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Abstract: This study examines a recently hypothesized black hole, which is a perfect solution of metric-affine
gravity with a positive cosmological constant, and its thermodynamic features as well as the Joule-Thomson expan-
sion. We develop some thermodynamical quantities, such as volume, Gibbs free energy, and heat capacity, using the
entropy and Hawking temperature. We also examine the first law of thermodynamics and thermal fluctuations,
which might eliminate certain black hole instabilities. In this regard, a phase transition from unstable to stable is con-
ceivable when the first law order corrections are present. In addition, we study the efficiency of this system as a heat
engine and the effect of metric-affine gravity for the physical parameters ge, gm, ks, k4, and g . Further, we study
the Joule-Thomson coefficient and inversion temperature, and observe the isenthalpic curves in the 7; — P; plane. In
metric-affine gravity, a comparison is made between a van der Waals fluid and a black hole to study their similarit-

ies and differences.
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I. INTRODUCTION

The geometrical structure of black holes (BHs) in
general relativity (GR) and modified theories of gravity is
an attractive and challenging research subject [1]. The
thermal characteristics of BHs and their behavior are ana-
lyzed by the well-known four laws of BH mechanics [2,
3]. After the study by Bekenstein, for the first time,
Stephen Hawking presented the existence of BH radi-
ations and formalized the tunneling process significantly
close to the BH horizon owing to the vacuum fluctu-
ations. It was observed that a small quantity of heat led to
the eccentricity of quantum mechanics [4, 5]. In [6], it
was noted that BHs contain thermodynamic features such
as temperature and entropy. At the BH horizon, the
Hawking temperature is proportional to its surface grav-
ity because a BH behaves like a thermodynamical system.
It was confirmed that the results of [7] are useful for all
classical BHs at thermodynamic equilibrium.

The Hawking temperature phase transition occurs
after the justification of an isomorphic phase structure as-
sociated with the van der Waals liquid-gas system in a
Kerr RN-AdS BH [8] and an RN-AdS BH [8, 9]. In all
previous BH thermodynamic studies, mass, volume, and
pressure, the crucial thermodynamic variables, were
missing. The contribution of pressure to this field was
completed through the cosmological constant, which also
had other basic implications such as the consistency of
Smarr's relation with the first law [10]. The cosmological
constant (A) was taken as the thermodynamic pressure,
and the respective first law of thermodynamics was sim-
ultaneously modified by the expansion of the phase space
with a PdV term, leading to novel understanding of the
BH mass [11]. The new perspective on mass with the cos-
mological constant in BH thermodynamics generated
phenomenal consequences in classical thermodynamics.
Kubiznak et al. [12, 13] presented the AdS BH as a van
der Waals system and investigated the critical behavior of
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the BH through the P—v isotherm, Gibbs free energy,
critical exponents, and coincidence curves, which are all
presented as similar to the van der Waals case. Moreover,
these similar features were obtained on various AdS BHs
in [14—19]. The similarities to classical thermodynamics,
such as holographic heat engines [20], Joule Thomson ex-
pansion, phase transitions, and Clausius-Clapeyron equa-
tion, were also studied in [21, 22]. Javed et al. [23] in-
vestigated the thermodynamics of charged and un-
charged BHs in symmetric teleparallel gravity. They also
studied the thermal fluctuations and phase transition of
the considered BHs. The dynamical configurations of
thin-shell developed from BHs in metric- affine gravity
composed with scalar field were studied in [24]. Some in-
teresting physical characteristics of various BH solutions
were dicussed in [25—26].

In addition, the Joule-Thomson expansion was invest-
igated in AdS BHs by Okcii and Aydiner [27], further
proceeding to the isenthalpic process by which gas ex-
pands through a porous plug from a high-pressure sec-
tion to a low-pressure section. The researchers also ana-
lyzed the Joule-Thomson expansion phenomenon in
Kerr-AdS BHs within the extended phase space [28].
They examined both the isenthalpic and numerical inver-
sion curves in the temperature-pressure plane, illustrating
regions of cooling and heating for Kerr-AdS BHs. Addi-
tionally, they computed the ratio between the minimum
inversion temperature and critical temperature for Kerr-
AdS BHs [28]. This pioneering work was generalized to
quintessence holographic superfluids of RN BHs in f(R)
gravity [29—-31]. More recently, we studied, in detail, the
consequence of the dimensionality on the Joule-Thom-
son expansion in [31]. As stated in [31, 32], the ratio
between the critical temperature and minimum inversion
temperature decreases with the dimensionality d, while it
retrieves the results when d = 4. In this work, we invest-
igated whether the existence of metric-affine gravity
should influence the Joule-Thomson expansion, which is
also motivated by the progress in our understanding of
metric-affine gravity. Here, we propose that the adopted
strategy is contextualized not only for BHs in metric-af-
fine gravity but also for those in other alternative theor-
ies of gravity where new gravitational modes are well de-
veloped.

