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Thermal pairing treatment within the path integral formalism
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Abstract: A method for the treatment of pairing correlations at finite temperature is proposed within the path integ-
ral formalism, based on the square root extraction of the pairing term in the Hamiltonian of the system. Gap equa-
tions and expressions for the pairing gap parameter A, energy E, and heat capacity C are established. The formalism
is first tested using the Richardson model, which enables comparison with an exact solution. The results obtained us-
ing this formalism are also compared with the finite temperature BCS (FTBCS) results. An improvement over the
FTBCS model is noted, especially at low temperatures. Indeed, the agreement between the A values of this study and
the exact values is good at low temperatures. This leads to better agreement between the values of E and C of this
model and the exact values than with the FTBCS values. However, a critical value of temperature remains. Sub-
sequently, realistic cases are considered using single-particle energies of a deformed Woods-Saxon mean-field for
the nuclei 92Dy and '72Yb. In the framework of the current approach, pairing effects persist beyond the FTBCS
critical temperature. Moreover, at low temperatures, a good agreement between the model and semiexperimental val-
ues of the heat capacity is observed, and a clear improvement compared to the FTBCS method is noted. This is no

more the case at higher temperatures.
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I. INTRODUCTION

Pairing correlations are a crucial issue in nuclear
structure theory and have been the subject of numerous
studies since they were first highlighted at the end of the
1950s [1]. The theory of superfluid states in nuclei was
then developed by adapting the Bardeen, Cooper, and
Schrieffer (BCS) theory [2] to nuclear physics [3].
However, the typical BCS theory in nuclear physics is a
zero-temperature theory. Since the early 1960s, the gener-
alization of the study of nuclear superfluidity at finite
temperature has been the subject of considerable atten-
tion. This interest has not diminished over the last 60
years, and the subject is still relevant, especially for the
study of nuclear processes in hot stellar environments
[4-6]. Several studies have been devoted to pairing cor-
relations in heated nuclei. Some used a statistical method
based on the BCS theory (see, e.g., Refs. [7-13]) or
Hartree-Fock-Bogoliubov (HFB) theory (see, e.g., Refs.
[14—18]), before or after particle-number projection. Oth-
er studies were based on the temperature dependent ran-
dom phase approximation (RPA), see, e.g., Refs.
[19-22]. For a review, see Ref. [23]. Pairing in hot nuc-
lei has also been investigated in the relativistic case us-
ing the relativistic Hartree-Bogoliubov model [24], re-
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lativistic finite temperature quasiparticle RPA [6], and
covariant density functional theory [25—29].

Recently, the Matsubara formalism [30] and self-con-
sistent Green's function approach [31] have also been
used to describe nuclear superfluidity at finite temperat-
ure.

Another possible approach for the treatment of pair-
ing correlations in heated systems is based on the path in-
tegral representation of the partition function, which in-
volves the shell-model Monte-Carlo method [32—34].
However, this method is not easy to apply, especially for
heavy systems with large particle-numbers. Therefore,
the static-path approximation (SPA) [35—41]is con-
sidered a convenient method of obtaining an approxima-
tion of the partition function.

In Ref. [42], Fletcher used the path integral technique,
starting with an approximation in the pairing Hamiltoni-
an and then linearizing it using the Hubbard-Stra-
tonovitch transformation [43, 44]. He then showed that
the standard finite temperature BCS (FTBCS) gap equa-
tions can be obtained via a saddle-point approximation in
the path integral representation of the partition function
of the system. This method has also been used in the
neutron-proton pairing scenario [45—48].

In this study, we propose an alternative method to in-
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vestigate pairing correlations at finite temperature within
the path integral formalism. It is based on the polar de-
composition of the creation and annihilation operators of
pairs of paired particles in the Hamiltonian of a system.
The pairing term in the Hamiltonian is then written in
square form, which enables direct use of the Hubbard-
Stratonovitch transformation.

The paper is organized as follows. Secs. II and III de-
scribe the Hamiltonian of the system and the derivation of
the partition function, respectively. Expressions for the
various statistical quantities are derived in Sec. IV. In
Sec. V, the formalism is tested using the Richardson
model, which enables comparison with an exact solution.
Realistic cases are then considered using single-particle
energies of a deformed Woods-Saxon mean-field. Fi-
nally, the main conclusions are summarized in Sec. VI.

II. HAMILTONIAN

In the second quantization formalism, the intrinsic
motion of a system of paired particles (neutrons or pro-
tons) is described by the Hamiltonian

H=> &0,+n)-H, (1)

v>0

where ¢, is the single-particle energy of the state
[vy=a} |0) and of its time reverse |V)=a; 0). 7, is
defined by

1y = dydy. 2

The pairing strength G is assumed to be constant, and H,
is defined by

H,=GP*P, 3)

where

Pt = Za:a;’. 4)

v>0

This method is based on the polar decomposition of
the operators P* and P to obtain the P*P product on a
square form, i.e.,

P*P=R>. ®)
Therefore, we set S, the operator
S, =i(a,+a) (ay+ai), (6)

where i is the imaginary unit.

