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Abstract: We investigate the dynamic and thermodynamic laws governing rotating regular black holes. By analyz-
ing dynamic properties, i.e., the interaction between scalar particles and rotating regular black holes, we establish the
criteria that determine whether such black holes satisfy the laws of thermodynamics. In addition, we provide the gen-
eral form of conserved quantities related to rotating regular black holes, including the relevant flows associated with
neutral  scalar  particles.  Meanwhile,  we  reexamine  the  relationship  between  the  third  law  of  thermodynamics  and
weak cosmic censorship conjecture for rotating regular black holes. Based on the abovementioned criteria, we dis-
cuss  the  laws of  thermodynamics  for  three  models  of  rotating regular  black holes:  Rotating Hayward black holes,
Kerr  black-bounce  solutions,  and  loop  quantum  gravity  black  holes.  Our  findings  indicate  that  none  of  the  three
models satisfies the first law of thermodynamics. In particular, the first and third models fail to comply with the three
laws of thermodynamics, whereas the second model satisfies only the second and third laws of thermodynamics. Fi-
nally,  we  attempt  to  rescue  the  laws  of  thermodynamics  by  modifying  entropy  or  extending  the  phase  space.
However, the two scenarios cannot ensure the three laws of thermodynamics in the three models, which reveals an
unusual property of rotating regular black holes.
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I.  INTRODUCTION

As  the  most  successful  gravitational  theory,  general
relativity has been confirmed by various recent astronom-
ical observations [1−3]. Currently, the primary challenge
that  general  relativity  confronts  remains  the  issue  of
spacetime  singularity.  The  singularity  theorem  proposed
by  Hawking  and  Penrose  [4−6] indicates  that  singularit-
ies exist  inevitably in the spacetime under certain condi-
tions. The  presence  of  singularities  disrupts  the  coher-
ence  and  self-consistency  of  spacetime,  but  singularities
are always  hidden  by  event  horizons  and  remain  unob-
servable to external observers. This is known as the weak
cosmic censorship conjecture [7]. As far back as the pre-
vious century,  gedanken experiments [8]  were employed
to  assess  the  rationality  of  the  weak  cosmic  censorship
conjecture. The  primary  objective  of  gedanken  experi-
ments  is  to  examine  the  possibility  of  the  destruction  of
event horizons by particle injection [9−12], revealing that
the event horizons of Kerr and Kerr-Newman black holes

with singularities are not destroyed [9, 13−15].
The  weak  cosmic  censorship  conjecture  implies  that

an  observational  boundary  of  black  holes  is  confined  on
the black hole's event horizons. Therefore, the mechanic-
al  properties  of  black  holes  are  commonly  described
through various quantities that assume values on an event
horizon, including but not limited to area, surface gravity,
and  angular  velocity.  In  particular,  the  mechanical  laws
governing black holes are derived from interrelationships
among these quantities [16]. Moreover, the Hawking tem-
perature establishes the correspondence between mechan-
ical and thermodynamic quantities of black holes, result-
ing in the construction of thermodynamics laws for black
holes. As a particle incidence to a black hole can induce
changes in mechanical quantities, such as area, mass, and
angular momentum,  the  abovementioned  gedanken  ex-
periments can be used to verify the thermodynamic laws
of  black  holes  [14, 15].  As  thermodynamic  quantities,
such  as  entropy  and  temperature,  are  defined  solely  on
horizons, black  hole  thermodynamics  cannot  be  estab-

        Received 29 January 2024; Accepted 18 March 2024; Published online 19 March 2024
      * Supported in part by the National Natural Science Foundation of China (12175108)
     † E-mail: hyang@mail.nankai.edu.cn
     ‡ E-mail: 2120210161@mail.nankai.edu.cn
     § E-mail: miaoyg@nankai.edu.cn

Chinese Physics C    Vol. 48, No. 7 (2024) 075101

     ©2024 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese
Academy of Sciences and IOP Publishing Ltd

075101-1

http://orcid.org/0000-0001-9036-4649


lished  if  horizons  are  absent.  In  other  words,  the  weak
cosmic  censorship  conjecture  ensures  the  establishment
of  thermodynamic  laws  for  black  holes.  Conversely,  the
thermodynamic  laws  substantiate  the  rationality  of  the
weak cosmic  censorship  conjecture.  Therefore,  the  cos-
mic  censorship  conjecture  and  thermodynamic  laws  of
black holes are complementary.