This paper is devoted to explore the effects of metric-
affine gravity on the phase transition of BH geometry and
also to study the Joule-Thomson expansion. The remain-
ing of this paper is arranged as follows. In Sec. II, we
present a brief review of our new class of BHs in metric-
affine gravity. In Sec. III, we formulate the thermody-
namic quantities, such as temperature, pressure, Gibbs
free energy, and heat engine. Next, in Sec. IV, we intro-
duce the Joule-Thomson expansion for a classical physic-
al quantity. Finally, we present a few closing remarks.

II. A BRIEF REVIEW ON BLACK HOLES IN
METRIC-AFFINE GRAVITY

GR is the most successful and physically acceptable
theory of gravity, which precisely describes the gravita-
tional interaction in the space-time geometry and the
characteristics of matter via the energy-momentum
tensor. From a geometrical perspective, the Lorentzian
metric tensor g, is considered to study the smooth mani-
fold that is used to develop the Levi-Civita affine connec-
tion I'},. To establish a model where the largest family of
BH solutions with dynamical torsion and nonmetricity in
metric-affine gravity can be found, a propagating trace-
less nonmetricity tensor must be taken into account in the
gravitational action of metric-affine gravity. As a geomet-
rical correction to GR, a quadratic parity-preserving ac-
tion presenting a dynamical traceless nonmetricity tensor
in this situation is given as follows [33—37]:

1 S
S = / d*xv=g {Lm * Ton [— R+2fiR 1 R

#23 (R = Row) (R =) ]}, O

where R@ewr and Ry, are the affine-connected form of
Riemann and Ricci tensors. Here, R denotes the Ricci
scalar, g is the determinant of the metric tensor, £, de-
picts the matter Lagrangian, and fi, f, are Lagrangian
coefficients. This solution can also be easily generalized
to take into account the cosmological constant and Cou-
lomb electromagnetic fields with electric charge (g.) and
magnetic charge (g,,), which are decoupled from torsion
[38, 39]. This assumes the minimal coupling principle.

~ 1 .
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These variations represent the third Bianchi of GR. By
executing changes of the above equations with respect to
the co-frame field and the anholonomic interrelation, the
following field equations are established: Y1}, = 876, and
Y24 = 4xA%, where Y1,” and Y2*” are tensor quantit-
ies. A% and 6, are utilized to study the hyper mo-
mentum density and canonical energy-momentum tensors
of matter, which are expressed as

AW = eaﬂeb:u g (‘Em ‘/__g)
\/__g 6wabv ’
& e’y 0(Ln \/—_g) 3)
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Therefore, both matter representations act as sources of
the extended gravitational field. In this scenario, metric-
affine geometries utilize the Lie algebra of the general
linear group GL(4, R) in anholonomic interrelation. This
hypermomentum presents its proper decomposition into
shear, spin, and dilation currents [36, 37]. Furthermore,
the effective gravitational action of the model is provided
in terms of these properties. The parameterizations of the
spherically symmetric static spacetime are as follows:
[39-43]

ds? = —W(r)dP + W7 (r)dr? + 2d6* + 2 sin*0dg?.  (4)

Compared with the standard case of GR, in the emission
process, a matter current coupled to torsion and nonmetri-
city in a general splitting of the energy levels will poten-
tially affect this spectrum and the efficiency. Interest-
ingly, the performance of a perturbative interpretation on
the energy-momentum tensor in vacuum fluctuations of
the quantum field coupled to the torsion, as well as non-
metricity tensors of the solution, is used to study the rate
of dissipation obtained on its event horizon, which would
also cover the further corrections with respect to the sys-
tem of GR [44, 45]. The metric function (Reissner-
Nordstrom-de Sitter-like) is defined as [37]

2m  diC—dek-2fiKk +q +q5 A
T(r):]_ﬁ+ 1K €1k 2flksh q. Qm_'_ng’ (5)
r r

which represents the broadest family-charged BH models
obtained in metric-affine gravity with real constants e,
and d,. Here, kg, k5, and k, represent the shear, spin, and
dilation charges, respectively.