S, obeys the following properties:
S=S8, and §*=1. @)
We set

U=1IS. (8)

v>0

where U is a unitary operator, which is also given by

U =exp igZ(a;+aj+an+a;—1> . )

>0

It may then be easily shown that

P*U=-iR where R=Y n,;B, (10)
v>0
with
BV = HS]
o (i

JEV
In the same manner, we have
U*P =iR. (12)

This is also the case reciprocally.

Egs. (10) and (12) represent the generalization, in
terms of operators, of the polar decomposition of com-
plex numbers. Indeed,

Pt=Re 3 Utand P=¢'* UR. (13)
Thus,
P*P=PUUP=R>. (14)

The calculation details of U, P*P , and R? are given
in Appendix A.

III. GRAND PARTITION FUNCTION

To conserve the particle number on average, let us
define the auxiliary Hamiltonian as

H=H,—-GR?, (15)

where
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Ho=Y (&,= D@, +m5), (16)

v>0

A being the Fermi energy.
The grand partition function is given by

Z =Tre™PH, (17)

where £ is the inverse of the temperature 7 of the system,
and Tr is the trace over all the states of the system.
Note that A, and H, do not commute, thus

e PH # e PHoehty, (18)
We now consider the operator S(8) defined as

ePH = e PG (B), (19)
that is,

S(B) = eftloePH, (20)

We can easily show that S(B) satisfies the differential
equation

IS (B)
PB

- e—ﬂHoH -BH _

=H,(B)S®), 21)
where H,(B) is the Heisenberg transform of H,
H,(B) = effo H e P, (22)

Eq. (21) is easily solved, considering the initial condition
S(B=0) = 1. The implicit solution is then

B
S(,B)=1+/ H,(r)S(r)dr, , 0<71<p. (23)
0

By proceeding by iteration, S(8) may be formally writ-
ten as

B
S(B) =T exp (/ H,(7) d'r) (24)
0

T, is the chronological operator.
Then, Z may be expressed as

Z = Tre P S (B) (25)

where
B
S(B) = T, exp ( / GR? (1) dT) , (26)
0

R(7) being the Heisenberg transform for the imaginary
time 7 of the operator R:

R(t) = e THoRe o, (27)

In the integral in Eq. (26), the interval [0,4] is divided in-
to NV intervals of length N Therefore, by definition,

d . G+ .
G/ R*(1)dr = lim exp [@ZRz(Tj)];Tj=]]€, (28)

0 J=1

because
/ fX()dr= 11

= lim

N—oo

B
N
% £(X), (29)

where f(x) is any integrable function on the interval

[0.5].
Thus,

S = 11mT Hexp {'BGRZ (Tj)} (30)
Using the Hubbard-Stratonovitch transformation [42—44],
exp (0?) =/ dxexp {—mx* =2 Vrx0}, (31)

where O is a bounded Hermitian operator, and x is an ex-
ternal field, S(B) may be written as

N +o0
S(ﬂ):jygoloTTH/w dx;
i

G
X exp {—ﬂx? —2x; i

v R (n)} SNE2)

where we set
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to simplify the notations.
Let us set

+00 N
x;= \/ng and/bxzkg H\/%de. (33)
.

It is worth noting that X; refers to X (7;) and when the
limit is taken, X; — X (7).

We then have
SPB)=T; / DX
B B
X exp {—ﬂ/ XZ(T)dT—Z \/E/ X(T)R(T)d‘['} .
0 0
(34)
We set
A(1) = VaGX (7). (35)

Using the SPA [49], where it is assumed that A(7) is in-
dependent of 7, i.e.,

A(T) = A, (36)

Z reduces to an ordinary integral over the variable A. It
then reads as

1
Z=Tr /dAexp {—ElAl2
7G G

B lHo + 2AZanBV1 } : (37)

After some algebra, it is given by

7z =

1 _Biap_
\/ﬂ_GTr/dAexp oAl ﬁzv:hvl, (38)

where we set
h,=&,(,+n;)+2An,n;B, and &, =¢,— A (39)

The eigenvalues of n, are 0 and 1, which acts on a two-
dimensional space. In its eigenbasis, its matrix () is

a={° (40)
ny) = 0 1 .

