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Thin-shell gravastar model in {Q, T) gravity”
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Abstract: In the last few decades, gravastars have been proposed as an alternative to black holes. The stability of a
gravastar has been examined in many modified theories of gravity along with Einstein's GR. The f(Q,T) gravity, a
successfully modified theory of gravity for describing the current accelerated expansion of the universe, has been
used in this study to examine gravastar in different aspects. According to Mazur and Mottola [Proc. Natl. Acad. Sci.
101, 9545 (2004); Gravitational condensate stars: An alternative to black holes, 112-011, (2002)], a gravastar has
three regions with three different equations of state. In this study, we examined the interior of a gravastar by consid-
ering p = —p EoS to describe the dark sector for the interior region. The next region is a thin shell of ultrarelativistic
stiff fluid, in which we investigated several physical properties, including proper length, energy, entropy, and sur-
face energy density. Additionally, we examined the surface redshift and speed of sound to check the potential stabil-
ity of our proposed thin-shell gravastar model. Furthermore, we used the entropy maximization technique to verify
the stability of the gravastar model. A gravastar's outer region is a complete vacuum described by exterior Schwarz-
schild geometry. Finally, we presented a stable gravastar model, which is singularity-free and devoid of any incom-

pleteness in classical black hole theory.
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I. INTRODUCTION

There has been a significant scientific interest in un-
derstanding the problems in cosmology and astrophysics
during the past few decades. Hence, compact objects are
a crucial source because they provide a platform to test
many pertinent ideas in the high-density domain. The
Gravitationally Vacuum Condense Star, or simply gravas-
tar, is an excellent notion for an extremely compact ob-
ject that addresses the singularity problems in classical
black hole (CBH) theory. It was first postulated by Mazur
and Mottola [1, 2]. They construct a cold, compact object
with an internal de Sitter condensate phase and an exteri-
or Schwarzschild geometry of any total mass M, which is
free of all known limitations on the known CBH. There-
fore, this hypothesis has gained popularity among re-
searchers, and it can be considered as an alternative to the
CBH.

A gravastar, in particular, has three separate zones
with different equations of states (EoS), according to
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Mazur and Mottola's model:

1. An internal region, which is full of dark energy
with an isotropic de Sitter vacuum situation.

2. An intermediate thin shell consists of stiff fluid
matter.

3. The outer area is a complete vacuum, which is ac-
curately represented by Schwarzschild geometry.

Recent studies on the brightness of type la distant su-
pernovae [3—5] indicate that the universe is expanding
more quickly than previously thought, which suggests
that the universe's pressure p and energy density p should
contradict the strong energy condition, i.e., p+3p <0.
"Dark energy" is the substance that causes this require-
ment to be fulfilled at some point in the evolution of the
universe [6—8]. There are several substances for the status
of dark energy. The most well-known contender is a non-
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vanishing cosmological constant, which is equivalent to
the fluid that satisfies EoS p = —p. There are two inter-
faces (junctions) located at R; and R, apart from the cen-
ter, where R; and R, denote the thin shell's interior and
outer radii, respectively. The presence of stiff matter on
the shell with thickness R, —R; = e << 1 is required to
provide the system's stability, which is realized by exert-
ing an inward force to counteract the repulsion from with-
in.

Astrophysicists have suggested a novel solution to the
singularity problem in black hole geometry through a
compact, spherically symmetric astrophysical phenomen-
on termed as gravastar. There is ongoing debate over
whether the gravitational waves detected by LIGO are the
result of merging gravastars or black holes. This debate
persists despite the absence of any empirical observa-
tions or discoveries of gravastars to date. A method for
identifying a gravastar was devised by Sakai et al. [9].
The method involved looking at gravastar shadows. Giv-
en that black holes do not exhibit microlensing effects of
maximal brightness, Kubo and Sakai [10] hypothesized
that gravitational lensing may be used to find gravastars.
The detection of GWI150914 [11, 12] by LIGO's
interferometric detectors has heightened the possibility
that ringdown signals may originate from sources without
an event horizon. Recent analysis of an image captured
by the First M87 Event Horizon Telescope (EHT) re-
vealed a shadow that bears a resemblance to a gravastar
[13].

It can be observed that there are numerous scholarly
articles on gravastars in the literature, focusing on a range
of mathematical and physical problems within the frame-
work of general relativity, as postulated by Albert Ein-
stein [14—23]. Bilic et al. [16] replaced the de Sitter in-
terior with a Chaplygin gas equation of state and con-
sidered the system as a Born-Infield phantom gravastar to
examine a gravastar's interior, whereas Lobo [17] re-
placed the inner vacuum with dark energy. Although it is
commonly known that Einstein's general relativity is an
exceptional tool for revealing many hidden mysteries of
nature, certain observable evidence of the expanding uni-
verse and the existence of dark matter pose a theoretical
challenge to this theory. Hence, a number of modified
theories have been proposed over time, including
JR), f(Q), f(T), f(R,T), f(Q,T) gravity. The f(R),
f(R,T) gravity is based on the Riemannian geometry in
which Ricci scalar curvature plays an important role. An-
other way to represent the gravitational interaction
between two particles in space-time is by torsion and
non-metricity. These concepts from the basis of the re-
spective constructions of f(7) and f(Q) gravity theory.
In the current study, our objective is to investigate a
gravastar using one of the alternative theories of gravity,
f(Q,T) gravity, and to examine many physical character-
istics and stability of the object. The f(Q,T) gravity is the