Recently,  diverse  techniques  have  been  employed  to
construct  static  and  spherically  symmetric  regular  black
holes  that  have  no  essential  singularities  [17−32],  and
they can be summarized into three categories:
 

● To  solve  the  Einstein  field  equations  under  a  spe-
cial  symmetry  or  matter  source  [19, 20, 24–26].  Among
the black holes constructed in this category, the Hayward
black hole is a typical example in which the vacuum en-
ergy density distribution is considered in Einstein's grav-
ity [31];
 

● To  modify  a  metric  directly  such  that  the  corres-
ponding spacetime has no singularity, and then to deduce
a possible matter source inversely [17, 18, 21, 27–29, 33].
The key step is to determine a novel metric function that
removes singularities  in  spacetime,  which  was  previ-
ously achieved by experience and formulated by specific
functions. Recently, a systematic modification of metrics
has  been proposed to  construct  a  regular  black hole  [21,
28].  Applying  such  a  modification  to  the  Schwarzschild
metric,  we can derive the so-called black-bounce metric,
and  verify  that  this  metric  is  the  solution  of  Einstein's
gravity  coupled  with  the  phantom  scalar  field  and  the
electromagnetic field,  where  the  matter  source  is  de-
duced inversely from the metric [34];
 

●  To  solve  a  metric  for  regular  black  holes  in  the
framework of modified theories of gravity [22, 23, 30–32,
35]  .  Among  them,  the  loop  quantum  gravity  [35]  is  a
nonperturbative theory and exceeds general relativity, and
it can resolve singularities in cosmological and black hole
spacetimes. Therefore,  regular  black  holes  can  be  con-
structed naturally under this theory [30, 36].
 

As  an  astronomical  black  hole  naturally  rotate,  the
Newman-Janis algorithm (NJA) has been applied and im-
proved to extend the investigation of regular black holes
from a static and spherically symmetric case to a rotating
and  axially  symmetric  case  [37−43]. Owing  to  the  ab-
sence  of  singularities,  the  primary  significance  of  the
weak cosmic censorship conjecture does not lie in avoid-
ing naked singularities but rather in upholding thermody-
namic  laws.  However,  a  recent  paper  on  rotating  loop
quantum gravity  black  holes  has  claimed  that  the  incid-
ence  of  scalar  particles  into  the  near-extreme configura-
tion of rotating loop quantum gravity black holes can dis-
rupt  event  horizons  [44].  Although  it  is  a  special  case,

this  result  implies  that  the  thermodynamics  of  regular
black  holes  may differ  from that  of  singular  black  holes
[44]. In the early literature, only metric singularities were
avoided in the construction of regular black holes, where-
as the  compatibility  with  thermodynamic  laws  was  neg-
lected.  Therefore,  whether  regular  black  holes  adhere  to
the  thermodynamic  laws  that  are  valid  to  singular  black
holes remains unsolved .

In  this  paper,  we investigate  the  behavior  of  rotating
regular black holes coupled with scalar particles and pro-
pose criteria for establishing the relevant thermodynamic
laws,  where  these  criteria  match  the  self-consistency  in
constructing  rotating  regular  black  holes.  Moreover,  we
examine the correlation between the third law of thermo-
dynamics and weak cosmic censorship conjecture, yield-
ing  different  conclusions  from  those  for  Kerr  and  Kerr-
Newman black holes.  Finally,  we analyze whether  rotat-
ing  regular  black  holes  satisfy  the  thermodynamic  laws
deduced from singular black holes through illustrative ex-
amples and attempt to rescue these laws by modifying en-
tropy or extending phase spaces.