In the same manner, the eigenvalues of n; are 0 and 1
and its matrix (»;), in its eigenbasis, is given by

(ny) = 00 41)
= )

As for B,, knowing that B?> =1, its eigenvalues are (~1)
and 1. Its matrix (B,) is given, in its eigenbasis, by

@y={ ' ° 42)
Lo 1)

The eigenbasis of &, is the tensor product of the eigen-
bases of the three operators. The eigenvalues of n,, n; ,
and B, in this space are given in Table 1.

However, these three operators commute with each
other and act on different spaces. Knowing the eigenval-
ues of n,, ; , and B,, the eigenvalues of 4, can be de-
duced for a given v using Table 1. Thus,

Tre# =2 [1+2e# +e % cosh (28)] . (43)

Next, to calculate the trace in Eq. (38), we assume, as
an approximation, that A, and h, commute when v # u.
Indeed, the commutator [h,,h,] is given by

[hv, hy] =2A {gv [Tlv + 15, TI;leBy]
+éﬂ [’]vaw ym + r]ﬁ] }
+4A2 [TlvUva, nunﬂBu] . (44)

It is thus the sum of a term proportional to G and a term
proportional to VG, because A = X VaG. The value of G
is generally small compared to single-particle energies,
justifying the approximation. This results in

Trexp (—ﬁZhV> = HTr e P, (45)

As a consequence, the partition function may be written
as

Table 1. Eigenvalues of 5,, 77, B, , and h,.
v 0 0 0 0 1 1 1 1
m 0 0 1 1 0 0 1 1
B, -1 1 -1 1 -1 1 -1 1
hy, 0 0 &, &, &y &y 28, —2A &/ +2A
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1 B AR
Z=—— [ dAe ™
«/E/ ¢
<[T{ 2[1+2e# +e¥ cosh(2BA)]}.  (46)

It is worth noting that this approach differs from the
Fletcher method [42], which is recalled in Appendix B. In
the latter, the pairing term in Eq. (B3) is written as a
product 6,6, and then converted into a square form to ap-
ply the Hubbard-Stratonovitch transformation. In the
present study, the pairing term is in square form, en-
abling direct application of the Hubbard-Stratonovitch
transformation.

However, in both approaches, an approximation is
made because 6; and 6, are assumed to commute in the
Fletcher method and A4, and h,, v #u, are assumed to
commute in this study.

At this stage, it is difficult to determine whether the
approximations are justified. However, a comparison of
the numerical results of the various statistical quantities
with exact values obtained within a schematic model will
enable us to judge the validity of the approximations (see
Sec. V).

IV. STATISTICAL QUANTITIES

The grand partition function can be used to determine
various statistical quantities, such as energy, entropy, and
heat capacity.

A. Free energy
The free energy is obtained using the relation

1
Z= / dAeF (47)
G
and thus,
A2
F=—
G

- é > In{2[1+2e#+ e ¥Pcosh(268)] ). (48)

B. Gap parameter

The quantity A is interpreted as the gap parameter.
Hereafter, it is assumed to be real. It is found using the
saddle point approximation [50]

OF
ax =0 (49)

Indeed, the dominant contribution to the partition func-
tion is found by determining the minimum value of the

exponent in Eq. (47), resulting in

o255

1 +2e % + e~ cosh(2BA)

% = sinh (25A)Zy:

= sinh (284) ) Di, (50)

where

D, = (1+eﬁ§V)2+ZSinh2(ﬁA). (51)

C. Particle-number
Because the grand potential Q is given by

Q=-fF, (52)

and the particle-number is defined by

oQ
N=— , =4, 53
o p=const. @ IB ( )
we obtain
N= 2ZNV, (54)
with
B 1
N=1-———. 55
5 (55)

The system of Eqgs. (50) and (54) constitutes the gap
equations.
The quantity N, may also be written as

eP% + e % cosh(2BA)

v = . . . 56
1+ 2eF% +e~28% cosh (2BA) (56)
D. Energy of the system
The energy of the system is defined as
0Q
E=-— . (57)
618 a=const.
Then, after some algebra,
AZ
E:—E+2ZV:8VNV. (58)
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E. Entropy
The entropy is defined by

S =Q-BAN +pE. (59)
After all calculations, it reads as
AZ
S=-2p -+ 2,BZV:£VNV

+> In2[1+2e# +e cosh(28A)].  (60)

F. Heat capacity
The heat capacity of the system is defined by

oS
C= —B%. (61)
oS i
After some algebra, B may be written as
aS  2A* 2A4(BA) _ 0N,
#-G G o LA @
where
oN, &, e85
B D
~ . a(BA) 1
+(1 _Nv) Ey(l —ZNV) +2Slnh(2ﬂA) FE .
(63)
O(BA) . .
and F is deduced from the relation
aBA) |1 A 1
+2Bsinh? (2BA) Z %
A . év (1 - Nv)
= & ~2Bsinh(2BA) Z 5 (64)

Note that the obtained expressions for the various
statistical quantities are different from those of the FT-
BCS approach, which are recalled in Appendix B.