extension of the symmetric teleparallel gravity, in which
the gravitational action is determined by any function f of
the nonmetricity Q and the trace of the matter energy-mo-
mentum tensor 7, such that L= f(Q,T). There are very
few articles in which a compact object has been ex-
amined under the framework of f(Q,T) gravity [24]. Xu
et al. investigated the cosmological implication of this
theory, and they obtained the cosmological evolution
equation for isotropy, homogeneous, flat geometry [25].
In [26], the author investigated different FRW models
with three specific forms of f(Q,T) gravity models. One
could refer to the recent studies on gravastars within the
framework of modified gravity [27—-32]. In a previous
study, [33] researchers examined the gravastar model in
f(Q) gravity. Ghosh et al. [34] studied a gravastar in
Rastall gravity. In a previou study [35], the author ex-
amined traversable wormhole solutions in the presence of
the scalar field. Wormhole solutions in f(R,T) gravity
have been studied in [36]. Elizalde et al. [37] discussed
the cosmological dynamics in R? gravity with logar-
ithmic trace term. Godani and Samanta [38] discussed the
gravitational lensing effect in traversable wormholes. In
[39], the researchers investigated wormhole solutions
with scalar field and electric charge in modified gravity.
In [40], the authors studied the cosmologically stable
f(R) model and wormhole solutions. Salvatore et al. [41]
examined the non-local gravity wormholes, and they ob-
tained stable and traversable wormhole solutions. Shamir
et al. [42] explored the behavior of anisotropic compact
stars in f(R,¢$) gravity. The Bardeen compact stars in
Modified f(R) gravity were investigated in [43].

Our paper is organized as follows: In Sec. I we
provide a brief introduction to the gravastar model and re-
cent research conducted in this area. Then, in Sec. II, we
provide the geometrical aspects of f(Q,T) gravity. In
Sec. 111, we dereive the modified field equation and modi-
fied energy conservation equation in f(Q,T) gravity. Sec-
tion IV presents the solution of the field equation for dif-
ferent regions using different EoS. Subsequently, in Sec-
tion V, we examine the junction requirement and EoS,
and we obtain the limiting range for the radius of the
gravastar. The physical features of the model are ana-
lyzed in Sec. VI. The key aspect, which is an examina-
tion of the model's stability, is presented in Section VII.
Lastly, we summarize our analysis and findings in Sec-
tion VIIL

II. CONSTRUCTION OF f(Q,T)GRAVITY

The f(Q,T) theory of gravity, which introduces an ar-
bitrary function of scalar non-metricity Q and trace 7 of
the matter energy-momentum tensor, is an intriguing
modification to Einstein's theory of gravity. The action of
f(Q,T) theory coupled with matter Lagrangian £, is giv-
en by [44]:
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s5/v§ﬂf—ﬂQTH£md%, (1)
6r

where g denotes the determinant of g,,. The non-metri-
city and disformation tensor is defined as

0=-¢" (L%#Léfa - L(Z?GL!ZV) ) @)
1o Loy \% \% 3
Ly = 58 (Vv8uy + Viugyr = V&) - (€)

The non-metricity tensor is defined as the covariant
derivative of the metric tensor, and its explicit form is:

Qayv = Va/g/,ws 4

with the trace of a non-metricity tensor as

Q/l = Q,]'uﬂa Q~/l = Q”/lﬂ'
The Superpotential wa is defined as

1 1 ~ 1
P/luv = _EL/IHV_'_Z (Q/]_Q/l>guv_16/l(ﬂ Qv)v (5)

which provides the relation of scalar non-metricity as

0= _Q/I/WP/{#V' (6)

The field equations of f(Q,T) theory are obtained by
varying the action (1) with respect to the metric tensor in-
verse g"” as follows:

2 1
- \/_—gv/l (fQ \/__gP/lyv) - Efgyv +fr (T,uv +®pv)
— fo (PuaaQ,'* —=20" Paoy) = 87T, (7)

The terms used in the above equation are defined as

— gaBllap - _ _o=m]
Op= g Sgh w = =y s 8)
of(Q,T af o, T
fr= 7f(6% ), fo= 7ff9QQ ). )

Where T, denotes the energy-momentum tensor.

III. MODIFIED FIELD EQUATION IN f(Q,T)

To derive the modified field equation, consider the

static, spherically symmetric line element as follows:
ds? = e’dr® —e'dr? — r2(d6” + sin’6dg?). (10)

To describe the fluid distribution, we consider the energy-
momentum tensor in the form :

Tpv =(p+ pl)upuv - plépv +(pr— Pz)Vva’ (11)

where p denotes the density of the fluid, p, and p, de-
note the pressures of the fluid in the direction of u,, (radi-
al pressure) and orthogonal to u, (tangential pressure), re-
spectively. Specifically, u, denotes the time- like four-ve-
locity vector, and v, denotes the unit space-like vector in
the direction of the radial coordinate. Therefore, the stress
energy momentum tensor 7, and components of ®,, can
be expressed as