III. THERMODYNAMICS

A cosmological constant is treated as a thermodynam-
ic variable. After the thermodynamic pressure of the BH
is put into the laws of thermodynamics, the cosmological
constant is considered as the pressure. From the equation

A
of horizon ¥(r) =0 and pressure P = e [29, 30], we

can deduce the relation between the BH mass m and its
event horizon radius, r,, which is expressed as follows

3d k% — 6f1Kk% — 8w Pr} +3q2 + 32, + 3r7 — 1263,
m= :
6rh

(6)

The Hawking temperature of the BH related to surface
gravity can be obtained as

T _W'(r)  6-32nPr;
T 4n 127y,
3di Kk — 6fK5 —8aPr} + 3¢ +3¢%, + 3r7 — 1263¢,

12713

(M

It has a peak as shown in Figs. 1 and 2 and shifts to right
(positive) and increases with increasing P. and «,. The
temperature becomes the absence of the electric charge
(¢ =0). As we increase the values of P. and «,, the local
maximum of the Hawking temperature increases, as ex-
hibited in Figs. 1 and 2. Further, the temperature con-
verges when the horizon radius shrinks to zero for the
considered BH manifold. The general form of the first
law of BH thermodynamics can be written as [29-32, 46,
47]

dM =TdS + VdP+ ddg,, + ¢dq, + kgdkg,
+kde‘Y+kdde+Eld€1+F1df1 +D1dd1, (8)

where M, S, V, P, O, ®, and ¢ are the mass, entropy,
volume, pressure, magnetic charge, and chemical poten-
tial of BH, respectively. They have been treated as theth-
ermodynamic variables corresponding to the conjugating
variables ky,, k,, k;, E1, and d;, respectively. The
volume and chemical potential of the BH are defined as

oM oM
v=(20) oo (2 ©)
oP S.gm OGm S.P

respectively. The BH entropy with the help of area is
defined as [48—50]

A
S=7 =nr;. (10)

From Egs. (6) and (7), the equation of state for the BH
can easily be expressed as

P=

_du(f =2k + @+ @ AT — ry — 4k3e,

(11)

4
8nry,

The red, blue, orange, and black colors indicate the diver-
gence at pressures below the critical pressure. The oscil-
lations of the isotherms at critical temperatures in the
P —v), diagram are equivalent to the unstable BHs that are
presented by negative heat capacity in this section (Figs.
3 and 4). These divergences are the characteristics of the
first-order phase transition that occurs between smaller
and larger BHs that are stable and have a positive heat ca-
pacity. In response to changes in the value of the para-
meter T, there is a corresponding shift in the horizontal
axis; an increase in this parameter results in a reduction in
the critical radius.

The thermodynamic variables V, ®, ¢ and the conjug-
ating quantities kg, ks, k,, E1, and d, are obtained from
the first law as
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Fig. 1.  (color online) Plot of temperature 7 with fixed ¢, =

0.28; g, =0.08; d; =0.004; f; =0.313; x4 =0.02; «x,=0.8; and
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Fig. 2.  (color online) Plot of temperature 7 with fixed ¢, =
0.28; g = 0.08; dy =0.004; f; =0.313; ks =0.02; and e; = 0.4.
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Fig. 3. (color online) Plot of temperature P with fixed g,, =

0.0002; di =0.004; f; =0.003; g =0.01; ks = 0.03; and ¢; = 0.4.
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Fig. 4.  (color online) Plot of temperature P with fixed g,, =

0.0002; d; =0.004; f; =0.003; ks =0.01; x; =0.03; and e; =0.4.