V. NUMERICAL RESULTS AND DISCUSSION

The previously described formalism is first applied to

the Richardson model, enabling comparison with an ex-
act solution. Subsequently, it is applied to realistic cases.

A. Richardson model

In this section, we use the Richardson model with the
same parameters as in Ref. [51], which refers to the exact
solution of Ref. [52]. Thus, we consider N =10, G=0.4
and doubly degenerated equidistant levels such that

1
a,:(i—i(zvo,ﬂ)) Ae, i=1,2,.,N,,  (65)

N, is the total degeneracy of the levels, with N, =10
and Ae = 1.

The various statistical quantities are then calculated as
functions of temperature 7" using the approach in this
study and compared with the exact solution and FTBCS
results. The variations in the pairing gap parameter A, en-
ergy E, and heat capacity C are shown in Fig. 1.

As shown in the figure, the overall behavior of A(T)
is similar to the typical behavior in the FTBCS approach,
i.e., exhibiting a plateau on a given interval at low tem-
peratures and then decreasing until A vanishes at the crit-
ical temperature 7.. The sharp phase transition at 7 =T,
is due to the approximations used in this study, i.e., the

1.0 Exact
0.8 — — Present work
0.6 - - - FTBCS
< b .
0.4 "
0.2 _- . ‘
0.0 T 1 ‘I 1 M 1 T T T
00 05 1.0 15 20 25 30 35 40
T
5
104 -
-15 4
w201 Exact
'25'_ — = Present work
0 -7 FTBCS
-35 T T T T T T T T
00 05 10 15 20 25 30 35 40
25 T
20 Vi
15 ] / ] Exact
] — = Present work
10—_ . - - - FTBCS
54 ) £
. L
o+
00 05 1.0 15 20 25 30 35 40
T
Fig. 1.  Variations in the pairing gap parameter A (upper

part), energy E (middle), and heat capacity C (lower part) as
functions of temperature 7. The solid lines refer to the exact
results, and the dashed and dotted lines refer to the results of
this study and FTBCS, respectively.
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SPA (Eq. (36)), that of Eq. (45), and the saddle-point ap-
proximation (Eq. (49)). The inclusion of quantal and
thermal fluctuations may lead to smoother behavior.

Furthermore, the agreement between the values of A
from this study and the exact values is good for
0< T <0.5; a clear improvement in the A values of this
study compared to the FTBCS values should be noted. In-
deed, the FTBCS method predicts a A value of approxim-
ately 0.8 at low temperatures, whereas the present model
reproduces the exact value A = 1.

Moreover, the T, value of this study is clearly larger
than that of the FTBCS approach. Consequently, our
model better reproduces the exact values of A over a lar-
ger temperature interval. Indeed, our values are relatively
close to the exact values until 7 ~ 1.2.

The behavior of E(T) at low temperatures is similar
in the three cases. However, our model leads to a de-
crease in energy with respect to the exact values of ap-
proximately 7%, whereas the FTBCS method leads to an
increase of approximately 9%. At higher temperatures,
the difference in the A shape leads to a difference in the
shape of the energy.

Finally, as shown in Fig. 1, the shape of the heat ca-
pacity C at low temperatures, i.e., at 0 < T <0.5, is closer
to that of the exact solution than that of the FTBCS meth-
od. Of course, the discontinuity at T = T, still exists.

For large values of T, i.e., beyond the critical temper-
ature of the FTBCS method and this study, the pairing
vanishes. Thus, the energy is the same in both models.
However, it may seem surprising that in this region, the C
values of both models reproduce the exact values, where-
as the exact value of A does not vanish. This is because
the E(T) curves (and thus those of S(T)) are parallel in
this region; therefore, the value of the derivative is the
same.

B. Realistic cases

Next, we choose two nuclei as illustrative examples :
12Dy and '"2Yb. These nuclei have semiexperimental
heat capacity data, allowing comparisons with the cur-
rent results. The single-particle energies are those of a
Woods-Saxon deformed mean-field using the parameters
described in Ref. [53], with a maximum number of shells
Npax = 12.

To enable comparisons with the FTBCS approach, the
pairing strength G is chosen to reproduce the pairing gap
parameters A at zero temperature in both approaches,
which are deduced from the even-odd mass differences
and given by [54]

1
A, = —g[M(Z+2,N)—4M(Z+1,N)+6M(Z,N)

—4M(Z—-1,N)+M(Z~-2,N)], (66)

1
A, = - 3 [M(Z,N+2)-4M(Z,N+1)+6M (Z,N)

~AM(Z,N-1)+ M(Z,N -2)], (67)

for the proton and neutron systems, respectively. M (Z,N)
is the experimental mass value.

