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Abstract: In this study, we have investigated the mathematical components of the Dirac equation in curved space-

time and how they can be applied to the analysis of neutrino oscillations. More specifically, we have developed a

method for calculating the phase shift in flavor neutrino oscillations by utilizing a Taylor series expansion of the ac-

tion that takes into account Am* orders. In addition, we have used this method to assess how the phase difference in

neutrino mass eigenstates changes according to the gravitational field described by the Johannsen spacetime.
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I. INTRODUCTION

In the field of neutrino physics, a phenomenon called
neutrino oscillation has been reported for which neutri-
nos change from one flavor to another while moving
through space. This oscillation results from the interac-
tion between the three recognized neutrino flavors: elec-
tron neutrino v,, muon neutrino v,, and tau neutrino v,.
Pontecorvo [1] first proposed the concept of neutrino os-
cillation. This author also suggested that neutrinos pos-
sess a mass that was previously thought to be nonexistent.
The mathematical description of neutrino oscillation in-
volves the use of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [2], which connects the flavor states of
neutrinos to their mass eigenstates. This matrix includes
four parameters: three mixing angles and one phase. The
mixing angles determine the likelihood of a neutrino
transitioning from one flavor to another, while the phase
influences the relative probabilities of oscillation between
different flavors. Neutrino oscillation has significant im-
plications in astrophysics, particle physics, and cosmo-
logy, facilitating our understanding of neutrino proper-
ties and their role in the universe [3, 4], including their
contribution to dark matter. It is a captivating phenomen-
on that has opened up new avenues of research in particle
physics and astrophysics [5]. The discovery of neutrino
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oscillation has challenged our knowledge on neutrinos
and provided valuable insights into the nature of the uni-
verse The significant breakthrough of this discovery has
received recognition through various awards, notably the
2015 Nobel Prize in Physics. This prestigious honor was
bestowed upon Takaaki Kajita and Arthur B. McDonald
for their remarkable contributions to the Super-Kami-
okande [6] and SNO experiments.

Sudbury Neutrino Observatory (SNO) [7], The Super-
Kamiokande [8], and MINOS experiments [9, 10] played
a vital role in enabling the discovery of neutrino oscilla-
tion. These experiments observed the phenomenon of dif-
ferent types of neutrinos disappearing and reappearing as
they passed through the Earth's atmosphere or matter.

Different research studies aim to understand the phe-
nomenon of neutrino lensing caused by gravitational
sources. They are revealing an intriguing connection
between the probability of neutrino oscillation and the in-
dividual masses of neutrinos. This connection is ex-
plained through an analysis of the impact of weak lens-
ing induced by a Schwarzschild mass [11]. This analysis
explores the implications of gravitationally modified
neutrino oscillations in realistic scenarios involving two
or three flavors, such as the influence of the gravitational
field of a a supernova on the travel of emitted neutrinos.
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This influence could have observable effects on the neut-
rino signal [12]. Furthermore, the propagation of neutri-
nos in a strong gravitational field regime has been stud-
ied by considering electromagnetic interactions using the
WKB approximation [13]. The behavior of neutrino os-
cillations in the Schwarzschild spacetime has also been
investigated taking into account spin precession in the
presence of a magnetic field [14, 15]. Notably, both radi-
al and nonradial propagations of neutrinos in the Schwar-
zschild spacetime have been examined [16]. Finally, the
effects of universe expansion and torsion on neutrino os-
cillations have also been studied [17]. The mass hier-
archy of neutrinos refers to how the three types of neutri-
nos are arranged in terms of their relative sizes. There are
electron, muon, and tau neutrinos, each with their own
antineutrinos. Despite being light compared to other
particles, neutrinos do have small but nonzero masses ac-
cording to current knowledge on neutrino physics. The
mass hierarchy of neutrinos can be classified as normal or
inverted. In the normal hierarchy, the masses are ordered
as my <my <ms, with m; corresponding to the lightest,
m, corresponding to the second lightest, and m; corres-
ponding to the heaviest neutrino [18]. Conversely, in the
inverted hierarchy, the masses are arranged as
m3 < my < n,. Determining the neutrino mass hierarchy is
an important topic in neutrino physics because it affects
various astrophysical and cosmological phenomena. Cur-
rent evidence for the neutrino mass hierarchy comes from
the observation of neutrino oscillations, which refer to the
ability of neutrinos to change their type as they travel in
space owing to quantum mechanical mixing between the
three types of neutrinos. The probability of oscillation is
influenced by the differences in the squared masses of the
three neutrino types and the mixing angles between them.
Experiments such as Super-Kamiokande and Daya Bay
have provided valuable information about the neutrino
mass differences and mixing angles. According to this in-
formation, it is highly probable that the neutrino mass
hierarchy is normal [19]. However, future experiments
such as the Deep Underground Neutrino Experiment
(DUNE) will provide more accurate measurements, al-
lowing for a definitive determination of the mass hier-
archy.