Ty = diag(e”p,e'p,, 2 py, % pysin0),
®11 = —€"(P+2p), Oy = ¢'(P-2p,),
@33 = r*(P=2p,), Oy = r’sin®0(P-2p,).  (12)

Where we have taken the Lagrangian matter density as
+2
Ly =-P= _Prtap:

constraints, the derived modified field equation for
spherically symmetric metric in f(Q,T) gravity is as fol-
lows:

. By utilizing the aforementioned

1
8mp :W[Zr fooQ' (€' = D)+ fol(e* = D2+ 1)

+(1+eHrA' 1+ frre'l - frIP+p), (13)

1 ,
81p, == 557 [2rfooQ (¢ = 1) + fol(e' = 1)
Q+r +rd)-2r] +frze’l] +frlP-p;l, (14)
87'[pt =— Fgﬂ [_erQQQ’V/ + fQ[ZV’(E/1 - 2) — }"V,z

+ QM+ ) =2r" 1+ 2fre 1+ fr[P—pid.  (15)

At this point, we will conider a particular functional
form of f(Q,T) gravity as f(Q,T)=aQ+pBT. This cos-
mological model has been examined widely in many pre-
vious studies [24, 25, 44]. Hence, we can rewrite the field
equation as follows:

(A 1 1
(F-p) = (16)
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) v ]) 1 eff 1
= == = peff 7
€ (r+r2 r2 Pr ( )
—/I(L”_/l,v’ L,z V’_/l,)— eff (18)
274 Ty T )T
Where,
8
peff 7p+£(3p+pr+2pt)_7(p pr—2ps), (19)
- 8np,
P5ﬁ=i—£(pr pr)+£(p—1’r—21’t)’ (20)
% 2&
8w
=L pye Lo p—2p. @D
a 3a 2a

It can be confirmed that for a=1,8=0, ie., for
f = 0, the above field equation reduces to Einstein's GR.
However in this article, we limit ourselves to the isotrop-
ic scenario to establish the simplest possibility where
pr = p:. Hence, the energy conservation equation can be
expressed as follows:
dpeﬂ
dr

+ %(;fﬂ‘ +p°T) = 0. (22)

By using Egs. (19) and (20), we obtain the modified en-
ergy conservation equation in f(Q,T) gravity as

TS Ao+ =3p) =0 (23)

dp { B } B
dr 167
The above equation differs from that obtained in GR and
can be retrieved in the limit 8 — 0.

IV. GEOMETRY OF GRAVASTAR

We are particularly focused on the geometric inter-
pretation and corresponding analytical solutions in the
three distinct zones of the gravastar under study. It is
straightforward to conceptualize that the star's interior is
surrounded by a thin shell composed of ultrarelativistic
stiff fluid, while the exterior space is an absolute vacuum.
Therefore, the Schwarzschild metric is presumed to be
suitable for this external region. The shell's structure is
believed to be extremely thin, with a limited width ran-
ging Ry =R<r<R+e€=R,, where r denotes the radial
coordinate, and R;,R, denote the inner and outer radius
of the shell, respectively.

A. Interior Region

In the primary model proposed by Mazur and Mot-
tola [1, 2], the three different zones obey the standard

cosmological EoS p = wp, where @ denotes the EoS para-
meter, which takes different values for different regions.
Here, we assume that an enigmatic gravitational source is
present in the interior area. Dark matter and dark energy
are usually considered to be separate entities, but there is
a potential that they are just different manifestations of
the same thing. To describe the dark sector in the interior
region, we are interested in considering the EoS, which
can be expressed as follows:

p=-p. (24)

By using the aforementioned EoS to obtain a con-
stant critical densityp,. from the energy conservation Eq.
(23), the pressure for the interior region is determined as
follows:

P =—Pc- (25)

Using Eq. (25) in field Egs. (16) and (19), we obtain the
final expression for metric potential e~ as

2B - 4m)per’ -3¢

o) — B )ocr” =3¢ Ll (26)

3ar

To ensure that our solution is regular at center, we set the
integrating constant ¢; = 0. Thus, we obtain:

28— 4n)r
o 2 2BZADpe 27)
3a
Using (27), we obtain another metric potential from (17,
20) as

e’ =\ 2(4n-Pyp.r* -3a]. (28)

The aforementioned results clearly indicate that there
are no singularities in the inner solutions, thereby ad-
dressing the issue of a classical black hole's central singu-
larity. For additional clarity, we plotted the variation of
the metric potential e* with respect to the radial paramet-
er rin Fig. 1.

One can physically infer from the figure that there is
no central singularity, and that the metric potential re-
mains regular at r =0, and it is finite and positive across
the whole interior area. Additionally, the following equa-
tion can be used to determine the active gravitational
mass of the internal region:

R
4
M(R) = / 4nr?pdr = gﬂR3pC. (29)
0
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(color online) Variation in the metric potential (e?)

Where R represents the radius for the interior area and p,
denotes the critical density.