For the same reason, we consider the excitation en-
ergy E.. defined as

Ee = E(T) - E(0), (68)

rather than the energy of the system.

The variations in the gap parameter A, excitation en-
ergy E., and heat capacity C as functions of temperat-
ure 7T are shown in Figs. 2 and 3 for the proton and neut-
ron systems of the two nuclei mentioned above. The FT-
BCS results are shown in the same figures.

In each case, the overall behavior of A(T) is similar
to the typical behavior in the FTBCS approach, as is the
case in the schematic example. Once again, the 7, values

125 = 1.25
Dy Protons "Dy Neutrons|
1.00 — Present work| 1.00 — Present work
- - FTBCS - - FTBCS
< o5 ! < 075
() ' )
: \ :
3 050 1 = 050
1
0.25 'I 0.25
1
0.00 L . , : 0.00 ; . . . -
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T(MeV) T(MeV)
125 125——
—— Present work 162Dy Protons Dy Neutrons
100] = ~ FTBCS 100{ —— Presentwork
- . - - FTBCS
> >
© 75 ° 75 ,
= =
3 50 . 3 50
w . w 7’
rd . 4
25 e 25 .
C - /-
0 0 -
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T(MeV) T(MeV)
120 120
162Dy Protons 162Dy Neutrons
100 —— Present work| 100
- - FTBCS
80 80
O &0 O &0
40 40
20 . - 20 ! _ = 7 —— Present work
4 .- ‘Y- - - FTBCS
) e ’
0 0
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T(MeV) T(MeV)
Fig. 2.  Variations in the pairing gap parameter A (upper

part), excitation energy E.. (middle), and heat capacity C
(lower part) as functions of temperature 7 for the proton (left)
and neutron (right) systems of '2Dy. The solid lines refer to
the results of this study, and the dashed lines are the FTBCS
results.
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1.00 1.00
'"Yp Protons ""2Yb Neutrons
0.754 —— Present work 0.75 - E_'i%sgg‘ work
R ' - - FTBCS e
% ' % '
S 050 So0s0{
= ~ |
| \ | \
1
025 o2s{
1
! 1
! 1
0.00 — 0.00 —
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T(MeV) T(MeV)
125 125
2,
Yb Protons ""Yb Neutrons
100{ 100
— —— Present work < —— Present work
S - - FTBCS > - — FTBCS ,
o 75/ S ,
=3 S ‘
g 5 13 s ’
504
[0} ’
w w /
.
251 25 e
0 . . . . . ] - . . : !
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T(MeV) T(MeV)
125 125
"2yb Protons '"2Yb Neutrons
100{ 100
75 75
o (@]
50 50
251 . 25 .
/S -7 Presentwork ) .- —— Present work
ot - - FTBCS o - - FTBCS
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T(MeV) T(MeV)

Fig. 3. Same as Fig. 2, but for '"*Yb.

of this study are clearly more important than those of the
FTBCS approach. The ratio T,/ (T.)grpcs 1S close to 3.

The behavior of the pairing parameters is reflected in
the excitation energy, and the curves are similar in both
approaches. We note a change in the slope at 7T =T,. In
the region T < (T.)prpcs> Eexe increases more rapidly in
the FTBCS approach than in this study. In the region
(T)erees < T < T., Eee inthis study increases signific-
antly faster than in the FTBCS case. In fact, in this re-
gion, the FTBCS pairing gap is nil. No explanation for
this behavior is found, nor for E., being larger in the
present model. Finally, when T > T, the curves of the
two approaches are parallel.

Regarding the heat capacity, we can draw the same
conclusions regarding the general features of the curves
deduced from the two approaches. The sharp discontinu-
ity in C observed at T = T, within the conventional FT-
BCS approach remains when using our formalism.
However, it is worth noting that the graphs join beyond
T., when the pairing effects vanish.

Next, the total heat capacity Cr is evaluated as a
function of temperature for both nuclei, making it pos-
sible to compare it with semiexperimental values. The lat-
ter are taken from Ref. [13], which refers to Refs. [55]
and [56]. The corresponding results are shown in Figs. 4
and 5 for 2Dy and '"?Yb, respectively. In both figures,
the section within the interval 0 < T <1 MeV, in which

semiexperimental data are available, is enlarged in part
(b) for clarity.

In each case (see Figs. 4 (a) and 5 (a)), two discon-
tinuities are noted, corresponding to the neutron and pro-
ton critical temperatures, within the current model and
FTBCS approach. In the 2Dy case, the two FTBCS crit-
ical temperatures are very close to each other, revealing
only a discontinuity in the curve.