ity is the Gibbs free energy of a BH, which can be util-

V= 4nr; o= o= 9e ized to explore the small/larger BH phase transition by
37 r’ r’ studying the G—r, and G—T diagrams. In addition, the
ky, = —2/; LS M k, = —deika ’ Gibbg free energy also helps us to investigate the global
V2 2 r stability of a BH. It can be evaluated as [51, 52]
—4
El=""% and p, =%, (12)
r r
G=-TS+M. (13)
A. Gibbs free energy and specific heat
The most important and basic thermodynamic quant- Using Egs. (6) and (7) in (13), we obtain
|
T 2 2 365, 43 2 2 6" 2/3 2
\‘/g (IZdlKS — 24K, +4‘\/;Pv B+12¢> +12¢% + <;) v —48Kde1) (14)
= 5% .
We observe the graphical behavior of the phase trans- T = 1 (16)
itions in the G —r, plane as shown in Figs. 5 and 6. It is © 3ver Vdik2 =213+ G2 + g% — 4K3e
noted that the Gibbs free energy decreases as the critical
radius increases. To calculate the critical thermodynamic From Eq. (15), the critical radius of BH is as follows:
properties of a BH, one can use the following condition:
UC:8\/aﬂ(dlkf—2f1K§h+q£2,+qg1—4K361)3/2. (17)

ap) <82P)
—) =(%5) =o 1
<au,, " \a ), =0 (13)

Using Eq. (15), the critical temperature can be expressed as

The critical pressure in terms of other parameters takes
the following form:
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Fig. 5. (color online) Plot of Gibbs free energy G with fixed
gm =0.003; di =0.200; f; = 0.050; kz = 0.010; and e; = 0.050.
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Fig. 6. (color online) Plot of Gibbs free energy G with fixed
gm =0.003; di =0.200; f; = 0.050; &z = 0.010; and e; = 0.050.

1

P.= .
967 (—dlkf +2AK - -+ 4K3€1)2

(18)

However, we applied a numerical analysis because calcu-
lating the critical numbers analytically is not a simple op-
eration.

To find more data about a phase transition, we stud-
ied a thermodynamic quantity such as heat capacity. By
applying the standard definition of heat capacity as fol-

lows: [46, 53]
S )
=T =
€ <6T »

with a few numerical calculations, one can obtain a di-
mensionless important relation for the amounts P., T.,
and v,. If the expression (d\k? —2fik3, + > + ¢% — 4K3er) —
1.327765310 is provided, then our solution satisfies the
well-known condition as

(19)

Py,
=3/8,
T(,‘ /

(20)

and similar results are studied in the context of the van
der Waals equation and in an RN-AdS BH . Therefore,
the negative heat capacity that gives the temperamental
(unstable) BH is also related to the critical temperature in
the P—v, plane. The expressions of volume and entropy
of a BH are presented in Eqs. (7) and (10). From Eq. (19),
we obtain

p

It has been discovered that the critical amounts classify
the behavior of thermodynamic quantities close to the
critical point. In Figs. 7 and 8, for thermodynamically
stable BHs, we separate the two cases in which the heat
capacity is positive (7, <r.) and the case in which it is
negative (r, >r.). The second-order phase transition is
implied by the instability areas of BHs, where the heat ca-
pacity is discontinuous at the critical temperature r, =r.
[54, 55]. It is noted that the heat capacity diverges at
r, =050, when T, reaches its maximum value as

6 6\
32 \*ng <4d:<§ — 81 +12 {/;Pv“” +4q; +4q,, - (;) v = 16iGe:

6 6\
—12dK2 +24fK% +12 \S/jPVMB -12¢2-12¢2 + (7) V23 4+ 48k3e,
n s

3
3 \/; Vdik2 =211+ @+ q% — 4 (dlkf—Zflkgh +8aPri+q2 +q2, — 17 —4Kk3e)

20

T,=0.24 for r,=1.00, g, =0.08, d, =0.004, f, =0.313,
ks =0.02, and e, = 0.4. The critical points in the alternate
phase space are obtained by utilizing the standard defini-
tion, and we reduced the thermodynamic variables as fol-
lows:

T P
T,=—, v=" and P =—. 22)
T(' vL' PC
The reduced variables can be written as
(23)

