, (B14)
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X =
√

M2+ ϵ2 λ = ±1where , and  correspond to the posit-
ive and negative modes. All eigenfunctions are orthonor-
mal, 

∫
dVΨ(λ′)†

ϵ ′p′z j′ s′Ψ
(λ)
ϵpz js = δλ′λδ j′ jδs′ sδ(ϵ′− ϵ)δ(p′z− pz).

(B15)
 

2.    Axial vector current of a uniformly rotating system
of massive Dirac fermions

ω = ωez

The  Dirac  equation  in  a  uniformly  rotating  system
with angular velocity  can be written as [28, 31] 

i
∂

∂t
Ψ(t, r) =

(
−iγ0γ · ∇+γ0M−ωĴz

)
Ψ(t, r). (B16)

∆E = − jω

ω = ωez

JµA

Jx
A = Jy

A = 0
µ5

J0
A

Jz
A

Compared with  the  free  case  in  Sec.  B.1,  it  can  be  ob-
served that the eigenfunctions of Eq. (B16) are the same
as the free case but with an energy shift . Now,
we consider a uniformly rotating system of massive Dir-
ac fermions with angular velocity , where the in-
teraction  among  fermions  is  ignored.  This  system  is  in
equilibrium with a reservoir, which keeps a constant tem-
perature T and  constant  chemical  potential μ. In  the  fol-
lowing,  we  will  calculate  the  axial  vector  current  of
this  system.  According  to  the  rotational  symmetry  along
the z-axis  of  the system, we can obtain .  Due
to the absence of axial chemical potential  in our form-
alism,  vanishes [24]. The unique non-zero component
is . From the approach of statistical mechanics used in
Refs. [20, 22], one can obtain 

Jz
A =

∑
λ, j,s

∫ ∞

0
dϵ

∫ ϵ

−ϵ
dpz

λ

eβ
[√

M2+ϵ2−λ( jω+µ)
]
+1
Ψ

(λ)†
ϵpz jsΣzΨ

(λ)
ϵpz js,

(B17)

β = 1/T
Jn(x) n ∈ N

where the Fermi-Dirac distribution has been inserted, and
.  Making  use  of  the  following  series  for  Bessel

function  with , 

[Jn(x)]2 =

∞∑
i=0

(−1)i(2n+2i)!
i![(n+ i)!]2(2n+ i)!22n+2i x2n+2i, (B18)

Equation (B17) becomes 

Jz
A =

T 3

π2

∞∑
N=0

ρ2N

2N +1

∞∑
n=0

CN,n
Ω2n+1

(2n+1)!
d2n+1

dα2n+1 IN(α,c), (B19)

where  we  have  defined  four  dimensionless  quantities,

ρ = rT Ω = ω/T α = µ/T c = M/T CN,n IN(α,c), , , and . ,  are
defined as
 

CN,n =

N∑
j=0

(−1)N− j

(N − j)!(N + j)!(1+δ j,0)( j+
1
2

)2n+1

−
(

j− 1
2

)2n+1 , (B20)

 

IN(α,c) =
∫ ∞

0
dyy2N+2

(
1

e
√

y2+c2−α+1
− 1

e
√

y2+c2+α+1

)
.

(B21)

CN,nThe coefficient  can also be expressed as follows:
 

CN,n =
1

(2N)!

(
x

d
dx

)2n+1 [
x−N+ 1

2 (x−1)2N
] ∣∣∣∣∣

x=1

=
22N−2n−1

(2N)!

(
d2n+1

dt2n+1 sinh2N+1 t
)

t=0
, (B22)

x = et

sinh t CN,n = 0 n < N
CN,n n ⩾ N

n = N,N +1

where we have used the variable transformation  in
the  second  line.  According  to  the  Taylor  expansion  of

,  one  can  readily  show  that  for .  In
principle,  one can calculate  for any  from Eq.
(B22). For example, for , one can obtain
 

CN,N =
1
2

(2N +1),

CN,N+1 ==
1

24
(2N +1)2(N +1)(2N +3). (B23)

IN(α,c) c = 0

According to the calculation method in the appendixes of
the  recent  articles  by  some  of  us  [6, 36],  the  integral

 in Eq. (B21) can be expanded at  as follows,
 

IN(α,c) =
∞∑

l=0

(2l−2N −5)!!
(2N +3)(−2N −5)!!(2l)!!

c2lDN,l(α), (B24)

DN,l(α) α = 0with  expanded at  as
 

DN,l(α) =
∞∑

k=0

(−1)l+k+N
(
2−22+2N−2l−2k

)
(2l+2k−2N −2)!