Note that the FTBCS curves of this study show, in
each case, a sharp increase at low temperatures, whereas
in Refs. [57] (for '©2Dy) and [13] (for both 2Dy and
172Yb), C is flat in this region. This difference is likely
due to the choice of the pairing-strength G value. In this
study, we do not use the same value of G for the two ap-
proaches (i.e., the FTBCS and present approaches). As
highlighted above, the G values are chosen to reproduce
the A value at zero temperature in each case.

Moreover, for both nuclei, beyond the proton system

50
162 Present work
2004 Dy - — FTBCS 40
. EXP. 30
o
(a) -
150 o
- 0.0
O 1001
50 1 ‘v _ - -
/ =
L7
0 - T T T T 1

00 05 10 15 20 25 30
T(MeV)

Fig. 4. (color online) Variation in the total heat capacity of
102Dy as a function of temperature 7. The solid lines refer to
the results of this study, the dashed lines are the FTBCS res-
ults, and the dotted lines are the values extracted from experi-
mental data.

172 50
200, Yb b
(a) 40 ( ) ’ J
, .
—— Present work & %0 / K 57 e
|- —FTBCS 0 o
150 L EXP. , S -
10
/
0
00 02 04 06 08, §0
— 100+ T(MeV)
O
504 R
/l »r -
/ - ~
v ‘
/
0 === T T T T T T T T T 1
0.0 0.5 1.0 15 2.0 25 3.0
T(MeV)

Fig. 5. (color online) Same as Fig. 4, but for!”2Yb.
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critical temperature of the present model, the curves of
the two models are superposed because there is no more
pairing in this region.

As clearly shown in Figs. 4 (b) and 5 (b), at low tem-
peratures, i.e., when 7 < 0.5 MeV, the agreement between
the results of this study and the semiexperimental values
is good, which is not the case for the FTBCS method.
This observation is consistent with the conclusions drawn
in the case of the Richardson model.

In addition, as in the schematic case, the good agree-
ment between the values obtained using our model and
the experimental (respectively exact) values is observed
in the interval where A has a plateau shape.

Paradoxically, the FTBCS method seems to better re-
produce the experimental values in the interval between
the proton system critical temperatures of the two models.
However, note that in this region, the FTBCS method
predicts that the pairing effects vanish, suggesting that the
entropy curves are parallel in this region, as is the case
within the Richardson model.

However, in the present approach, the S shape of the
experimental heat capacities is not reproduced. The mod-
el predicts a sharp transition when the temperature
reaches its critical value. This shortcoming may be over-
come by performing particle-number projection before
variation (see, e.g., Refs. [13, 41, 57],). In our approach,
thermal and quantal fluctuations should also be con-
sidered. One should then go beyond the SPA defined by
Eq. (36).

VI. CONCLUSION

We present a model for the treatment of nuclear pair-
ing at finite temperature within the path integral formal-
ism, based on the polar decomposition of the creation and
annihilation operators of pairs of paired particles in the
Hamiltonian of the system. The pairing term in the
Hamiltonian is then written in square form, which en-
ables direct use of the Hubbard-Stratonovitch transforma-
tion. This facilitates the derivation of the partition func-
tion of the system using the SPA.

A new expression for the partition function is estab-
lished. Gap equations and expressions for various statist-
ical quantities are then derived, which differ from those
of the FTBCS approach because the used approximations
are not of the same nature.

The model is first numerically tested using the
Richardson schematic model, which enables a comparis-
on with the exact solution. The results obtained using the
present formalism are also compared to the FTBCS res-
ults. An improvement compared to the FTBCS model is
noted at low temperatures for the values of the pairing
gap parameter A. Indeed, our model can be used to repro-
duce the exact value of A, which is not the case of the
FTBCS model. An improvement is also noted for the en-

ergy E and heat capacity C. However, there is still a crit-
ical temperature 7, , which leads to discontinuities in the
A, E , and C curves. The T. value of this study is found
to be larger than that of FTBCS.

The model is then applied to realistic cases using the
single-particle energies of a deformed Woods-Saxon
mean-field. The various statistical quantities are evalu-
ated for the proton and neutron systems of the Dy and
12Yb nuclei, which are chosen as illustrative examples.
Compared to the FTBCS results, the overall behavior of
the gap parameters and the various statistical quantities as
functions of temperature is similar.

However, in the framework of our approach, the pair-
ing effects persist at temperatures higher than those pre-
dicted by the FTBCS approach.

Because semiexperimental data of the heat capacity
are available for these two nuclei, we compare them with
the predictions of the present model and the FTBCS res-
ults. The model in our study better reproduces the experi-
mental values at low temperatures. However, in the inter-
val between the proton system critical temperatures of the
two models, the FTBCS method appears to better repro-
duce the experimental values. This is paradoxical be-
cause FTBCS predicts that the pairing effects vanish in
this region.