T, =

volume can be obtained as

3 9’
2r;,
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Fig. 7.  (color online) Plot of heat capacity with fixed
qm =0.08; dy =0.004; f; =0.313; k; =0.02; and ¢; =0.4.
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Fig. 8.  (color online) Plot of heat capacity with fixed
gm=0.08; di =0.004; f; =0.313; ks =0.02; and e; =0.4.

and pressure is as follows:

P =-

12 (dlkz—2f1/<§h+q§+qfn—4/<§el)2 (dlkf —2f1K§h +q§+q§,+4ﬂr2T—rﬁ—4K§el)

(25)

4
Ty

Two adiabatic and two isothermal processes combined to form the Carnot cycle are the hallmark of the most effective
heat engine. The single most fundamental and critical feature of the Carnot cycle is that the heat engine efficiency is a
function of reservoir temperatures:

T.

T, (26)

n=1-

and as a reservoir can never be at zero temperature, the efficiency cannot be one because 7. and 7}, denote cold and hot
reservoirs, respectively. Hence, we obtain
2
2 \/j r
3 h

n=1

Now, we study the behavior of the heat engine efficiency
n as a function of the the pressure P and entropy S match-
ing to the heat cycle provided in Figs. 9 and 10, for the
different values of metric-affine gravity parameters. From
these figures, we can observe that the nature of the heat
engine efficiency is essentially relying on the metric-af-
fine gravity parameters. In addition, for a given set of in-
put values, the efficiency of the heat engine increases
monotonically as the horizon's radius grows. Because of
this, larger BHs should expect higher heat-engine effi-
ciency. In other words, they allow for a maximum effi-
ciency curve to be provided for a heat engine by varying
only a few fixed parameters (the BH works at the highest
efficiency). Here, the local stability is related to the sys-
tem, but it can be large with small changes in the values
of thermodynamic parameters. Thus, the term heat capa-

+ .
3 \/d1K§—2f1K§h+q§ +q% —4Kke, (dK? —2fik3, + 8nPry + > + ¢, —r§—4/<[21e1)

27

city gives information on local stability. In [36], it is
stated how the cosmological constant A can be studied by
treating it as a scale parameter.

IV. JOULE-THOMSON EXPANSION

One of the best-known and classical physical pro-
cesses to explain the change in temperature of a gas flow-
ing from a high-pressure to a reduced pressure section
through a porous plug is called the Joule-Thomson ex-
pansion. The main focus is on the gas expansion process,
which expresses the cooling effect (when the temperat-
ure drops) and the heating effect (when the temperature
increases), with the enthalpy remaining constant
throughout the process. This change depends upon the
Joule-Thomson coefficient: [28, 56]
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Fig. 9.  (color online) Plot of efficiency » with fixed
gm=0.08; d; =0.004; f; =0.313; k; = 0.02; and e; =0.4.
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Fig. 10.  (color online) Plot of efficiency » with fixed
gm =0.08; di =0.004; f; =0.313; kg =0.02; and ¢; = 0.4.

wr=(38), 75, T(Gr) v e

Using Egs. (7), (9), (21), and (28), the coefficient is cal-
culated as follows:

_4ry (3d, &3 — 6 fi13,+8nPry+3q7+3q;,—2r;—12K5e; )
Hr="3 (dik? =2 K3 +87Pri + 2 + g2, — 17 — 4Ker )

(29)

The study of the Joule-Thomson coefficient versus the
horizon r, is shown in Figs. 11, 12, 13, and 14. We set
d, =0.004, f,=0313, k5, =0.05, x;,=0.02, k,=0.8, and
e; = 0.4 in that order. There exist both divergence points
and zero points for different variations of «,, ;, and «g,
respectively. It is clear from a comparison of these fig-
ures that the zero point of the Hawking temperature and
the divergence point of the Joule-Thomson coefficient is
the same. This point of divergence gives information on
the Hawking temperature and corresponds to the most ex-
treme BHs. From Eq. (29) and utilizing the well-known
condition u;r = 0, the temperature inversion occurs as

_ 3d K> — 61Kk — 8nPrt +3q> +3q2, — 17 — 12k2¢,

T
1277}

. (30)

— gn=0.40
— gn=0.45

~

N

Wt

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

n
Fig. 11.  (color online) Joule-Thomson coefficient w7 plane
with fixed d;=0.03; f1=0.01; «;=0.02; «;=0.10; and
e; =0.04.
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Fig. 12.  (color online) Joule-Thomson coefficient ;- with
fixed d; =0.03; f; =0.01; kg =0.02; x, =0.10; and e; = 0.04.
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Fig. 13.  (color online) Joule-Thomson coefficient u;r with
fixed d; =0.03; f; =0.01; kg = 0.10; kg = 0.02; and e; = 0.04.