(2l−2N −4)!(2k+1)!
ζ(2l+2k−2N −1)

π2l+2k−2N−2 α2k+1.

(B25)

Jz
A ρ = 0 Ω = 0 α = 0

c = 0 r = 0 ω = 0 M = 0 µ = 0

Plugging  Eqs.  (B24)  and  (B25)  into  Eq.  (B19),  one  can
obtain  the  series  expansion  of  at , , ,

 or , , ,  as follows:
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Jz
A =T 3

∞∑
N=0

ρ2N

(−2N −5)!!(2N +1)(2N +3)
∞∑

n=N

CN,n
Ω2n+1

(2n+1)!

∞∑
l=0

(2l−2N −5)!!
(2l)!!(2l−2N −4)!

c2l

×
∞∑

k=n

(−1)l+k+N
(
2−22+2N−2l−2k

)
(2l+2k−2N −2)!

(2k−2n)!
ζ(2l+2k−2N −1)

π2l+2k−2N α2k−2n. (B26)

α = 0If we only keep the linear term of Ω and set  in Eq.
(B26), then 

Jz
A = T 2ω

∞∑
l=0

(−1)l
(
2−22−2l

)
(l−1)ζ(2l−1)

(2l−3)!!
(2l)!!

c2l

π2l .

(B27)

Jz
A

For the massless fermion case, we can obtain an analytic
expression for , 

Jz
A =

(
T 2

6
+
µ2

2π2

)
ω

(1− r2ω2)2 +
ω3(1+3r2ω2)

24π2(1− r2ω2)3 , (B28)

which is  divergent  as  the  speed-of-light  surface  is  ap-
proached [28]. 

APPENDIX C: KUBO FORMULA VIA
DIMENSIONAL REGULARIZATION

Ji
A

T 0 j

The Kubo formula  relates  the  axial  vortical  conduct-
ivity  to  the  static  Fourier  component  of  the  correlation
between the axial  vector current  and the stress tensor

 via 

Ji
AT 0 j = 2iϵi jnknσ, (C1)

k→ 0in  the  limit .  Ignoring  the  interactions,  the  LHS is
represented by the one-loop thermal diagram in Fig. 4 [9,
14, 23, 37].  Calculating  the  thermal  diagram  with  the

Matsubara formulation, we have 

Ji
AT 0 j �

i
β

∑
vn

tr

(qµγµ+M)γiγ5[(q+k)νγν+M]
γ0

(
q+

k
2

)
j
+γ jq0

(
q2−M2)2 [(q+ k)2−M2]2

=
4iϵi jnkn

β

∑
vn

∫
d3q

(2π)3

1
3

q2− v2
n(

q2+ v2
n+M2

)2

=
2iϵi jnkn

π2

∫
dqq2 1

β

∑
vn

1
3

q2− v2
n(

q2+ v2
n+M2

)2 ,

(C2)

vn = (2n+1)πT − iµwhere  the  Matsubara  frequency .  The
summation and integral in Eq. (C2) appear UV-divergent,
and we  apply  the  dimensional  regularization  by  extend-
ing  the  spatial  components  of  the  loop  momentum from
3-dimensional to D-dimensional, i.e., 

∫
d3q

(2π)3 →
∫

dDq
(2π)D . (C3)

It is straightforward to obtain that 

σ =− ωD

(2π)D

∑
vn

[
1
D

B
(
1+

D
2
,1− D

2

) (
v2

n+M2
) D

2
−1

−B
(D

2
,2− D

2

)
v2

n

(
v2

n+M2
) D

2
−2

]
=− πωDT

(2π)D sin
πD
2

∞∑
n=0

vD−2
n

(1+ M2

v2
n

) D
2
−1

−(2−D)
(
1+

M2

v2
n

) D
2
−2


=σ|M=0+∆σ, (C4)

ωD = 2πD/Γ
(D

2

)
B (x,y)