It would be interesting to consider the thermal and
quantal fluctuations in the present model and perform
particle-number projection. It would also be interesting to
extend our formalism to the neutron-proton pairing case.

APPENDIX A: CALCULATION DETAILS OF U,

PP, AND R?
Recall that
v=1[s. (A1)
>0
where
szi(aj+a;f) (a;+a;). (A2)

A. Calculation of U
Let us establish Eq. (9). Using Eq. (A2), we have

iszi(aj+a;-') .i(a}+a;§). (A3)
First, we establish that

i(a+a;) =exp |iZ (a+a}) | (A4)

Indeed,
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=aja [[S;

in
exp{ (aj+a})

>0
2n+1 2n+1 onil =a, (1+S HS
+at " . >
Z(2n+1)'( ) (a;+47) 70
AS . .
(4% = —in, [[S;=-insBr,  (A12)
>0
However, v
2 ml where we set
(aj+aj) =1and (a]+a ) =aj +a;j, (A6)
thus, B, =[] (A13)
po
in . (=D" fm\2n
o[ )] -3 (B)
P @t A2 Similarly,
1" 2n+1
+ifara) ) (2( +)1)v (g)
i 120 i Utaza, = i,y HS/ = innuB,. (A14)
=cos§+i(aj+a]+-)s1n§ =
=i(a;j+a;). (A7) . o .
using the definition (4) of P* and P, i.e
Similarly,
. Y=Y aia; , P=) aua, (A15)
i(a; + a}') =exp [15 (a] + a}')} . (A8) v>0 u>0
. we then have
We then obtain
iS; _exp[ (a;+a’ )]exp {iﬁ (a_‘mf)} P'U=Y aa;U=~iy nuB,=—iR (A16)
2 2 ! J v>0 v>0
T
:exp[i(aj+a ta; +a )} (A9) and
because a; and a; commute with a; and a% . . . .
Thatis, UtP= ;U apct, = l%many = iR (A17)
S =—i n + +
j =—iexp|iz (a,+aj+a;+a_7> where we set
v/
=exp |i2 (0 +af +a;+ai-1)]. (A10
pli3 (o ) (A1 R=>"nmB,. (A18)
Using Eq. (A1), we obtain

v>0

(All)

Hence,
U =exp lzgz (aj+a;+a;+aj~*.—l)1 .

70 P*P=P'UU*P=R". (A19)
B. Equation P*P = R? C. Equation R> = P*P
Let us calculate afa; U. We have We have
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v>0 w>0

Zr]vn?HSj ZnﬂﬂﬂHSj

v>0 j>0 u>0 >0
J#v JEu
= nmSmansSy [[ S
v,u>0 Jj>0
JEVp
= (Z r]vn;Sv> (Z Smm;,) , since S7=1.
v>0 w>0
(A20)
As
S, = in (a,+ay) (as+a;)
=in, (a,+a})ny (a5 +a}) = iaja;  (A21)
and
Sulunn = (77#’7/78#)+ = —lazay, (A22)
we obtain
R* =) dajajaza, = P*P. (A23)

v,u>0

APPENDIX B: FLETCHER METHOD

To facilitate comparisons with our study, the Fletcher
method [42] is recalled in this appendix.

A. Hamiltonian

We start with the Hamiltonian (1). To conserve the
particle number on average, we define the auxiliary
Hamiltonian as

H=H-AN (B1)

where 4 is the Fermi energy, and N is the particle number
operator given by

N=> (+1). (B2)

v>0

The Hamiltonian H then reads as

H=H),+H, (B3)

with the notations

H, = Zs (n,+n3), H =—-GP*Pand &, =¢5,—-1. (B4)

v>0

B. Grand partition function

The grand partition function can be written as

Z =Tre " (B5)
where £ is the inverse of the system temperature 7, and

Tr is the trace over all the states of the system.
Using the same treatment as in Sec. I, we obtain

e P =ePhg(p), (B6)
where

S(B) = et

B
=T.exp (—/ H, (1) dT> , (B7)
0

T, is the chronological operator, and H, () is the Heisen-
berg transform of H;.
S(B) may also be written as

- B
S(B) =1513010T,Hexp {—NHI (Tj)} , (B8)
j=1

, j=1,2,..,N.