The quantum field theory of neutrinos coupled to
gravity serves as the theoretical framework for studying
neutrino oscillation in curved spacetime [14]. In this
framework, the probability of oscillation depends on vari-
ous factors such as neutrino energy, mass-squared differ-
ences, and curvature of spacetime. The metric tensor de-
scribes the curvature of spacetime, which is influenced by
the gravitational field as well as the distribution of matter
and energy. Numerous studies have explored the effects
of curved spacetime on neutrino oscillation probability,
considering aspects such as the gravitational redshift and
curvature-induced potential. These studies have demon-

strated that the gravitational field can modify the oscilla-
tion probability, leading to potentially observable con-
sequences. Examination of neutrino oscillation in curved
spacetime is an active area of research with significant
implications for astrophysics and cosmology [17, 20].
The development of theoretical models that describe the
quantum field theory of neutrinos coupled to gravity and
the impact of curved spacetime on the oscillation probab-
ility have been addressed in several studies (see, for ex-
ample, [21]).

The rotation of spacetime under weak gravity condi-
tions has been extensively investigated in relation to neut-
rino oscillations, particularly when neutrinos travel along
the equatorial plane. By using the asymptotic form of the
Kerr metric, it has been demonstrated that the rotation of
a gravitational source significantly changes the phase of
neutrinos. Specifically, when neutrinos are generated near
a black hole with angular momentum and detected on the
same side without the influence of gravitational lensing,
the probability of oscillation differs greatly to that ob-
served in the Schwarzschild spacetime [18]. The effects
of gravitational lensing on neutrino oscillations within the
framework of the y-spacetime have also been studied em-
ploying a quantum-mechanical approach for relativistic
neutrinos [22]. This study examined both radial and non-
radial propagations, taking into account the phase of neut-
rino oscillations within this specific spacetime. Addition-
ally, the presence of massive objects in the universe can
impact the probability of neutrino oscillation, which has
implications in the prediction of the cosmic neutrino
background.

II. DIRAC EQUATION IN CURVED
SPACETIME

It is crucial to first understand the fundamental meth-
ods used for solving the Dirac equation in curved space-
time before delving into the properties of neutrinos in the
presence of gravity. The Dirac equation, which governs
the behavior of a massive spinor field on a torsion-free
pseudo-Riemannian manifold, can be easily extended as
[23, 24]

iny* Dy, Y(x) = me Y(x) , (1)

and using the relation D, = (4, +T,), which is the covari-
ant derivative for a spinor field, Eq. (1) can be expressed
as [25, 26]

[ihy“ (0,4 + F,,) - mc} Y(x)=0. 2)

Here, I', represents the spin connection and y* is associ-
ated with the covariant Dirac matrices, which are linked
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to spacetime through the following relations [27, 28]:

Y, v} =2¢". (3)

In this context, the anti-commutation operation is de-
noted by curly brackets, and spin connection T, is de-
termined by the following condition [23]:

oy,
Ox*

- F/vluy/l - r/ﬂ/v + yvru =0. (4)
Let us now define constant Dirac matrices Y@ as

Y@=y )

Here, ¢l is the orthogonal tetrad that fulfills the follow-
ing relationship:

Qv = efla)ef/b)nah. (6)

In the convention of flat metric, where n,, = diag(—c?,

1,1,1), the expression for the spin connection can be ex-

pressed using these constant Dirac matrices [25]:
0y

L, = s gv/le(va) V#efh). (7

The action corresponding to Eq. (1) is

S= / d*x vE Lo. ()

Here, g is defined as g = g"g,,, and we can express the
Lagrangian as [29]

Lo=3 [0y Dyu—-(DG)yv]-miy. ()

III. WKB APPROXIMATION FOR DIRAC
EQUATION

We are searching for an approximate solution to Eq.
(1) by employing the Wentzel-Kramers—Brillouin
(WKB) approximation method [30]. Different forms of
the WKB approximation have been proposed. Investiga-
tion on complex spinor y(x) revealed that it can be de-
composed into two components: amplitude &= &(x) and
semi-classical phase S = S(x) as [31]

W(x) = e TSWE(x) . (10)

The wave function in the presence of spin connection can
be expressed as [32, 33, 29]

sw=ciee S (M ew.
n=0

The Dirac matrix product in the spin connection term is
expressed as [34, 27]

,ya {,yb’,y(,'} — 2nub,yc _ znacyb _ 2i6dabc,ys,yd . (12)

Here, n* represents the metric in a flat space, while e®?
denotes the totally antisymmetric tensor in the same flat
space. The spin connection can be expressed in terms of
the matrix that violates parity as

Y
I, = 2—? V=g A, (13)
where
A, = T_ge’,fe“b"d (ebw - ebw) eley. (14)

One can infer that the additional phase factor in Eq. (11)
effectively confirms the interaction between the metric
and the spin orientation of the spinor.

By substituting Eq. (10) into Eq. (1) and equating
terms with equal powers of %, we obtain a series of re-
cursive equations for amplitudes &,:

[yV(?vS(x) + mc] &(x)=0, (15)

[770,8(x) + mc] £,(x) = [y 8,8(x) +mc] ,-1(x) -
(16)

As a result of multiplying by [y"8,S(x)—m] the left-hand
side of Eq. (15), the Hamilton-Jacobi equation for a
massive particle in a curved spacetime can be expressed
as [35, 36, 37]

§"0,8(x)8,S(x) — m*c* = 0. (17)

As long as the four-momentum of the particle is known,
we can link this expression to the classical action of a
particle with mass m on a torsion-free pseudo-Riemanni-
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an manifold, allowing us to associate phase S(x) with this
action:

dx”

e (18)

Pu=mgyy

If we recognize Eq. (15) and establish this identification,
it becomes equivalent to the mass-shell condition,

Pu= a/AS(x) s (19)
and the solution of Eq. (15) can be expressed as
S(x) = [ pudx . (20)