B. Shell

The shell is made of ultra-relativistic stiff matter and
abides by the EoS p =p. Zel'dovich [45, 46] was the pi-
oneer of the concept of this highly relativistic fluid, re-
ferred to as the stiff fluid, in relation to the cold baryonic
universe. In the present context, this could potentially
arise from thermal excitation with a very low chemical
potential or from a maintained number density of gravita-
tional quanta at absolute zero. Numerous researchers
have extensively studied this type of fluid to explore vari-
ous cosmological [47—49] and astrophysical [50—52] as-
pects. It should be noted that it is extremely challenging
to solve the field equations in the non-vacuum area or
shell. However, an analytical solution can be determined
within the specifications of the thin shell limit, i.e.
0<e™M <« 1. We can argue that the interior area
between the two space—times must be a thin shell, as sug-
gested by Israel [53]. Moreover, in general, any paramet-
er that is a function of 7 can be considered < 1 as r — 0.
By considering this type of approximation, our field Egs.
(16)—(18) along with the Egs. (19)—(21) reduce to:

e (r) 1 B

a< p +ﬁ> = 8np+ 5(5p+p), (30)
-1 B

a<72) =8rp+5(p=3p), (€2))
_/l/V/e—/l(r) e‘/l/l’ ~ ﬁ

a( 1 -, > =8rp+ E(p—Sp). (32)

Utilizing the Eqgs. (30)—(32) we realize the two met-
ric potential as

i) _ 2(B+8m)log(r) _

S G, (33)

_ 32
e = C3(r(B+8m)) A+om (34)

Where C, and C; denote integrating constants. Further-
more, by plugging the EoS p = p and using Eq. (34) into
the energy conservation Eq. (23), we obtain the pressure/
matter density for the shell region as follows:

32n
p(r) = p(r) = po (8xr —pr)87=F . (35)

Where pg denotes the constant of integration. Fig. 2 illus-
trates the variation of pressure or matter density. It can be
seen that the shell's matter density monotonically in-
creases towards its outer boundary. Given that the shell is
composed of ultra-relativistic stiff fluid and the pressure
or matter density increases monotonically towards the
outer surface, we can physically interpret this as the con-
centration of stiff matter increasing towards the outer bor-
der as opposed to the internal region of the shell.

6.500x10'°
6.495x10'
6.490x 10"
=)
n
2 6.485x 10"
6.480x 10"
6.475x 10"
6.470x 10"
10.000 10.002 10.004 10.006 10.008 10.010
Thickness (€)
Fig. 2.  (color online) Variation in the pressure or matter

density p =p (km™?) with respect to the thickness e(km) of the
shell for g=3.4, po = 1.

C. Exterior region

The EoS p=p=0 is believed to be obeyed by the
outside of a gravastar, indicating that the external portion
of the shell is entirely vacuum. Thus, utilizing Egs.
(16)—(17) along with the Egs. (19)—(20), we obtain

X+ =0. (36)
The line element for the outside region may be con-

sidered as the well-known Schwarzschild metric, which is
provided by solution to Eq. (35) as follows:

oM oM\ 7!
dszz(l——)dtz—(l——) dr’ —2dQ?,  (37)
r r

where dQ? = (d6? +sin’6d¢?) and M denotes the total
mass of the object.
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D. Boundary condition

There are two junctions/interfaces in a gravastar con-
figuration. Let us denote the interface between interior
space —time and intermediate thin shell (at r=R;) by
junction-/, and the interface between the intermediate thin
shell and exterior space-time (at r = R;) by junction-II. It
is necessary that the metric functions at these interfaces
must be continuous for any stable arrangement. We
matched the metric functions at these borders to find the
unknown constants of our current study such as C;, Cs,
and C3, and we ultimately discovered the values of these
constants.

e Junction-I:

2B+8mlogRy . _ 20.(B—4m)R? .

1, (38
] 2 3a (38)

32n
C3 (R (B+8m) B8 = C, [20.(4n - BRI —3a].  (39)

e Junction-II:

2(B+8m)logR; 2M
e Cy=1-", 40
- 2 2 (40)
_ 32 M
C3(Ry(B+8m)) A8 = I—R—. (41)
2

e Obtained Constants:

32
_ +87
€, = - M= Ra)(B+BmR) P (42)
Ry
_ 2
C, = 2B+8mlogR) _2pB-4mR} | (43)
87 _ﬁ 3a
_ 32 32
¢, = CM=RB+8OR) F¥r (B4 8nR)FSE

Ry (3a+2Bp.r? — 8np R)

To find the numerical values of constants C;, C,, and
Cs3, we considered the astrophysical object PSR J1416-
2230 [54] with M =1.97 M, internal radius R; = 10, and
exterior radius R, = 10.01. Additionally, by adjusting a
series of values for the model parameters o and f, we
have determined a set of numerical values of C;, C,, and
C5 which is listed in Table 1.

In relation to the provided numerical solutions of con-
stants for some specific parameter choices given above,
we will discuss the parameter space of our solution. Some
associated issues to consider are as follows:

1. For particular choices of M, Ry, Ry, will we al-
ways obtain a singular free solution?

2. If one varies the model parameter, then will the res-

Table 1. Different numerical values of constants for PSR
J1416-223 assuming R; = 10 km and R, = 10.01 km.
a B C C, G

-4.5 34 0.0396871 4.91029 272477 x 108
-4.6 33 0.0388762 4.86301 2.88649 x 108
-4.7 32 0.0380979 4.81611 3.05892x 108
-4.8 3.1 0.0373501 4.76958 3.24284x 108
-4.9 3.0 0.0366311 4.72344 3.4391x 108

ults be unique or not?