σ|M=0
∆σ

where  the D-dimensional  solid  angle ,
and  is the beta function. The last line of Eq. (C4)
separates σ into  two  terms,  where  is  the  vortical
conductivity  of  massless  fermions,  and  is  the  mass
correction of the vortical conductivity. Here, 

σ|M=0 = −
πωDT

(2π)D sin
πD
2

∞∑
n=0

vD−2
n (D−1), (C5)

and 

 

Fig. 4.    One-loop correction to the vortical conductivity [23].
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∆σ =− πωDT

(2π)D sin
πD
2

∞∑
n=0

vD−2
n

(1+ M2

v2
n

) D
2
−1

−(2−D)
(
1+

M2

v2
n

) D
2
−2

−D+1

 . (C6)

D = 3− ϵ
ϵ→ 0
With  the  dimensionality  and  taking  the  limit

, we find 

σ|M=0 =−
ωD(D−1)T D−1

(2π)D−1 sin
πD
2

Reζ
(
2−D,

1
2
− i

µ

2πT

)

→T 2

6
+
µ2

2π2 (ϵ→ 0). (C7)

∆σ M2

M2 0×∞ D = 3
cD

M2

Upon  expanding  in  the  power  of ,  the  leading
term, the  term, is of the form  at , and the
limit  has  to  be taken carefully.  Let  be the coefficient
of ; we have 

cD =−
πωDT

(2π)D sin
πD
2

(D
2
−1

)
(D−3)Re

∞∑
n=0

vD−4
n

→−
(
−T
π

) 1
2

(1− ϵ)(−ϵ)(πT )−1(1−2−1)

Reζ
(
1+ ϵ,

1
2
− i

µ

2πT

)
→− 1

4π2 . (C8)

M2For  a  higher  power  of ,  however,  the  naive  limit
works. Taken together, we obtain the limit 

∆σ = −M2

4π2 +
T
2π

∞∑
n=0

vn

(1+ M2

v2
n

) 1
2

+

(
1+

M2

v2
n

)− 1
2

−2

 .
(C9)

Adding  Eq.  (C7)  and  Eq.  (C9),  we  replicate  Eq.  (112).
We have also verified that  the  same result  emerges with
the Pauli-Villars regularization.

 

 

References

 A. Vilenkin, Phys. Rev. D 22, 3080 (1980)[1]
 D. Kharzeev, Phys. Lett. B 633, 260 (2006)[2]
 D. E. Kharzeev and D. T. Son, Phys. Rev. Lett. 106, 062301
(2011)

[3]

 D. T. Son and N. Yamamoto, Phys. Rev. Lett. 109, 181602
(2012)

[4]

 K.  Fukushima,  D.  E.  Kharzeev,  and  H.  J.  Warringa, Phys.
Rev. D 78, 074033 (2008)

[5]

 C. Zhang,  R.-H.  Fang,  J.-H.  Gao et  al., Phys.  Rev.  D 102,
056004 (2020)

[6]

 D.  T.  Son  and  P.  Surowka, Phys.  Rev.  Lett. 103,  191601
(2009)

[7]

 Y. Neiman and Y. Oz, JHEP 03, 023 (2011)[8]
 S. Lin and L. Yang, Phys. Rev. D 98, 114022 (2018)[9]
 S. Golkar and D. T. Son, JHEP 02, 169 (2015)[10]
 M. N. Chernodub and S. Gongyo, JHEP 01, 136 (2017)[11]
 A. Shitade,  K. Mameda,  and T.  Hayata, Phys.  Rev.  B 102,
205201 (2020)

[12]

 R. Abramchuk, Z. V. Khaidukov, and M. A. Zubkov, Phys.
Rev. D 98, 076013 (2018)

[13]

 D.-F. Hou, H. Liu, and H.-C. Ren, Phys. Rev. D 86, 121703
(2012)

[14]

 A.  Flachi  and  K.  Fukushima, Phys.  Rev.  D 98,  096011
(2018)

[15]

 A. Endrizzi, D. Logoteta, B. Giacomazzo et al., Phys. Rev.
D 98, 043015 (2018)

[16]

 D. Lonardoni, I. Tews, S. Gandolfi et al., Phys. Rev. Res. 2,
022033 (2020)

[17]

 G.  Grams,  J.  Margueron,  R.  Somasundaram et  al., Few
Body Syst. 62, 116 (2021)

[18]