The Lagrangian expression, which characterizes the
geodesic motion, can be formulated as L= /g, X",
and the geodesic equation can be expressed as

AT, #5 =0 (1)

A. Dynamics of neutrino spin in external fields within a
curved spacetime

The study of spin oscillations of massive Dirac neutri-
nos in the presence of background matter, electromagnet-
ic fields, and gravitational fields is a complex and ongo-
ing research area in theoretical physics. Neutrinos are
fundamental particles with extremely weak interaction
with matter, making their study challenging and in-
triguing. Next, we delve deeper into some of the key as-
pects of studying spin oscillations of massive Dirac neut-
rinos in background matter, electromagnetic fields, and
gravitational fields:

e Matter Effects and Neutrino Oscillations: When
neutrinos propagate through a medium, such as the dense
matter found in the core of a star or the early universe,
their interactions with the medium can modify their oscil-
lation behavior. This is known as the matter effect or
MSW effect, named after the physicists who first studied
it (Mikheyev, Smirnov, and Wolfenstein).

This matter effect arises from the presence of charged
particles in the medium. Neutrinos can experience for-
ward scattering interactions with these charged particles,
leading to an effective potential that depends on the neut-
rino flavor. As a result, the flavor oscillation probability
of neutrinos can be significantly altered with respect to
their behavior in a vacuum. The matter effect can induce
resonances, which maximally modifies the oscillation

probability, leading to interesting phenomena in neutrino
oscillation experiments.

e Electromagnetic Fields and Spin Precession: Neut-
rinos, being electrically neutral particles, do not directly
interact with electromagnetic fields. However, they pos-
sess a magnetic dipole moment, which allows for an in-
direct interaction with magnetic fields. When neutrinos
propagate through regions with magnetic fields, such as
in astrophysical environments or laboratory experiments,
they can experience spin precession.

Spin precession refers to the rotation of the neutrino's
spin around the direction of the magnetic field. This pre-
cession can modify the flavor oscillation probability of
neutrinos and introduce new effects that depend on the re-
lative orientation between the neutrino's momentum,
magnetic field, and direction of propagation. The study of
spin precession in neutrinos requires a careful treatment
of the neutrino's magnetic properties and their interac-
tions with magnetic fields.

e Gravitational Fields and General Relativity: Neutri-
nos, like all particles, are influenced by gravitational
fields according to the principles of general relativity. In
the presence of a gravitational field, the curvature of
spacetime affects the propagation of neutrinos. This can
lead to modifications in their oscillation behavior and in-
troduce additional complexities.

The gravitational interaction can cause the trajectory
of neutrinos to deviate and induce effects such as gravita-
tional redshift and time dilation. These gravitational ef-
fects can impact the neutrino oscillation probability and
potentially generate spin oscillations as well. The study of
neutrino oscillations in the context of general relativity
requires a combination of quantum field theory, general
relativity, and development of suitable theoretical frame-
works.

e Experimental Probes and Future Directions: Experi-
mental efforts play a crucial role in studying the spin os-
cillations of massive Dirac neutrinos in various physical
environments. Neutrino oscillation experiments, conduc-
ted at particle accelerators, underground laboratories, or
using astrophysical neutrino sources, provide valuable
data for testing theoretical predictions and exploring the
properties of neutrinos.

Future experiments, such as the Deep Underground
Neutrino Experiment (DUNE) and Jiangmen Under-
ground Neutrino Observatory (JUNO), aim to study neut-
rino oscillations with higher precision and investigate
matter effects, electromagnetic field interactions, and the
impact of gravitational fields on neutrino's behavior.
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In [37], neutrino spin oscillations within external
fields in curved spacetime were investigated. The contri-
butions of this study have been highly valuable to the
field. The researchers analyzed the evolution of neutrino's
spin in the presence of background matter and an extern-
al electromagnetic field within a curved spacetime. The
primary motivation behind this study was to provide
evidence supporting the validity of the quasiclassical
equation governing neutrino spin evolution. They suc-
cessfully derived a covariant equation for this purpose,
starting from the Dirac equation that describes the inter-
action between a massive neutrino and external fields in a
curved spacetime as

U
V_i

v
Y (1=7°) | () =mey(x), (22)

iy D, - '%Fwo"’ -

where F,, is the Faraday tensor defined as
va = 8pAv - 6VAH 5 (23)

and A, is the four-vector potential of the electromagnetic
field. In Eq. (15), D, = (8, +T,,) represents the covariant

derivative, where I', denotes the spin connection. The
i

symbols y* = y#(x), o 2(7;:%—%%:), and =

—ﬁE" "By, ¥vYa¥s refer to the coordinate-dependent Dir-
ac matrices. Here, E* = "% \[=g represents the cov-
ariant antisymmetric tensor in the context of curved
spacetime, where g =det(g,,) and g, denote the metric
tensor. Symbol u represents the magnetic moment of a
neutrino. The expression for V* = (V°,V), which serves as
the effective potential governing the interaction of a neut-
rino with arbitrarily polarized and moving matter, can be
found in [38].