We provide some arguments to answer these con-
cerns: In the current study, we selected values for a num-
ber of factors to examine the physical behavior of a
gravastar. It will provide a unique solution for a given

value of M R, and R,, but we selected these values to

. . 2M 2M
satisfy ratios — < 1,—— <1 for a stable gravastar mod-

el. Furthermore,] some o%[her criteria, such as the surface
redshift Z; <2 and square of the speed of sound(v?),
must satisfy the inequality 0 <v? < 1. Additionally, for
avoiding central singularity, we should maintain

2(B - 4m)per? i
2(B—A4mper” +1#0. Moreover, we considered pg=1

and pca/ =0.001 to maintain pg>>p.. We are free to
choose any M, R, and R, combination that can provide
the same findings as those presented in this research as
long as the aforementioned requirements are valid.

V. JUNCTION CONDITION AND EQUATION OF
STATES

It is established that a gravastar is divided into three
regions, namely the interior (I), intermediate thin shell
(I1), and exterior (III). This shell serves to connect the in-
ternal and outer regions, thus playing a crucial role in the
construction of a gravastar. According to the basic junc-
tion condition, regions I and III must smoothly meet at
the junction. Although the metric coefficients are con-
tinuous at the junction surface, their derivatives may not
be. To calculate the surface stresses at the junction, we
will now apply the Darmois —Israel [55, 56] condition.
Lanczos equation [57—60] provides the intrinsic surface
stress—energy tensor S;; in the following manner:

1

Sij:_g;

(kij = 6ijkyy). (45)

In the aforementioned expression, k;; = K, — K;; denotes
the discontinuity in some second fundamental expression.
Where the second fundamental expression is as follows:

0x, Ax! dxm
Kt=-nt|—2 +I} ——) 4
H Mo (6¢’6¢/ Tk 0Pt OpJ (46)

095104-6



Thin-shell gravastar model in f{Q, T) gravity

Chin. Phys. C 47, 095104 (2023)

where ¢’ denotes the intrinsic co-ordinate in the shell
area, and n* represents the two-sided unit normal to the
surface, which can be expressed as

m0f of

Ox! Oxm

-1/2 of

n*=x+ ,
ox”

(47)

with n¥n,, = 1. Utilizing the Lanczos method [57], the sur-
face energy tensor can be expressed as S;; = diag(—>_, P),
where the surface energy density and surface pressure are
denoted by > and P, respectively, and are defined as fol-
lows:

1 +
ZZ—m[@}_, (48)
__ X, ey
P="3 +167r{ C,J_» @)
Also the EoS (w) = r (50)
%

Specifically, — and + denote the interior space—time and
Schwarzschild space—time, respectively. Calculating Egs.
(48)—(50), we obtain the expression of the above quantit-
ies as

s M 2(B—4n)p cR?
Z—(‘m>< I T “>’

(51)
p= 1 2M B 4(B—4m)p.R
o\ g f122M L 28— 4mpR?
R a ——+1
3a
_l<_L> |_2M_ 2B-dmpcR
2 4nR R 3a ’
(52)
1 2M 4(4r—B)pR
167 2\/1_27M 6(,3—47r)pcR2
R @ ———+9 |
w= ¢ -=

) (-3 2]

(33)

There exists a set of criteria known as energy conditions
that must be satisfied for a geometric structure to be
physically viable. These widely recognized energy condi-

tions are as follows:
I.NEC: Y +P >0,
2. WEC: Y >0, Y +P>0,
3.SEC: Y +P>0,>"+3P> 0,
4.DEC: Y>>0, +P>0.

The proposed model is physically feasible if these en-
ergy conditions are met. We are examining whether the
null energy condition, which ensures the presence of
either ordinary or exotic matter in the thin shell, is satis-
fied. In this context, it is worth noting that violation of
null energy conditions (NEC) results in violation of other
energy conditions. It is illustrated in Fig. 3 that the NEC
is satisfied over a range of model parameter values
throughout the entire region.

Furthermore, we have plotted the variation in surface
energy density with respect to the thickness parameter ()
in Fig. 4, which shows that the surface energy density
monotonically decreases toward the boundary of the
shell. Hene, the mass of the thin shell can be easily de-
termined using the equation for the surface energy dens-
ity as follows:

XM 2(B-4m)p.R?
ms=47rR22=—R< - - %+1

(54

To determine the real value of shell mass, we use in-
equality m; > 0 to obtain the upper bound of the radius as

Ma ¢ . I
R < {370} .Thus, we obtain the limiting value on
pe(4n—p)

the radius as

Fig. 3. (color online) Evolution of NEC (" +P) by varying
model parameter a.
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0.0022855
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0.0022845

0.0022840

Energy densi

0.0022835

0.0022830

10.000 10.002 10.004 10.006 10.008 10.010
Thickness (€)

Fig. 4. (color online) Variation in the surface energy dens-
ity (>") with respect to thickness e(in km) for « = -4.5,8=3.4.