The  remainder  of  this  paper  is  structured  as  follows.
In  Sec.  II,  we  briefly  introduce  to  rotating  regular  black
holes  constructed  using  the  revised  NJA and present  the
mass  and  angular  momentum  in  their  general  forms.  In
Sec.  III,  we discuss  the  behavior  of  a  scalar  field  near  a
rotating regular black hole and derive the scalar field flux
and  the  Hawking  temperature  of  rotating  regular  black
holes.  In  Sec.  IV,  we  establish  the  criteria  to  determine
the  laws  of  thermodynamics  for  rotating  regular  black
holes,  and  we  discuss  the  relationship  between  the  third
law of thermodynamics and weak cosmic censorship con-
jecture. In Sec. V, we apply these criteria to three models
of rotating regular black holes and explore the possibility
of  their  fulfillment  by  modifying  entropy  or  extending
phase spaces.  Finally,  we present  our  summary and out-
look in Sec. VI. 

II.  ROTATING REGULAR BLACK HOLES
 

A.    General form of metrics
The  construction  of  rotating  regular  black  holes  [38,

45−47]  involves  the  use  of  the  NJA [42, 43, 48−50],  an
algebraic method  for  transforming  a  static  and  spheric-
ally symmetric black hole solution into a rotating and axi-
ally symmetric one. Now, we briefly introduce this meth-
od. Initially,  we consider a general static and spherically
symmetric metric, 

ds2
static = −F(r)dt2+

dr2

F(r)
+H(r)

(
dθ2+ sin2 θdφ2

)
. (1)

F(r) H(r)
Because the spacetime under consideration is asymptotic-
ally  flat  at  infinity,  the  functions  and  should
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satisfy the following conditions: 

lim
r→∞

F(r) = 1, lim
r→∞

H(r) = r2. (2)

F(r) H(r) 1/r
r→∞

Therefore, we expand  and  as series of  near
infinity, , as follows: 

lim
r→∞

F(r) =
∞∑

n=0

anr−n, an =
1
n!

∂n

∂(1/r)n
F(r)

∣∣∣
r→∞

, a0 = 1,

(3)
 

lim
r→∞

H(r) =
∞∑

n=0

bnr2−n, bn =
1
n!

∂n

∂(1/r)n

H
r2

∣∣∣
r→∞

, b0 = 1.

(4)

(u,r, θ,ϕ)In the advanced null coordinates, , defined by 

du = dt− dr
F(r)

, (5)

the contravariant form of the metric, can be expressed in
terms of a null tetrad as 

gµν = −lµnν− lνnµ+mµm∗ν+mνm∗µ, (6)

where 

lµ = δµr , (7a)

 

nµ = δµu −
F
2
δµr , (7b)

 

mµ =
1√

2H(r)

Å
δµθ +

i
sinθ

δµϕ

ã
, (7c)

 

lµlµ = mµmµ = nνnν = lµmµ = nµmµ = 0, (7d)

 

lµnµ = −mµm∗µ = 1, (7e)

∗and " " denotes complex conjugate. The rotation is intro-
duced via the complex transformation 

r→ r+ iacosθ, u→ u− iacosθ, (8)

δµνwhere a is rotation parameter, and  is required to trans-
form as a vector under the above complex transformation, 

δµr → δµr , δµu → δµu,

δµθ → δµθ + iasinθ(δµu −δµr ), δµϕ→ δµϕ. (9)

{F,H}
{B,Ψ}
After  the  above  fulfillment,  are  generalized  to

 with rotation: 

{F(r),H(r)} → {B(r, θ,a),Ψ(r, θ,a)}, (10)

{B,Ψ}

a→ 0

where  are  real  functions  to  be  determined  and
should  recover  their  static  counterparts  in  the  limit  of

, i.e., 

lim
a→0

B(r, θ,a) = F(r), lim
a→0
Ψ(r, θ,a) = r2. (11)

In  particular,  the  line  element  without  rotation  (see  Eq.
(1)),  is  now  transformed  to  the  one  with  rotation  when
Eqs. (9) and (10) are considered: 

ds2 = −Bdu2−2dudr−2asin2 θ (1−B)dudϕ+2asin2 θdrdϕ

+Ψdθ2+ sin2 θ
[
Ψ+a2 sin2 θ (2−B)

]
dϕ2.