The relationship between Egs. (15) and (1) becomes
apparent when we observe that neglecting the impact of
background matter and electromagnetic fields results in
considering only gravitational effects. Consequently, Eq.
(15) can be expressed equivalently to Eq. (1) as

[iny" (8, +T,) —mc]y(x)=0. (24)

The expression for the Dirac equation in a locally
Minkowskian frame was derived in [38]. Recognizing the
work of these authors in this area, we consider unneces-
sary to duplicate their efforts. Instead, we focus on ob-
taining the Dirac equation that specifically characterizes
the interaction between a massive neutrino and external
fields within a curved spacetime, tailored to our unique
case:

. h
iny* 0, + 57")/5 V-¢ A,

H 4
-CF,o - —
20 2

v (1-7") —me| w =0, @5)
and, according to Ref. [39], the covariant equation gov-
erning the quasiclassical evolution of the neutrino spin,
denoted as S* in the presence of general external fields,
can be derived. This derivation relies on the Heisenberg
equation applied to the corresponding spin operator, tak-
ing into account the influence of the external fields. Sub-
sequently, the equation is subjected to an averaging pro-
cess over the neutrino wave packet. By employing Eq.
(25), we obtain the Lorentz invariant expression for the
evolution equation of neutrino spin S¥, which accounts
for the general interactions with external fields as

ds#
—— =2u(P"S, - u'F*u,S,) + V2GyK"S ,+G"S .

dr
(26)

where Gr =1.17%x1075 GeV~? is the Fermi constant. Ad-
ditionally, the expressions for tensors K*” and G** are

K = &PV,
G = (P Y )y 27)

IV. NEUTRINOS

The production and detection of neutrinos occur in
various flavor eigenstates represented by |v,). These fla-
vor eigenstates are combinations of mass eigenstates rep-
resented by |v;). Therefore, a flavor eigenstate can be ex-
pressed in terms of mass eigenstates as discussed in [16,
40],

V)= Uslviy (28)

for a set of three neutrino flavors « = {e,u,7} and a set of
three generations i={1,2,3}. Maki-Nakagawa-Sakata-
Pontecorvo (MNSP) matrix U, also known as the neut-
rino flavor mixing unitary matrix, plays a role similar to
the Cabibbo-Kobayashi-Maskawa matrix in governing
quark mixing. In the case of three generations of neutri-
nos, the MNSP matrix is characterized by three mixing
angles 6;, phase ¢ that describes CP-violation, and two
additional phases «; and a,, which can only be non-zero
if neutrinos are Majorana particles. If neutrinos are Dirac
particles, then @; = a; = 0.

In a process of propagation, the neutrino moves from
source S to detector D positioned at xg and xp, respect-
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ively. The amplitude associated with the event of detect-
ing a neutrino of flavor a at position xs and observing it
as a neutrino of flavor f§ at position xp, is described by

ﬂﬁa = |<Vﬁ(xD)|Vw(xS Nl = Z U;iUﬁiKvi(xD)lVi(xS N (29)

To estimate spinor v;, the WKB approximation in Eq.
(11) incorporates both action S;(x) for the i-th mass ei-
genstate and spin connection I',. Previous studies [41, 42,
43] have explored three distinct scenarios that give rise to
neutrino oscillation: (a) a flat spacetime, (b) a curved
spacetime within a non-rotating frame, and (c) a curved
spacetime within a rotating frame. In scenarios (a) and
(b), the phase difference of the neutrinos relies solely on
S(x) and does not involve the spin connection, resulting
in the following phase difference [44]:

S(m;, xp—x5) = Si(xp) = Si(xg) = / pudx”. (30)

xS

The presence of parity-violating matrix ys in the repres-
entation of the spin connection [14] in Eq. (13) reveals
that in scenario (c), there is an additional contribution to
the phase shift when there exist differences in spin orient-
ation between the two mixing eigenstates v;. Moving for-
ward, we will exclusively examine massive neutrinos
with identical spin orientations, disregarding any contri-
butions stemming from different spin orientations. This
decision is based on the fact that our research is primar-
ily centered around neutrino flavor oscillations that occur
under the influence of action S(x). Consequently, we will
solely consider the same spin orientation for massive
neutrinos, dismissing any interaction between the neut-
rino spin and the metric that arises from T',,.

The expression for the amplitude of the neutrino fla-
vor transition can be formulated as follows:

Apo = > UsUgie™ S 07), 31)

The difference in phase between two mass eigenstates
can be expressed in the following form [37]:

@ = S(mi,xp = x5) =S (mj, xp = xs) - (32)

The probability of a transition in neutrino flavor from the
initially produced o flavor to the detection points can be
calculated as [15, 45]

(33)

al

Ppo = | Apa|” = D UnUp Ui U™
¥

It is important to note that the action assumes the follow-
ing form when m is small:

* 2\n
Stmpxp-x)=3 " 5y x),

n=0

(34

where

RN (mj, xp — Xg)

" ( D S)
S (xp = x 2
0m;

(35)

As a result, using the Taylor series, one can express the
phase difference as

2 (1) Am?j (2)
@y = Ami; SV (xp = xs) + — =8P (xp=x5) +.. (36)
where
AmZ=mi-mk,  Aml=(mE+md)Aml . (37)

V. TWO-FLAVOUR NEUTRINO OSCILLATIONS

The result expressed by Eq. (33) is applicable to all
numbers of neutrino generations and neutrino energies.
However, the likelihood of conversion into a specific
neutrino flavor is reduced in certain scenarios, including
solar neutrino mixing. In these situations, the MNSP mat-
rix [46, 47] simplifies to a member of the SO(2) group
and can be represented by a single mixing angle, ®, as

follows:
cos® sin®
U= .
(— sin® cos @)