3Ma }1/3

2M <R < Loic@ﬂ—ﬁ)

(55)

VI. PHYSICAL FEATURES OF THE MODEL

A. Proper thickness

According to Mazur and Mottola's hypotheses [1, 2],
the stiff fluid of the shell is positioned between the meet-
ing of two space—times. The length of the shell ranges
from R; =R (which is the phase barrier between the in-
terior area and intermediate thin shell) up to Ry =R+e€
(which is the phase border between the exterior
space—time and intermediate thin shell). Hence, by using
the following formula, we can determine the required
length or proper thickness of the shell, as well as the
proper thickness between these two interfaces:

R+e
= / Veldr,
R

_/R+E ﬂ—Sﬂ q
" Gr-BC-2B+8mlog(n)
[ et T S7—B)C> e
T S Gren T 2@asn o .
(56)

The variation in the proper length with respect to the
thickness parameter € is provided in Fig. 5. The figure
demonstrates that the proper length increases monotonic-
ally as shell thickness increases.

B. Energy

The energy of the shell can be calculated by the for-
mula below as follows:

6.144

6.142

Proper length

6.140

6.138

6.136
10.000 10.002 10.004 10.006 10.008 10.010
Thickness (€)

Fig. 5. (color online) Variation in the proper length (/) with
respect to thickness e(in km) for @ = -4.5 and g =3.4.

R+e
E= / 47rr2pdr,
R

R+e 321
E = / 47rr2p0 (8r —Br) 874 dr,
R

32n
_dnpor’(8n - pn)S

56 -3

+1

(57

The variation in the shell energy is illustrated in
Fig. 6. In this graph, it can be observed that the energy in-
creases as the shell's thickness increases. The fluctuation
of energy is comparable to the fluctuation in matter dens-
ity. It satisfies the requirement that the energy of the shell
must be increased as the radial distance increases.

1.074x 10"

1.072x10'
>
o0
5
=
=

1.070x10™

1.068x10™

1.066x 10"
10.000 10.002 10.004 10.006 10.008 10.010
Thickness (¢)

Fig. 6. (color online) Variation in energy (E) with respect to
thicknesse(in km) for @ = —4.5 and g =3.4.

C. Entropy

The stable configuration for a single condensate area
is zero entropy density, which is present in a gravastar's
innermost region. Entropy on the intermediate thin shell
can be calculated using the formula presented by Mazur
and Mottola [1, 2] as follows:

R+e€
S= / 4nr? s(r) Veldr, (58)
R

where the entropy density at local temperature T(R) is
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Y’ K3T(R) _
AL Lo

provided by expression s(r)= p/2n,

where y denotes the dimensionless parameter. In this
study, we considered geometrical units, i.e., G=c=1 as
well as Planckian units Kz = 1,7 = 1. Our estimates of the

32
(B —8m)po(8ar — pr) 8B
8m—B)Cr —2(B+ 8m)log(r)

S=2 @yrze

& | 2V2ryr((8n - B)(B - 2BC» + 8m(4C, + 1)) — 4(167 — B)(B + 87) log(r))

entropy of the thin shell are limited to the second-order
term of the thickness parameter, i.e., order €, using
Taylor series approximation. Ultimately, we calculated
the intermediate thin shell's entropy as follows:

_32n
(B—8m)po((8m —p)r) A8
@Br—-B)Cr —2(5+8m)log(r)

Figure 7 depicts the evolution of the shell entropy,
which shows the growing behavior of the shell entropy
with respect to thickness (€). Another prerequisite for a
stable gravastar configuration is that entropy should reach

300000

299800

Entropy

299600

299400

299200

10.000 10.002 10.004 10.006 10.008 10.010
Thickness (¢)

Fig. 7. (color online) Variation in entropy (S) with respect
to thickness e(in km) for g =3.4, a = —4.5.

its maximum value on the surface, as demonstrated in our
analysis.

VII. STABILITY OF THE STELLAR MODEL

In this section, we investigate the stability of the thin
shell gravastar model by analyzing certain physical para-
meters.

A. Study of Herrera's cracking concept

Recent observational data appear to indicate that the
cosmos is expanding more quickly than earlier [3—5]. If
general relativity is considered as the correct theory of
gravity, characterizing the behavior of the universe on a
large scale, then the energy density and pressure of the
cosmos should violate the strong energy condition. The
stable or unstable configuration of gravastars can be ana-
lyzed based on the nature of 7, where # is an effective
parameter that can be interpreted as the square of the
speed of sound i.e. n=1? [27, 61]. For a stable system, 5
should satisfy 0 <np < 1. As is clear, the speed of sound

2 ((B—8m)2C, +2 (B> — 647%) log(r))

(59

[

should not exceed the speed of light. However, this re-
striction may not be met on the surface layer when test-
ing the stability of a gravastar. The square of the speed of
sound is defined as follows:

n=v:= % (60)
Where ' denotes the derivative with respect to the ra-
dial coordinate. Hence, by using (51, 52), we examine the
parameter's sign to determine the stability of gravastar
configurations. We utilize the graphical behavior, as the
mathematical expression of # is complicated.

From Fig. 8, it can be observed that the effective
parameter # satisfies inequality 0 <5 <1 throughout the
entire shell region. Here, we varied the model parameter
a and observed that for each value of o, our model be-
haves physically stable. Another key observation worth
mentioning is that as the value of a increases, parameter
n — 1. Hence, as the model parameter value increaes, our
proposed gravastar model approaches the unstable condi-
tion.