(12)

gtφ

Next, we rewrite the above line element with the Boy-
er-Lindquist coordinates and let the metric have only one
non-vanishing off-diagonal term, . To reach the object-
ive, we require the following coordinate transformation: 

du = dt+λ(r)dr, dϕ = dφ+χ(r)dr, (13)

{λ(r),χ(r)}
{λ(r),χ(r)}

{B(r, θ,a),Ψ(r, θ),λ(r),χ(r)}

where  depend only on r to ensure integrability.
If the transformation Eq. (10) is given a priori, 
may not exist. Considering these constraints, we determ-
ine the formulations of : 

B(r, θ) =
FH+a2 cos2 θ

Ψ
, (14a)

 

Ψ(r, θ) = H+a2 cos2 θ, (14b)

 

λ(r) = − H+a2

Fr2+a2
, (14c)

 

χ(r) = − a
FH+a2

. (14d)

Thus,  we  obtain  the  line  element  for  rotating  regular
black holes with the Kerr-like form: 
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ds2 =
Ψ

Σ

ï
−
Å

1− f H
Σ

ã
dt2+

Σ

∆
dr2

− 2 f Ha
Σ

sin2 θdtdϕ+Σdθ2+
A
Σ

sin2 θdϕ2
ò
, (15)

where 

Σ = H+a2 cos2 θ, (16)

 

f = 1−F, (17)

 

∆ = FH+a2, (18)

 

A = (H+a2)2−a2∆sin2 θ. (19)

Ψ = Σ

Although the choice of Ψ has certain degrees of freedom,
 is  typically  selected  for  a  rotating  regular  black

hole [29, 38, 41, 43, 45]. In this scenario, we rewrite Eq.
(15) in another form: 

ds2 = −∆Σ
A

dt2+
Asin2 θ

Σ
(dϕ−Ωdt)2+

Σ

∆
dr2+Σdθ2, (20)

where 

Ω =
f Ha
A

. (21)

∆(rH) = 0
r+H

In this  spacetime,  the  locations  of  horizons  are  determ-
ined  by ,  and  the  angular  velocity  at  the  outer
horizon  assumes the form 

ΩH = Ω
∣∣

r=r+H
=

a
f H

∣∣∣∣
r=r+H

. (22)

In the next subsection, we compute the mass and angular
momentum of rotating regular black holes. 

B.    Komar's conserved quantity
Here, we use Komar's conserved quantity for the cal-

culation of mass and angular momentum. For asymptotic-
ally flat spacetime, the Komar conserved quantity equals
the ADM one, thus enabling us to obtain the ADM mass
and angular  momentum.  Komar's  conserved  quantity  as-
sumes the form [51, 52] 

16πI =
∫
∂V

∗dξ, (23)

∗dξ dξwhere  denotes  the  dual  to  a  two-form , ξ is  the

∂V

ξ(t)

ξ(ϕ)

dt dϕ
(t,r, θ,ϕ)

Killing  one-form,  and  the  integration  is  extended  over  a
spacelike surface  of the background spacetime depic-
ted by Eq. (20). The Killing vector field related to mass is
time-like, , whereas that related to angular momentum
is  space-like, .  We  shall  perform  the  calculations  for
mass  and  angular  momentum.  We  note  that  the  metric
contains  coupling  terms  of  and  (see  Eq.  (20)),
which  makes  computing  derivatives  in  the  co-
ordinates difficult.  Therefore,  in  the  following  subsec-
tions,  we  introduce  an  orthonormal  frame  of  one-forms
for the derivations:
 

X(0) = −
Å
∆Σ

A

ã1/2

dt, (24a)

 

X(1) =

Å
Σ

∆

ã1/2

dr, (24b)

 

X(2) = Σ
1/2dθ, (24c)

 

X(3) =

Ç
Asin2 θ

Σ

å1/2

(dϕ−Ωdt) . (24d)

 

1.    Mass

I(t)

ξ(t)