In the case of two flavors of neutrino oscillations, there is
a single difference in mass denoted as Am?, = m? —m3} and
another difference Am{, = (m}+m3) Am},. By simplify-
ing Eq. (33), the final form of the probability of neutrino
oscillation can be expressed as [48, 49]

(38)

Pﬁa =

{ sin2®sin2CD12 R B+« (39)

1-sin’@sin*®p,, B=a

Here, phase shift ®;, up to second order can be determ-
ined using Eq. (36) as

2 Q) Amly o)
(D12=Am128 (rD—Vs)‘l‘TS (rD_rS)' (40)
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Therefore, the probability expression takes the following
form:
sin® ©sin” [ SV (1 — rs) Am3,

1
+ ES(Z) (rp— rs)Am‘l‘z] , B#a
Pﬂ(l = (41)

1 —sin® ®@sin? [S(') (rp—rs)Amy,

1
+ 53(2) ("D—rs)Améllz] , B=a

and here, we can insert the expressions for S (rp—rg)
and S@ (rp —rg) given by the Egs. (53) and (54), respect-
ively. As a result, the Eq. (41) becomes a general for-
mula to calculate the probability of a neutrino undergo-
ing flavor transition as it propagates from its source to a
receiver.

VI. JOHANNSEN SPACETIME

We next focus on evaluating the Johannsen space-
time, which is a more general version of the Kerr space-
time, and it can be defined using the following metric
[50]:

2 (A-a’Al(r)sin’6) ) , X

ds® = - r d de*—
s B T AsmA Y T A0
2a [(r* +a*) A1 (NAy(r)— A] £sin® @
_2a [(r a ) 1(NA,(r) ] sin drdg+
BZ
[(?+a%)* A3(r) - ®Asin® 6] Ssin’ 6
+ de?* ,
BZ
(42)
where
B = A1 (NA(0)(? +a*) — Ay (P A4(0)a® sin® 6
S=S+f(N+g0), A=r-2Mr+ad*,
T =r*+a*cos’f. (43)

Generally speaking, it is not possible to locate the station-
ary points of the effective potential of the function within
the given background spacetime expressed by Eq. (42).
Nevertheless, if we specifically select the profile func-
tions as follows, it may become feasible:

k

* MN\* - M
A1(7)=1+Zalk<7) , Az(”):1+203k<7> ,
k=3 k=2

)

A =1+ s (%)k L =P e (g)k ,
k=2

k=3

A3(0) =A(0)=Ac(0) =1,  g(6)=0, (44)

in which the equatorial plane at 6y = 7r/2 is where the sta-
tionary points of the function effective potential can be
found. It is crucial to highlight that the Johannsen space-
time is distinguished by a set of parameters, namely, ay,
asi, as;, and g, which vary as a function of the mass and
spin of the black hole. It is also important to emphasize
the following key features of this parametrization: (a) the
metric retains its smoothness at all points both inside and
outside the event horizon, and (b) it has been convin-
cingly demonstrated that certain black hole solutions can
be accurately reproduced in alternative theories of grav-
ity by appropriately choosing the deformation parameters
[51]. In addition, the spacetime is derived by enforcing
the separability of the Hamilton-Jacobi equations, des-
pite lacking a theoretical basis for doing so. It is worth
noting that alternative theories of gravity exist in which
non-Kerr black hole solutions do not meet this condition.
However, maintaining separability may aid in certain cal-
culations. This spacetime model finds application in con-
ducting phenomenological calculations in the field of
black hole astrophysics [52, 53].

The equation for massive neutrinos, known as the
Hamilton-Jacobi equation, can be expressed as [54]

LIS _ 084S
dr  ° Ox* ox"’

(45)

Using the metric geometry expressed by Eq. (42), Eq.
(45) takes the form

05 _ o (051)) pudSi0s (35
28 o) T8 e T8 s
rr 6S’>2 06 (689)2
+g ( o +g 50 . (46)
The given form of the Hamilton-Jacobi function is [50]

1
S= Emzr—Et+L¢+S,+S(,. 47)

After performing certain algebraic calculations, the HJ
equation can be separated as follows:

% (P + @A (PE - aAy (DL
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4S,\*
—m* [P + f(r)] —As(r)A( 5 )

2 2
= (%) + (A3(9)L —aA4(0)E sin 9) +m?a*cos’ @,

sin@
(48)

and the same constant K, which is known as the Carter
constant, can be assigned to both sides of the equation:

2 2
Az (O)L
<@> K- ( ;(6) —aAL0)E sin@) —m?d®cos’ 0,

o0 in6
(«9&)2 _ [P +aAE—ay (DL A [K—m? (P+£(r)]
) = As(rA2
(49)

It is possible to achieve motion on a plane with fixed
angle 6 = 6, by selecting the indicated angle:

k= (S0

2
- —aA4(0y)E sin 60) +m2a® cos’ 6. (50)
sinf,

If this is the case, the action is interpreted as

S=—Et+L¢+/ “]Z(r)dr, (51)
where
RO (2 + @A (NE - aAy (L) = A[K —m? (P + £()]

As(r)
(52)

As mentioned in Eq. (34), we can consider the action up
to the second order in m? and expand it from rg (source
distance) to rp (detector distance) as

SV (rp—rg) = /rD (r2 + f(V)) VAs(r) dr,
s 2V/((rr+a®)A(r)E —aA>(r)L)* — AK
(53)
and
D ) 2 .32
S® (rp—rs)= / <r ’ f(r)) A5 ) 3/2 dr.
is 4[((P+a)A () E—aAy(r)LY —AK |
(54)

Thus, the Johannsen spacetime reduces to the Kerr space-
time when the parameterizations in Eq. (44) are not taken
into account. The expression for S becomes the same
as the one obtained in [36], where the first-order result for
neutrino oscillations in a Kerr metric was derived. Next,
we explore the process of determining the probability for

the two-flavor case of neutrino oscillations.