Because the Joule-Thomson expansion is an isenthalpic
process, it is important to analyze the isenthalpic curves
of BHs under metric-affine gravity, which are depicted in
Figs. 15—-18. Thus, we study the isenthalpic curves
(T;— P; plane) by assuming different values of BH mass,
which are investigated in Eq. (29) with a larger root of 7.
We show the isenthalpic and inversion curves of BHs in
metric-affine gravity and the result is consistent [57—60].
The heating and cooling zones are characterized by the
inversion curve, and the isenthalpic curves possess posit-
ive slopes above the inversion curve. In contrast, the pres-
sure always falls in a Joule-Thomson expansion and the
slope changes sign when heating occurs below the inver-
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Fig. 14.  (color online) Joule-Thomson coefficient u;r with
fixed d; =0.03; fi =0.01; g, = 0.10; «;, =0.10; and e; = 0.04.,
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Fig. 15. (color online) Isenthalpic curves (T - P) plane with
fixed dy =0.004; fi =0.313; kg, = 0.05; kg = 0.02; and e, = 0.4.
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Fig. 16. (color online) Isenthalpic curves (T - P) plane with
fixed d; =0.004; f; =0.313; k; =0.02; k;, =0.8, and ¢; = 0.4,

sion curve. The heating process appears at higher temper-
atures, as indicated by the negative slope of the constant
mass curves in the Joule-Thomson expansion. When tem-
peratures drop, cooling begins, which is linked to the pos-
itive slope of the constant mass curves. From above equa-
tion, one can deduce the inversion pressure as

_ 3dik; —6fikg, +3q; +3qs, — 120 Ti—r; — 125

P;
8rr

1)

The inversion curves for different values, d; =0.004,
f1=0.313, x4 =0.05, and «, =0.02, are shown in Figs.
19, 20, 21, and 22. The inversion temperature increases
with variations of the important parameters m, q., &, and
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Fig. 17. (color online) Isenthalpic curves (T - P) plane with
fixed d, =0.004; fi =0.313; ke =0.05; kg =0.02; x, =0.8, and
e1 =04,
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Fig. 18.  (color online) Isenthalpic curves 7 -P plane with
fixed dy =0.004; f; =0.313; kg, =0.05; x4 =0.02; x,=0.8; and
e =04.
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Fig. 19. (color online) Inversion curves (7i- Pi) with fixed
dy =0.004; f1=0313; k5, =005; «;=002; «k,=08; and
el = 0.4.

K5, respectively. We can go back to the case of the BH in
metric-affine gravity. Compared with the van der Waals
fluids, we can observe from Figs. 19—22 that the inver-
sion curve is not closed. From the above results, in the
Ti—Pi plane at low pressure, the inversion temperature
T; decreases with the increase in charge g, and mass m,
and it shows the opposite behavior for higher pressure. It
is also clear that, unlike the case with van der Waals flu-
ids, the inversion temperature continues to rise monoton-
ically with increasing inversion pressure, and hence, the
inversion curves are not closed [59, 60].
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Fig. 20. (color online) Inversion curves (Ti—Pi) with fixed
d;=0.004; f;=0313; &p=005; k;=0.02; x,=08; and
e =04,
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Fig. 21.  (color online) Inversion curves (Ti— Pi) plane with
fixed d; =0.004; f; =0.313; k; =0.02; k;, =0.8; and ¢; =0.4.
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Fig. 22.  (color online) Inversion curves (Ti— Pi) plane with

fixed di = 0.004; fi = 0.313; kg = 0.05; kg = 0.02; and e; = 0.4.