The mass can be precisely defined by the Komar con-
served  quantity  of  the  time-like  Killing  vector  field

. Specifically, it is determined as follows:
 

MK = lim
r→∞

2I(t) = lim
r→∞

1
8π

∫
∂V

∗dξ(t), (25)

where  the  time-like  Killing  vector  field  is  obtained  with
the aid of the orthonormal frame Eq. (24):
 

ξ(t) = gµtdxµ =
Å
∆Σ

A

ã1/2

X(0)−
Ç

Asin2 θ

Σ

å1/2

ΩX(3). (26)

ξ(t)Differentiating  and taking its dual, we obtain
 

∗dξ(t) = αX(2)∧X(3)−βX(1)∧X(3)+γX(2)∧X(0)−δX(1)∧X(0),

(27)

where
 

α =
A1/2

Σ

∂

∂r

Å
∆Σ

A

ã
− A3/2Ωsin2 θ

Σ2

∂

∂r
Ω, (28a)
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β =
1
Σ

Å
A
∆

ã1/2 ∂

∂θ

Å
∆Σ

A

ã
− AΩsin2 θ

Σ2

Å
A
∆

ã1/2 ∂

∂θ
Ω,

(28b)

 

γ = −
Ç
∆sin2 θ

A

å1/2
∂

∂r

Å
AΩ
Σ

ã
, (28c)

 

δ = −
Å

1
Asin2 θ

ã1/2 ∂

∂θ

Ç
AΩsin2 θ

Σ

å
. (28d)

(t,r, θ,ϕ) ∗dξ(t)

To perform integration  in  the  original  coordinates  of
,  we  must  reconvert  to  the  formulation  as

follows: 

∗dξ(t) = α̃dr∧dt+ δ̃dθ∧dϕ+ γ̃dr∧dϕ+ β̃dθ∧dt, (29)

where 

α̃ = βΩ

Ç
Asin2 θ

∆

å1/2

+δΣ

Å
1
A

ã1/2

, (30a)

 

δ̃ = α
(
Asin2 θ

)1/2
, (30b)

 

γ̃ = −β
Ç

Asin2 θ

∆

å1/2

, (30c)

 

β̃ = −γ
Å
∆

A

ã1/2

Σ−α(Asin2 θ)1/2Ω. (30d)

ξ(t)

Here, t and r are  constants  since  we  are  calculating  the
mass  in  a  two-dimensional  sphere  over  simultaneous
events. Therefore,  the  Komar  conserved quantity  associ-
ated with  takes the form 

I(t) =
1

16π

∫ ∫
α
(
Asin2 θ

)1/2
dθdϕ. (31)

After a tedious integral calculation, we obtain 

I(t) =
1
8
(
H+a2

)ï2HF′+ (F −1)H′

a
√

H
tan−1

Å
a√
H

ã
− (F −1)H′

H+a2

ò
, (32)

where  a  prime  represents  a  derivative  with  respect  to r.
According  to  the  definition  of  mass  (Eq.  (25))  and  the
asymptotic behaviors (Eqs. (3) and (4)), we finally derive
the mass: 

MK = lim
r→∞

1
4

(1−F)H′

= − lim
r→∞

1
4

∞∑
n=1,m=0

anbm(2−m)r1−m−n = −a1

2
. (33)

The  Komar  mass  corresponds  to  the  mass  parameter  M
selected in the metrics for the majority of rotating regular
black holes [17−20, 45].  For convenience,  in subsequent
discussions,  we shall  omit  the subscript  "K" and express
it simply as M. 