B. Surface redshift

The study of a gravastar's surface redshift is one of
the most basic ways to understand the stability and detec-

a=-4.3 ----- a=-4.4 a=-45
----- a=-4.6 a=-4.7
0.360F" S U R S
0.3ss0
. 0.350
1]
=
0.345
03400
10.000 10.002 10.004 10.006 10.008 10.010
Thickness (e)
Fig. 8. (color online) Variation in # with respect to thick-

ness e(in km) for different values of a.
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tion of the object. Specifically, formula Z;=A1/41,
= Ao/ A, can be used for determining the gravitational sur-
face redshift of a gravastar, wherely and A, denote the
wavelength detected by the observer and emitted from the
source. Buchdahl [62, 63] proposed that the value of sur-
face redshift should not be more than 2 for an isotropic,
stable, and perfect fluid distribution. However, Ivanov
[64] claimed that for anisotropic fluid dispersion, it might
be as high as 3.84. Furthermore, Barraco and Hamity [65]
showed that for an isotropic fluid distribution, Z; <2
holds when the cosmological constant is absent. Bohmer
and Harko [66] showed that in the presence of the aniso-
tropic star's cosmological constant, Z; <5. In our case,
we obtained the surface redshift by the following for-
mula:

1 1

1+ =
_ 32
V8 C3((B+8m)r) p+8n

Z,=- -1. (6]

The graphical analysis of Z; is provided in Fig. 9. We
varied the model parameter a and f for analyzing the
maximum possibility case of Z;, and in each case, it is
noticed that Z; < 1. Consequently, we can assert that the
current gravastar model is physically stable and appropri-
ate in the f(Q,T) framework.

0.2840 o0.2824
0.2823
0.2822
=
0.2821
N o.2835 2
k=] kg
'E 0.2819}2 .
= 10.0000 10.0005 10.0010 10.0015 10.0020 535
S 0.2830F x>
-4
=3
o
&
=}
= 0.2825F
7}

0.2820f 5%

10.000 10.002 10.004 10.006 10.008 10.010
Thickness (€)

Fig. 9.

ness e(in km) for different values of model parameter @andg.

Red Dotdashed (a=-4.1,=3.9), Blue Dotted (a=-44,

B=3.6), Green Tan (e = -4.7,3 =3.3), Black Dashed (a =-5.0,

B =3.0), and Magenta Thickness (@ = -5.3,8=2.7).

(color online) Variation in Z; with respect to thick-

C. Entropy maximization

Each quasi-black hole (QBH) candidate must be
stable to constitute a physically feasible endpoint of grav-
itational collapse [67]. To verify the stability of the cur-
rent investigation of gravastar in f(Q,T) gravity, we used
the entropy maximization method recommended by
Mazur and Mottola [1, 2]. Given that the shell region is
only the non-vacuum region with stiff fluid and contains
the positive heat capacity, the solution should be thermo-

dynamically stable. To check the stability, we will use the
entropy maximization technique in the shell region. To
maximize the entropy function, the first variation of the
entropy function should initially vanish at the boundaries
of the shell, i.e., $S=0 at r=R; and r=R,. We check
the nature of the second derivative, i.e., of 6>S, based on
its sign for all the variations in M(r). The entropy func-
tion is as follows:

R, 172
S= L"B/ rdr <2d—M> _ (62)
R,

E dr /1 -0

In the context of a hydrodynamic treatment, thermody-
namic stability is a necessary and sufficient condition for
the dynamic stability of a static, spherically symmetric
solution to the field problem. The second derivative of
the entropy function is as follows:

R, -3/2 -1/2
2 vkp 2 ( dM) ( ZM)
0°3 hG /. rdr dr r

~ {d((SM)r o

6M? dM <
dr

2M\? dr
r2(1——)

r

dM)
el
* dr

(63)

With the aid of Egs. (33), (37), and (43), we determ-
ined the functional value of M(r) as follows:

_ r(3a(B+8m)In(R) + (B2 — 1278+ 327%) p.R})
M= 3a(87 ) '
(64)

Additionally, if we consider the linear combination of
M(r) as 6M = yoy, where w vanishes at boundaries R,
and R,, then by partially integrating Eq. (63) using the di-
minishing of the variation §M, we obtain:

R, -3/2 2
kg [T rdr (zdﬂ) Xg(di) <0.
hG Jg, <l 2M> dr dr

r

5’8 =

(65)

It is evident from the above expression that for any
radial variations that vanish at the endpoints of the shell's
boundaries, the entropy function in f(Q,T) gravity
reaches its maximum value. We can therefore conclude
that a perturbation in the fluid of a gravastar's intermedi-
ate shell area results in a decrease in entropy in region II,
which suggests that our solutions are stable against minor
perturbations with the specified endpoints. Essentially,
the stability of a gravastar is not compromised by the ef-
fects of f(Q,T) gravity.
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VIII. DISCUSSION AND CONCLUSION

Based on the model proposed by Mazur—Mottola [1,
2] within the context of general relativity, we developed a
unique stellar model of a gravastar under the theory of
f(Q,T) gravity. The model comprises three distinct re-
gions: the interior region, intermediate thin shell, and ex-
terior space-time, each with a different EoS. The interior
region is entirely composed of dark energy as hypothes-
ized by [1, 2]. The following are some crucial character-
istics of a gravastar:

o Interior Region : Using the EoS (25), we derived
two non-singular metric potentials (27, 28) from the de-
scribed field equation in f(Q,T) gravity. The metric po-
tentials are finite and remain positive throughout the en-
tire interior region. This confirms that our proposed
gravastar model in f(Q,T) gravity is devoid of the
concept of central singularity in CBH.

o Intermediate thin shell: We estimated the metric
potentials in the region of the shell by using the thin shell
approximation. Equations (33) and (34) indicate that two
metric potentials remain finite as well as positive
throughout the entire shell.