 S. Pu and J.-h. Gao, Central Eur. J. Phys. 10, 1258 (2012)[19]

 A. Vilenkin, Phys. Rev. D 20, 1807 (1979)[20]
 A. Vilenkin, Phys. Rev. D 21, 2260 (1980)[21]
 A. Vilenkin, Phys. Lett. B 80, 150 (1978)[22]
 K. Landsteiner, E. Megias, and F. Pena-Benitez, Phys. Rev.
Lett. 107, 021601 (2011)

[23]

 J.-Hua  G.,  Z.-T.  Liang,  S.  Pu et  al., Phys.  Rev.  Lett. 109,
232301 (2012)

[24]

 S.-Z. Yang, J.-H. Gao, Z.-T. Liang et al., Phys. Rev. D 102,
116024 (2020)

[25]

 M.Torabian and H.-U. Yee, JHEP 08, 020 (2009)[26]
 A.  Rebhan,  A.  Schmitt,  and  S.  A.  Stricker, JHEP 01,  026
(2010)

[27]

 V.  E.  Ambruş  and  E.  Winstanley, Phys.  Lett.  B 734,  296
(2014)

[28]

 A. Palermo, M. Buzzegoli,  and F.  Becattini, JHEP 10,  077
(2021)

[29]

 A. Chodos,  R.  L.  Jaffe,  K.  Johnson et  al., Phys.  Rev.  D 9,
3471 (1974)

[30]

 H.-L.  Chen,  X.-G.  Huang,  and  K.  Mameda,  arXiv:
1910.02700

[31]

 Z.-X.  Wang  and  D.-R.  Guo, Special  functions (Peking
University Press, Beijing, 2012)

[32]

 R. H. Lambert, Am. J. Phys. 36(5), 417 (1968)[33]
 I.  S.  Gradshteyn  and  I.  M.  Ryzhik, Table  of  Integrals,
Series, and Products (Elsevier Science, 2014)

[34]

 M.  E.  Peskin  and  D.V.  Schroeder, An  Introduction  to
Quantum  Field  Theory,  Advanced  book  classics  (Avalon
Publishing, 1995)

[35]

 R.-H. Fang, R.-D. Dong, D.-F. Hou et al., Chin. Phys. Lett.
38, 091201 (2021)

[36]

 I.  Amado,  K.  Landsteiner,  and  F.  Pena-Benitez, JHEP 05,
081 (2011)

[37]

Axial chiral vortical effect in a sphere with finite size effect Chin. Phys. C 47, 034106 (2023)

034106-19

https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevD.102.056004
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1007/JHEP03(2011)023
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1103/PhysRevD.98.114022
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevB.102.205201
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.98.076013
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.86.121703
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevD.98.043015
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.1007/s00601-021-01697-y
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.2478/s11534-012-0142-8
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1016/0370-2693(78)90330-1
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1103/PhysRevD.102.116024
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1088/1126-6708/2009/08/020
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1007/JHEP01(2010)026
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1007/JHEP10(2021)077
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.9.3471
https://arxiv.org/1910.02700 
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1119/1.1974552
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1088/0256-307X/38/9/091201
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081
https://doi.org/10.1007/JHEP05(2011)081

	I INTRODUCTION
	II SYMMETRY CONSIDERATION
	III AXIAL VECTOR CURRENT IN SPHERICAL COORDINATES
	A Hamiltonian
	B Quantized Dirac field

	IV AXIAL CHIRAL VORTICAL EFFECT OF MASSLESS FERMIONS WITH FINITE-SIZE EFFECT
	A Axial vector current far from the boundary
	B Axial vector current on the boundary

	V AXIAL CHIRAL VORTICAL EFFECT OF MASSIVE FERMIONS WITH FINITE-SIZE EFFECT
	A Mass correction of axial vector current far from the boundary
	B Mass correction of axial vector current on the boundary

	VI CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	APPENDIX A: AXIAL VECTOR CURRENT ALONG THE EQUATOR
	APPENDIX B: AXIAL VECTOR CURRENT IN CYLINDRICAL COORDINATE SYSTEM
	1 Solution of the free Dirac equation in cylindrical coordinate system
	2 Axial vector current of a uniformly rotating system of massive Dirac fermions

	APPENDIX C: KUBO FORMULA VIA DIMENSIONAL REGULARIZATION
	References