2.    Angular momentum

Similar to  the  definition  of  mass,  the  angular  mo-
mentum is defined by 

JK = − lim
r→∞

I(ϕ) = − lim
r→∞

1
16π

∫
∂V

∗dξ(ϕ), (34)

ξ(ϕ)where the space-like Killing vector field  assumes the
form in the orthonormal frame of Eq. (24): 

ξ(ϕ) = gµϕdxµ =

Ç
Asin2 θ

Σ

å1/2

X(3). (35)

ξ(ϕ)We then express the dual of as 

∗dξ(ϕ) = α̂X(2)∧X(3)− β̂X(1)∧X(3)+ γ̂X(2)∧X(0)− δ̂X(1)∧X(0),

(36)

where 

α̂ =
A3/2 sin2 θ

Σ2

∂

∂r
Ω, (37a)

 

β̂ =
Asin2 θ

Σ2

Å
A
∆

ã1/2 ∂

∂θ
Ω, (37b)

 

γ̂ =

Å
∆

Asin2 θ

ã1/2 ∂

∂r

Ç
Asin2 θ

Σ

å
, (37c)

 

δ̂ =

Å
1

Asin2 θ

ã1/2 ∂

∂θ

Ç
Asin2 θ

Σ

å
. (37d)

ξ(ϕ)

Here, t and r are also constants because we are calculat-
ing  the  angular  momentum  in  a  two-dimensional  sphere
over simultaneous  events.  Therefore,  the  Komar  con-
served quantity associated with  is 

Iϕ =
1

16π

∫
∂V

∗dξϕ =
1

16π

∫ ∫
α̂
(
Asin2 θ

)1/2
dθdϕ, (38)
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and the integration yields
 

Iϕ =
1

8a2
√

H(r)

ß
−2F′(r)H(r)

(
a2+H(r)

)ï(
a2+H(r)

)
tan−1

Å
a√
H(r)

ã
−a

√
H(r)
ò

− [F(r)−1]H′(r)
ï(

a4+2a2H(r)+ [H(r)]2
)

tan−1
Å

a√
H(r)

ã
−3a3

√
H(r)−a[H(r)]3/2

ò™
. (39)

According to the asymptotic behaviors (Eqs. (3) and (4)),
we derive the angular momentum: 

J = − lim
r→∞

Iϕ = − lim
r→∞

a
8
[
(F −1)H′−2F′(H+a2)

]
= − aa1

2
= Ma, (40)

where  the  subscript  "K"  is  omitted  as  explained  for  the
case of mass.

We derive two physical  quantities,  mass  and angular
momentum,  associated  with  a  general  rotating  regular
black  hole.  Further,  we  describe  into  the  characteristic
quantities  involved  in  the  process  of  the  incidence  of  a
neutral scalar particle in the background spacetime of the
rotating regular black holes described by Eq. (20) and ex-
amine  the  impact  of  the  particle  on  the  aforementioned
physical quantities. 

III.  NEUTRAL MASSIVE SCALAR FIELDS
 

A.    Scalar field equation and flux
Φ(t,r, θ,ϕ)The  action  of  a  complex  scalar  field  in  a

general spacetime is 

S Φ = −
1
2

∫
d4x
√−g

[
∂νΦ∂

νΦ∗+ (µ2+ΞR)ΦΦ∗
]
, (41)

√−g

where μ denotes  the  mass  of  scalar  fields, R is  the
curvature,  and  Ξ  is  the  non-minimal  coupling  constant,
and  assumes the form 

√−g =
√
−detgµν = Σsinθ, (42)

where  Eq.  (20)  has  been used.  By using the  principle  of
least action, we derive the equation of motion as 

∇ν∇νΦ = (µ2+ΞR)Φ. (43)

To separate variables in the spacetime of rotating reg-
ular black holes, we make the assumption 

Φ(t,r, θ,ϕ) = e−iωt+imϕS (θ)R(r), (44)

S (θ) R(r)and then obtain the equations that govern  and ,
respectively: 

1
sinθ

d
dθ

ï
sinθ

d
dθ

S (θ)
ò

+

ï
a2(ω2−µ2−ΞR)cos2 θ− m2

sin2 θ
+λ

ò
S (θ) = 0, (45)

and 

∆
d
dr

ï
∆

d
dr

R(r)
ò
+ [ω2(H+a2)2−2a f Hmω+a2m2

−∆(µ2H+ΞRH+λ+a2ω2)]R(r) = 0, (46)

where ω is  the  frequency  of  massive  scalar  fields, m is
the  azimuthal  number  with  respect  to  the  rotation  axis,
and λ is the  separation  parameter  that  can  be  fixed  ap-
proximately as an eigenvalue of Eq. (45).