- Pressure or matter density: In addition to using
the energy conservation Eq. (23), we derived the pres-
sure or matter density (35) in the shell. Figure 2 repres-
ents the variation in the pressure or matter density with
respect to the thickness parameter (e¢). One can observe
that the matter density of the shell is monotonically in-
creasing towards the shell's outer boundary. Given that
the shell is composed of ultra-relativistic stiff fluid, and
considering the pressure or matter density is monotonic-
ally increasing toward the outer surface, we can physic-
ally interpret that the concentration of stiff matter is
greater toward the outer border rather than the shell's in-
ternal region. Consequently, the shell's outer boundary
becomes denser than the interior border.

e Junction Condition and EoS : We consider the
junction condition for the formation of a thin shell
between the interior and external space—times. We ana-
lyze the variation in surface energy density with respect
to the thickness parameter (¢) using the Darmois—Israel
junction condition, as shown in Fig. 4. The surface en-
ergy density increases towards the outer boundary of the
shell. Furthermore, in Fig. 3, we verify that the NEC is
satisfied over a range of model parameter values
throughout the entire shell. It confirms the presence of or-
dinary or exotic matter in the shell. Additionally we ob-
tain the limiting value of radius (55) using the concept of
determining the real value of shell mass.

e Physical Features of the Model: Using the geo-
metrical quantity of the intermediate thin shell, we ana-
lyzed certain physical properties of the thin shell.

- Proper length: The variation in the proper length
with respect to the thickness parameter € is provided in
Fig. 5 and in Eq. (56). The figure demonstrates that the
appropriate length increases monotonically as shell thick-
ness increases. This monotonically increasing behavior of
proper length of gravastar is similar to the study which
was conducted in modified gravity [20, 21].

- Energy : The variation of the shell energy is illus-
trated in Fig. 6. In this graph, it can be observed that the
energy increases as the shell's thickness increases. The
fluctuation of energy is comparable to the fluctuation in
matter density. It satisfies the requirement that the en-
ergy of the shell increases as the radial distance increases.

- Entropy : Figure 7 depicts the evolution of the shell
entropy, which shows the growing behavior of the shell
entropy with respect to thickness (€). Another acceptable
condition is that entropy should reach its greatest value
on the surface for a stable gravastar configuration, which
is demonstrated in our analysis. To compare the energy
and entropy of a gravastar model with those reported in a
previous study [34], one can observe that the energy and
entropy should reach their maximum values at the bound-
ary of the shell, a condition that is met in our study

e Stability of stellar model: Finally, we validated
the stability of our proposed stellar model through the
study of Herrera's cracking concept and the surface red-
shift analysis method. Subsequently, we employed the en-
tropy maximization technique to assess the stability of a
gravastar.

- Herrera's cracking concept: We analyzed the sta-
bility of a gravastar based on the nature of the effective
parameter 7. In Fig. 8, it is clear that for each value of o,
the square of the speed of the sound remains positive and
does not exceed 1. Moreover, we can observe that for in-
creasing the value of a parameter, the model approaches
instability.

- Surface Redshift: Lastly, we used surface redshift
analysis to verify the stability of our recently suggested
model. The surface redshift (Z;) for any physically stable
star arrangement should always be smaller than 2. By
varying the model parameter 5, we plotted the surface
redshift with respect to the thickness parameter (e),
which is illustrated in Fig. 9. In each case, Z; < 1. It
demonstrates that our suggested model is stable under

f(Q,T) gravity.
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- Entropy Maximization : Here, we utilized the en-
tropy maximization technique to verify the stability of a
gravastar system. To maximize the entropy function, the
first variation of the entropy function is initially set to
zero at the boundaries of the shell, i.e., sS=0 at r =R,
and r=R,. Subsequently, we checked the nature of the
second derivative, i.e., of 6°S, by its sign for all the vari-
ations in M(r). Equation (65) considers a negative value,
which represents that the entropy attains its maximum
value for all variations of the radial parameter. This fur-
ther indicates the stability of our gravastar model in
f(Q,T) gravity. One can verify the stability of the gravas-
tar model using the entropy maximization technique in [1,
34].

We conclude that a gravastar might exist within the
constraints of f(Q,T) gravity. Compared to previous
studies on gravastars, we extended the thin shell approx-

imation to the second order, which offers a more accur-
ate analytical solution for determining the physical para-
meters of the shell. Additionally, we employed Herrera's
cracking concept as a new technique to verify the stabil-
ity of our proposed model in f(Q,T) gravity. We can
conclude that the f(Q,T) theory of gravity was effect-
ively used in the current study on a gravastar, as demon-
strated by our findings. The issues associated with the
event horizon and central singularity of a black hole are
promptly addressed by a set of physically plausible, non-
singular gravastar solutions.
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with this article.
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