A. Radial propagation

The reason why purely radial motion is not possible
in the Kerr spacetime is the influence of the black hole's
rotation, which introduces a phenomenon known as
frame-dragging. This phenomenon is a consequence of
the spacetime curvature caused by the rotating black hole.
In general relativity, the presence of mass or energy
curves the surrounding spacetime, affecting the motion of
objects within it. In the case of a rotating black hole de-
scribed by the Kerr spacetime, the rotation creates a
twisting or dragging effect on the nearby spacetime.
When a test particle moves radially, aiming directly to-
ward or away from the black hole, it is still subject to the
curvature of spacetime caused by the rotating black hole.
This curvature, combined with the rotation, causes the
test particle to experience an additional angular mo-
mentum component. As a result, the trajectory of the
particle deviates from a purely radial path, leading to a
combination of radial and angular motion. This can be
viewed as if the rotating black hole "drags" the nearby
spacetime around with it, causing objects to be influ-
enced by the rotation even if they are initially moving ra-
dially. This effect prevents purely radial motion in the
Kerr spacetime and results in a spiraling or helical traject-
ory for the test particle. Therefore, in the Kerr spacetime,
a test particle cannot move along purely radial trajector-
ies. Owing to the curvature of spacetime caused by the
rotating black hole, the particle will experience a combin-
ation of radial and angular motion, even if it initially
moves radially.

The Johannsen spacetime, on the other hand, is a
modification of the Kerr spacetime that introduces addi-
tional parameters to account for potential deviations from
the standard Kerr geometry. The specific effects of these
deviations on the motion of test particles depend on the
particular form of the Johannsen metric and the values of
the parameters. Therefore, it is possible that in certain
cases or parameter regimes, the Johannsen spacetime may
allow for different types of motion, including potentially
radial motion. The specific effects of these deviations on
the motion of test particles depend on the particular form
of the Johannsen metric and the values of the parameters.
Without knowing the specific form of the Johannsen met-
ric and the parameter values, it is challenging to provide a
definitive answer regarding the existence or nature of
purely radial motion in the Johannsen spacetime. The ad-
ditional parameters introduced in the Johannsen metric
could potentially alter the gravitational field in such a
way that purely radial motion becomes possible.
However, it is also possible that the additional forces or
curvature effects introduced by the deviations from the
Kerr geometry would still prevent purely radial motion.

The specific form of the Johannsen metric, which in-
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corporates these additional parameters, determines the ex-
act nature of the deviations from the Kerr spacetime and
how they affect the motion of test particles. Depending
on the values of these parameters, it is conceivable that
the additional forces or curvature effects introduced in the
Johannsen spacetime could allow for purely radial mo-
tion in certain cases. For example, if the additional para-
meters in the Johannsen metric introduce modifications to
the gravitational field that counteract or weaken the
frame-dragging effect caused by the black hole's rotation,
purely radial motion could be potentially allowed. This
could occur if the additional parameters change the geo-
metry of spacetime in such a way that the angular mo-
mentum component induced by the rotation becomes neg-
ligible or is canceled out. The characterization of @ will
be influenced by the geodesic parameters, including en-
ergy and angular momentum. Next, we consider the scen-
ario of radial propagation with L = K = 0, where

S=—FEt+ / “lz(r)dr, (55)

and

7+ az)zA%(r)E2 +m2A (r2 +f(r))

R0 = A5

(56)

By expanding the action to its second order in m?, we ob-
tain

1 /’D (P + f(r) VA5()

W (o) =
S* (rp—rs) 2E i AN +a?) dr, (57)

and

S(*z)(’”D—Vs)=

: / rDA(’”f(V))ZAg/Z(’)dr (58)

4E3 rs A3(r)(r2 +a?)?
From Eq. (41), the probability expression for radial
propagation adopts the following form

sin® ©sin” [S\ (1 — r5) Am3,

1
+ 58P (p—r)Amy| . B#a

Ppo = (59)
1—sin’ @sin? [ (rp — rs) Am?,

1
+ 58P (rp=rs)Amiy| . B=a

Consequently, from Eq. (59), it becomes evident that in
the case of radial propagation with L = K =0, the contri-
bution of ¢ to the phase of oscillations is not discernible.
This implies that the phase of oscillations remains inde-
pendent of ¢. However, it is important to stress that the
specific implications of the Johannsen metric on test
particle dynamics and the conditions under which purely
radial motion might be allowed depend on the precise
form of the metric and the values of the additional para-
meters. The exploration of these effects and conditions
requires detailed analysis and numerical simulations spe-
cific to the Johannsen metric [52]. Numerical simulations
are used to study the behavior of the Johannsen metric
and its effect on various physical phenomena. By simulat-
ing the motion of test particles, electromagnetic fields, or
other relevant quantities in the Johannsen spacetime, the
results from observations or theoretical predictions can be
compared [53]. These simulations can help constrain the
values of the additional parameters that best match the
observed data or desired physical behavior.