To apply the Hubbard-Stratonovitch transformation
(31), Fletcher assumes that H; (r;) in Eq. (B8) may be
expressed as

where 7; = jE
J N

H, (7;) =6 (1;) 6> (1)) (B9)

with

0, = VGP*,  6,= VGP. (B10)

Although 6; and 6, do not strictly commute because

01.0,1=G Y _ [a}a;.asa,]. (B11)

for small G (which is the case as it represents a residual
interaction),
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exp {—%6102} = exp [(

1
2
xexpl(é §01;02>] (B12)

because

0,+6,\> (6,-6,\"
9192:(122) _(122>'

By applying the Hubbard-Stratonovitch transformation to
each exponential in Eq. (B12), we obtain

exp [(; ]
:/:odx]exp{ 7rx \/?(& 92)%} (B14)

(B13)

exp|-2o6,] = im [T 2 / e / “avep {7 (x4 v2) - VL (%, 17) 0, () - (3,
jor e -

Let us introduce the notations
+0o0 N
/ DX = }\llim \/ dX

(B19)

and

o=

400 N
/ oY = lim 11 day;. (B20)

—eo

It is worth noting that when the limit is taken, X; — X (1)
and ¥; — Y (7).
We also define the complex function

2(t)) =X, (7)) +iY; (1)) = X; +iY,. (B21)
As
% / D7 = / DXDY, (B22)
and
B B <
/f(X(T))dT—h N; —mﬁjzzljf(xj),
(B23)

and

N~
%

2
:/ dyjexp{—ﬂyi—i\/%(91+92)yj} (B15)

with the notations

szx(‘rj) and yjzy(Tj). (B16)
Using the change of variables
/B /B
X; = NX/ and yi= NY]', (B17)

Eq. (B12) takes the form

iY;) 6, (T,-)]}. (B18)

where f(x) is any integrable function on the interval
[0,8] , we obtain

B
S(p) = % / DzDZexp {—ﬂ / 2 (1) Idf}
0

5
x T, exp { \/7?/ [z(1) 0 (1) -2(1) 6, (T)]df} .
0
(B24)

Finally, when replacing 6,(r) and 6,(r) with their re-
spective expressions, and using Eq. (B6), the partition
function becomes

B
Z=Tr {eﬁﬂo; / DzDzexp |:—7T / |z (1) Id‘z}
0
B
x T.exp {—/ H/(T)dT} } ,
0

where we set

(B25)

H (1)= V1G Y _ [a} (1)} (1) 2(1) +Z(D) a5 () a, (7))
v>0

(B26)

In the case of the static path approximation, it is assumed
that X (r) and Y (r), and thus z(r), are independent from
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the imaginary time 7. The functional integral in Eq. (B25)
then reduces to an ordinary integral and is given by

1 A ,
Z= 3 dzdzexp {—n / |z|2d‘r} Tre ?H', (B27)
0
where
H =" [&,(,+ 1)~ VaG (za}al +Zasa,) | (B28)

v>0

The trace of e#"" may be easily evaluated in its eigenbas-
is. Moreover, H' may be written in the matrix form

=) VAV +Y &, (B29)
v>0 v>0
where we set
g A
Vi = (a:,—a;) JA = and A = VnGz.
A -§,
(B30)

The quantity A is interpreted as the gap parameter. Here-
after, it is assumed to be real.
The matrix A, is diagonalized such that

A, =T!D,T, (B31)
where
U, Wy E, 0
T, = . D, = (B32)
v, —U, 0 -E,
with
_ u? 1 oy
E,= /& +A?and =12 (B33)
V‘z, 2 Ev
The Hamiltonian H’ then takes the diagonal form
H =) WiD,W,+) & (B34)
v>0 v>0
where
W, =T,V,. (B35)

It is now possible to calculate the trace in Eq. (B27),
which becomes

Z= % dzdze#", (B36)
where the free energy F is given by
F:v; {éy—;ln (4cosh2’§Ey>} +%2. (B37)
C. Gap Equations - Statistical quantities
The saddle-point approximation reads as
?TZ =0. (B38)

Indeed, the dominant contribution to the partition
function is found by determining the minimum value of
the exponent in Eq. (B36). We then obtain

2 1 ;
5 = ZV: Etanh (EEV) .

(B39)

The latter equation is the typical FTBCS expression [7, 9,
46, 48]. The path integral method thus enables us to re-
trieve the standard FTBCS results by applying a saddle-
point approximation.

The grand potential Q is given by

Q=-BF (B40)
and the particle-number is defined by Eq. (53).
We then have
N=Z{1—5tanh(§p:ﬂ (B41)
. E, 27

The energy of the system is defined by Eq. (57). Thus,

E= st{ —tanh(ﬁ )}—%2

(B42)

As for the entropy, using definition (59), we have

S__BZE tanh( ) Zln<4cosh2< ))

(B43)

Finally, the heat capacity of the system defined by

c——ﬁ—

B44
P (B44)
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reads as

with

S

v B cosh? ('gEV> ’ ()

OA A B B—A 1

— > —tanhlE -2y o
2

B |—~E 2 24 EVCOShngV

1 > _r (B46)

%)
v h? (va
COS 2
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