Introducing  a  tortoise  coordinate  in  an  outer  horizon
limit, 

dr∗
dr
=

H+a2

∆
, (47)

we rewrite the radial equation as follows: 

d2

dr2
∗
R + (ω−mΩH)2R = 0. (48)

Therefore, we obtain the solutions in the close proximity
to outer horizons, 

R ∼ e±i(ω−mΩH)r∗ , (49)

and take the negative sign as an ingoing wave.
The alterations in energy and angular  momentum in-

duced  by  complex  scalar  particles  can  be  derived  from
the fluxes of energy and angular momentum related to the
particles. When a complex scalar particle crosses an out-
er event horizon of a black hole, it becomes indistinguish-
able  from the  black  hole.  Hence,  the  alterations  in  mass
and angular momentum related to black holes are closely
linked  to  the  scalar  field  fluxes  at  an  outer  horizon  of
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black holes.  The fluxes  can be  derived from the  energy-
momentum tensor,  which  is  obtained  through  the  Lag-
rangian Eq. (41) of scalar fields. Specifically, the energy-
momentum tensor is 

T µ
ν =

∑
i

∂L

∂(∂µΦi)
∂νΦ

i−δµνL

=
1
2
∂µΦ∂νΦ

∗+
1
2
∂µΦ∗∂νΦ

−δµν
ï

1
2
∂µΦ∂

µΦ∗− 1
2

(µ2+ΞR)ΦΦ∗
ò
, (50)

and the correlated energy flux of scalar fields at an outer
horizon takes the form 

jt(H) =
dE
dt
= lim

r→r+H

∫
T r

t
√−gdθdϕ = ω(ω−mΩH)(H+a2),

(51)

S (θ)where the normalization condition of , ∫
S (θ)S ∗(θ) sinθdθdϕ = 1, (52)

is  used.  Similarly,  the  angular  momentum flux  of  scalar
fields at an outer horizon is 

jϕ(H) =
dL
dt
= − lim

r→r+H

∫
T r
ϕ

√−gdθdϕ = m(ω−mΩH)(H+a2).

(53)

The energy and angular  momentum fluxes  are  crucial  in
verifying the second and third laws of black hole thermo-
dynamics. This is because the fluxes represent the flow of
the  energy  and  angular  momentum  into  black  holes
change  with  time.  In  addition,  an  important  quantity
closely  related  to  black  hole  thermodynamics  is  the
Hawking temperature. 

B.    Hawking temperature
We employ the methodology proposed in Ref. [53] to

compute  the  Hawking  temperature  of  rotating  regular
black holes.  The key step lies  in  reducing a  four-dimen-
sional metric to a two-dimensional one near an outer hori-
zon, which  is  primarily  accomplished  by  the  reformula-
tion  of  action  Eq.  (41).  We  rewrite  the  action  using  Eq.
(42),

S Φ = −
1
2

∫
d4x Σsinθ

î
− (H+a2)2−∆a2 sin2 θ

∆Σ
∂tΦ∂tΦ

∗− a(H+a2−∆)
∆Σ

(
∂tΦ∂ϕΦ

∗+∂ϕΦ∂tΦ
∗)

+
∆−a2 sin2 θ

∆Σsin2 θ
∂ϕΦ∂ϕΦ

∗+
∆

Σ
∂rΦ∂rΦ

∗+
1
Σ
∂θΦ∂θΦ

∗+ (µ2+ΞR)ΦΦ∗
ó
, (54)

and then obtain its form in the vicinity of outer horizons
by maintaining dominant terms:
 

S Φ
[
r→ r+H

]
=

1
2

∫
d4x sinθ

a2

Ω2
H∆

ï
∂tΦ∂tΦ

∗

+ΩH(∂tΦ∂ϕΦ
∗+∂tΦ

∗∂ϕΦ)

+Ω2
H∂ϕΦ∂ϕΦ

∗− ∆
2Ω2

H

a2
∂rΦ∂rΦ

∗
ò
.