Subsequently, conducting a comparative analysis of
the outcomes obtained from the Schwarzschild, Kerr, and
Johannsen spacetimes is of great interest. The Johannsen
metric is determined by the mass (M) and spin (a) of the
black hole, along with four independent functions that ac-
count for potential deviations from the Kerr solution.
When ay; = a3 = as; = & = 0, the metric simplifies to the
Kerr solution [50]. In this paper, for the sake of simpli-
city, we specifically examine two scenarios: one where
only as, is non-zero, and another where only € is set to
zero. Consequently, we can derive the expressions for
SW (rp—rg) and S? (rp —rs) as follows:

1 1
S(*l)(rD_rS):ﬁ'm' {a'Mz' M'(az'ro—€3'ﬁ/[3)+ & -M°-rp- Jas;M?—a?-cot™
D
a- Va .M2_a2 1 1
= }—*'72-{61~M2- asy - M*+713 - (ars — - M)
@ —rp-\Jas, M2 +1h+r} 2E a®-M?-r}

a- Vasy - M? —a?

+ E3'M5'rs' \/(152M2—612'C0t_1(

and

} _ (60)
at—rg- \Jasy M2 +71:+72

073103-9



Husan Alibekov, Farruh Atamurotov, Ahmadjon Abdujabbarov et al. Chin. Phys. C 48, 073103 (2024)

L Al ) (a7 12 s o)
(2) — = —- : : )
S* (VD rs) 4F3 8(63.M3+r%)2 +rD 8+ 3_(a2+r%).

M (a5 rp+26-(M—=2rp)) 2.6 M -Qasy- CM+rp)+6-M)

'p

3.a2.(a2+r%)) 3.a4.(a2+r%)
. 2a2e M (as;M +3rp) — 1 las,ee M°rp ~ 16Mlog( Vas;M? +r12)+”D> .\ 1
3a8 (a®+rp) (oM +73) " @ N =5 M- (a5 M2 +13)"

K M -log(rp) - (36a* - 8as,d® M*(4as; +36) + 24a%,&sM*)
a®- \as; - (as,as;M? +1p) 12

&M - (8a*as; M*(4as; +36) - 36a* - 24ak,6sM*) -log ( s Jas;M? + 15 +as, - M)

ad+Jas; (cxszMZ + r,z)) 1z

12M (a® - as;M?) (abrp —2a* & MP —EMCrp)  166M° (3a*as, —4a’ e M? +9as,&sM*)
- (assM?+1) 12 - adrp (as;M? +1}) 1z
. 3eM® (80152M2 - 5(12) B 6as,e; M® . 16as,es M’ }

atr?, (a52M2 + rf,) 1z a‘r}, (a52M2 + r%,) 12 atr3, (a'szMz + ré) 12

1 rsy/(as-M+13) (e-M> )\’ 12 (a® +3Mrs — &M?))
4B 8(63-M3+V§)2 ( Is +rs> [84- 3-(a2+r5)-
N 2826 M (as;M +3rs) — 1 las,es MPrs _ M3 (asy - rs +26 - (M =2r5))
3a8 (a®+72) 3-a*-(a>+13)

26 MS-Qasy-CM+rg)+e-M)  16Mlog(/as;M2+75 +r5) 1
- 3-a4-(a2+r§) - (a'52M2+r§)1/2 +a9-m-(a'52-M2+r§)1/2
S M -log(rs) - (3esa* — 8as,a® M (4as, +36) + 242, M*)

ad- \as; - (@saM?+713) 2
&M - (8a*as; M*(4as; +36) - 36a* — 24ak,esM*) - log ( Vs JasM?>+ 713 +as, - M)
ad+\Jas; ((152M2 + r§) 12
12M (a* — as;M?) (a®rs = 2a* e M — € MPrs)  166sM° (3a*as, — 4a>e M? + 9as,es M*)

+

+

(@saM?+713) 12 abrs (as;M? +13) 12
+ 3632M6 (8&’52M2—5612) 60’52632M8 + 16&526§M9 }
adr? (a52M2+r§)1/2 a‘ry (oy52M2+r§)l/2 adri (a52M2+r§)1/2 .
(61)
[
As a result, the probability expression for radial propaga- sequently, the expressions for S*(rp—rs) and

tion in Johannsen spacetime adopts the following form: S+@ (rp —r) also reduce in a manner similar to that ob-

served in Kerr spacetime [36, 18, 29]:
sin® @sin’ [Sil) (rp—rs)Am?, P [ ]

1
(2) 4 1
+§S* (rD_rS)Amn} » B#a SV (rp—rg)= —- [rD—rS—a(arctanr—D—arctanr—S)} )
Plohannsen _ (62) 2E a a
o = (63)

1 —sin’ @sin’ {Sil) (rp—rs)Amj,

I
+ 382 (p=ro)Anl] , p=a and

When as; = €; = 0, the metric expressed by Eq. (42) is SP (rp—rs) =

r, r
2(rp—rg)—3a (arctan L _arctan —S)
simplified and reduces to the Kerr solution. Con- a a

073103-10



Neutrino oscillations in the Non-Kerr black hole with quantum phenomenon

Chin. Phys. C 48, 073103 (2024)