V. CONCLUSION

In this work, we considered a BH in metric-affine
gravity, studied the thermodynamics in the presence of
Bekinstien entropy, and examined the standard thermody-
namics relations. In detail, we thoroughly investigated the
thermodynamics to analytically obtain thermodynamical
properties such as the Hawking temperature, entropy,
specific heat, and free energy associated with BHs in
metric-affine gravity with a focus on the stability of the
system. The heat capacity blows atr., which is a double

horizon, and local maxima of the Hawking temperature
also occur at r.. It is shown that the heat capacity is posit-
ive for r, < r., providing stability to small BHs close to
perturbations in the region, and at a critical radius a phase
transition exists. The BH is unstable for r, > r. with neg-
ative heat capacity. The global analysis of the stability of
BHs is also discussed by calculating the free energy Gy,.
For negative free energy G, <0 and positive heat capa-
city C,>0, it is noted that smaller BHs are globally
stable, and these results are also used in [14—19]. We cal-
culated the inverse temperature, inverse pressure, and
mass parameter, and investigated the Joule-Thomson pro-
cess of the system. The negative cosmological constant in
metric-affine gravity was investigated for phase trans-
itions of BHs. Above the inversion curves, we examined
the cooling region, whereas below the inversion curve
there is a heating one. The corresponding results can be
summarized as follows: both the inversion temperature
and pressure become greater with an increasing BH in
metric-affine gravity while they decrease with the charge
q.. The physical consequences are analogous to those in
holography; a BH would be a system as well as dual to
conformal field theories. The BH in metric-affine gravity
is studied and its thermodynamics is identical to that of
usual systems; the thermodynamical analysis becomes
more complete. Our results show that the Joule-Thomson
coefficient is independent of the shear, spin, and dilation
charges, which indicates that the Joule-Thomson expan-
sion considered here is universal. In particular, we find
novel isenthalpic curves in which the inversion temperat-
ure of the Joule-Thomson expansion, rather than the ex-
treme one reported by previous works, separates heating
and cooling phases [61—63]. Therefore, our inversion
curves separate the allowable and forbidden regions for
the Joule-Thomson effect to be observed, where the
Joule-Thomson coefficient is the essential quantity to dis-
criminate between the cooling and heating regimes of the
system. It is worth noting that when a thermal system is
amplified with a temperature, the pressure always de-
creases yielding a negative sign to dP.

Our analysis of inversion curves in the plane revealed
that the influence of the parameters on a BH may be more
evident in space-time. We analyzed the BH in metric-af-
fine gravity and the characteristics of the inversion curve;
these included the shear, spin, and dilation charges. In
these figures, we observed that the inversion curves are
compatible with the extreme point of a specific is-
enthalpic curve, and the cooling as well as heating re-
gions are identified. In other words, the boundary
between the heating-cooling regions of the BH in metric-
affine gravity influences the inversion curves. We also
discovered the maximum expansion points of the cooling-
heating regimes, as in [64—66]. For the BH heat engine,
we investigated the analytical expression for efficiency in
terms of horizon radius, pressures, and temperatures in
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various limits. We also studied the Joule-Thomson ex-
pansion, isenthalpic curves, and inversion curves of the
considered BH in metric affine gravity, as follows:

e We examined the Joule-Thomson expansion for a
BH in metric-affine gravity, where the cosmological con-
stant is taken as a pressure. We mainly focused on the BH
mass considered enthalpy, which is the mass that does not
change during the expansion. The Joule-Thomson coeffi-
cient y,r in terms of horizon 7, is shown in Figs. 11-14.
There exist both divergence points and zero points with
d, =0.004, f,=0.313, kg, =0.05, x,=0.02, x,=0.8, and
e1 =0.4. The zero point of the Hawking temperature,
which is related to the most distant BHs, agrees with the
divergence point of the Joule-Thomson coefficient, which
is depicted in a consistent manner [59, 60].

e We also presented the isenthalpic curves, and the
results are presented in higher dimensions as can be ob-
served in Figs. 15—18. It is very interesting to explain that
the positive slopes of the inversion curve are found as
mentioned in the literature [28, 56]. This indicates that
with the expansion of a metric-affine universe, a BH al-
ways cools above the inversion curve.

e To determine the temperature gradients between the
cooling and heating zones for various values of d, fi,

ks, and k;, we analyzed the inversion curve (Figs.
19-22).

It is concluded that the considered BH in metric af-
fine gravity agrees with the results in the literature. This
work is beneficial for future research.
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