. a(rp—4M)  a*(r¢ —4M)

at+r} at+r?
a’+r) a*M a*M
_2Mln(2 2) iy ered PN (20
a+rg (a +rD) (a +rs)

As a result, the probability expression for radial propaga-
tion in Kerr spacetime adopts the following form:

sin® @sin [Sg“ (rp—rs) Am?,

1
+ 589 (rp— rS)AmH , B#a
PR = (65)

1 —sin’ @ sin’ [Sil) (rp—rs) Amy,

1
+ 589 (rp— rS)AmH , B=a

If we set as,, €, and a to zero, the metric given by
Eq. (42) is simplified and we obtain the Schwarzschild
solution. Consequently, the expressions for SU (rp—rs)
and S@ (rp —rs) also simplify, yielding the same result as
in Schwarzschild spacetime [16, 11]:

1
Sil)(ru—i’s)=ﬁ'(”0—i’s) . (66)
and

1
Siz)(VD—rs) = 1

S lrp—rs—2M-mn 2| (67)
rs

As a result, the probability expression for radial propaga-

tion in Schwarzschild spacetime adopts the following

form:

sin? ©sin” [S (rp — ) Am?,

1
St + ES?) (rp —rS)Am‘H , B#a
Pﬁfy Wizt = (68)

1—sin’ @sin’ [S (rp - r5) Am3,

1
+ 535«2) (i’D—"S)Am?z} , B=a

VII. PROPER DICTANCE

The neutrino propagates across its proper distance,
while dr is simply a coordinate. The proper distance can
be expressed as [14]

dL, = (M - gy,,) drvdwe, (69)
8oo

In the context of Johannsen spacetime, there exists

2
dL, = \/ —gdr + (g"” - g¢¢> dg. (70)
gtt

The following expression is obtained by multiplying by

dr?
D 2 72
g ¢
Lp:/ \/_grr+ (m—gw) —dr. (71)
rs 8u r

With the use of four-velocity normalization, g, = -1,
and considering the aforementioned expressions, i and ¢
can be expressed as

A NED
P=o s VRO=— <

m.

X \/[(ﬂ +a?)A(r)E - aAz(r)L} *_A [K —m?(r? +f(r))]
L [AOC+d) - A0 sin 6]
CEsin’0 [(2 +a2)? AXr) - a?Asin® 6]

¢
(72)

It is apparent that performing an analytical calculation of
Eq. (71) is more complex.

VIII. FINDINGS AND PROSPECTS FOR
THE FUTURE

In this study, we delved into the mathematical as-
pects of the Dirac equation within a curved spacetime and
investigated its application in analyzing neutrino oscilla-
tions. To achieve this objective, we used the WKB ap-
proximation. In particular, we devised a technique for de-
termining the phase shift in flavor neutrino oscillations by
employing a Taylor series expansion of the action, con-
sidering contributions up to fourth order in Am*. In Sec.
IV, we examined the intricate dynamics of transition
probabilities within our framework, revealing their intric-
ate nature despite fluctuations in mass representation.
Furthermore, this method has been employed to evaluate
the variation in the phase difference of neutrino mass ei-
genstates caused by the gravitational field described by
the Johannsen spacetime.

It is well known that the phenomenon of neutrino os-
cillation, which is a quantum phenomenon, takes place in
both flat and curved spacetime metrics. It is anticipated
that the presence of massive objects such as stars and
black holes, with their gravitational fields, can impact the
propagation of neutrinos and alter their oscillation pat-
terns. Research on neutrino oscillation in curved space-
time is being actively pursued, and the resulting findings
hold significant implications for the fields of astrophys-
ics and cosmology. Furthermore, it is widely acknow-
ledged that the application of gravitational lensing meth-
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ods offers compelling proof of the presence of Dark Mat-
ter. According to the principles of general relativity, the
trajectory of the light can be bent when encountering
massive objects or gravitational fields. This deflection is
closely linked to the mass of the object and can be
likened to the focusing effect of a lens. In upcoming re-
search, we will investigate the gravitational lensing ef-
fect on neutrino oscillations to provide evidence of the
existence of dark matter.

We would like to emphasize the significant progress
made in a previous study[38] regarding the intricacies of
neutrino spin oscillations within a curved spacetime, par-
ticularly in the presence of background matter and an ex-
ternal electromagnetic field. The authors successfully de-
rived the Dirac equation that governs neutrino oscilla-
tions under these external field conditions. They also con-
ducted numerical solutions to explore the behavior of
these oscillations. Numerical simulations and analysis of
experimental data are crucial in elucidating the behavior
of neutrinos in realistic scenarios. Neutrino oscillation ex-

periments, such as those conducted at particle accelerat-
ors or involving atmospheric and solar neutrinos, provide
invaluable data for testing theoretical predictions and
gaining insights into the spin oscillations of massive Dir-
ac neutrinos in diverse physical environments. This re-
search requires a significant amount of time and extens-
ive numerical calculations owing to the complexity of
studying spin oscillations of massive Dirac neutrinos in
the presence of background matter, electromagnetic
fields, and gravitational fields. In future research, our ob-
jective is to explore and uncover the potential for spin
precession in the presence of background matter and an
external electromagnetic field within a curved spacetime.
The derivation of the neutrino spin evolution equation
provided in this context relies on the general spin evolu-
tion equation in the Heisenberg representation. Adopting
this approach will allow for careful analysis of the contri-
butions of various external fields previously mentioned to
the evolution of neutrino spin.
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