(55)

Furthermore, using the locally non-rotating coordinate,
 

ψ = ϕ−ΩHt, t̃ = t, (56)

we transform the above form to
 

S Φ
[
r→ r+H

]
= − 1

2

∫
d4xsinθ

a
ΩH

×
î
− 1

fe(r)
∂t̃Φ∂t̃Φ

∗+ fe(r)∂rΦ∂rΦ
∗
ó
, (57)

fe(r)where  is defined by
 

fe(r) ≡ ΩH∆

a
. (58)

As  a  result,  we  reduce  the  four-dimensional  action  to  a
two-dimensional one near an outer horizon, where the ef-
fective two-dimensional metric is given by
 

ds2 = − fe(r)dt̃2+
1

fe(r)
dr2, (59)

and  we  calculate  the  Hawking  temperature  according  to
Ref. [53]:
 

T =
1

4π
∂r fe

∣∣∣
r=r+H
=
ΩH

4πa
∂r∆

∣∣∣
r=r+H

. (60)

We have provided all the necessary quantities, except
entropy,  for  constructing  the  laws  of  thermodynamics.
Next,  we  analyze  the  conditions  required  for  the  first,
second, and third laws of thermodynamics, respectively.
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IV.  THERMODYNAMICS OF ROTATING REGU-
LAR BLACK HOLES UNDER INCIDENCE OF

NEUTRAL SCALAR FIELDS

(M, J,rH) (M+dM, J+dJ,rH+drH)

∆ = 0

With  the  incidence  of  a  neutral  scalar  particle,  the
parameters of black holes undergo a transformation from

 to .  In  this  process,  we
assume the  perpetual  existence of  black hole  event  hori-
zons, thereby ensuring that the condition  is always
satisfied.  Specifically,  the  necessary  conditions  for  the
existence of event horizons is 

∆(M, J,rH) = F(M,rH)H(M,rH)+
J2

M2
= 0, (61)

F(r) H(r) F(M,r)
H(M,r)
where  we  have  rewritten  and  as  and

,  respectively,  because M is  a  parameter  of  these
functions,  as  shown  in  Eq.  (33).  However,  the  angular
momentum J is not a parameter of F and H because they
are defined  in  a  static  and  spherically  symmetric  space-
time  and  independent  of  any  rotation  introduced  later.
After the incidence of the neutral scalar particle, the con-
dition in Eq. (61) changes to 

∆(M+dM, J+dJ,rH+drH)

=
∂∆

∂M

∣∣∣
r=rH

dM+
∂∆

∂J

∣∣∣
r=rH

dJ+
∂∆

∂r

∣∣∣
r=rH

drH = 0, (62)

where 

∂∆

∂M

∣∣∣
r=rH
= − 1

H

Å
a2 ∂H
∂M
−H2 ∂F

∂M
+2H

J2

M3

ã ∣∣∣
r=rH

,

(63)

 

∂∆

∂J

∣∣∣
r=rH
=

2J
M2

, (64)

 

∂∆

∂r

∣∣∣
r=rH
= − 1

H

Å
a2 ∂H
∂r
−H2 ∂F

∂r

ã ∣∣∣
r=rH

. (65)

drH dM
dJ
Thus,  we  establish  the  correlation  among , ,  and

 from the above four equations, 

drH = −
∂∆

∂M

Å
∂∆

∂r

ã−1 ∣∣∣
r=rH

dM− ∂∆
∂J

Å
∂∆

∂r

ã−1 ∣∣∣
r=rH

dJ, (66)

with which  we  further  construct  the  laws  of  thermody-
namics. 

A.    First law of thermodynamics
The differential  form  of  the  first  law  of  thermody-

namics  for  black  holes  establishes  a  relationship  among

the  first-order  differentials  of  physical  quantities.  As
neutral scalar particles induce changes in mass and angu-
lar  momentum,  the  first  law  of  thermodynamics  should
describe the correlation among first-order differentials of
entropy,  mass,  and  angular  momentum.  A  significant
thermodynamic  quantity  is  the  entropy  of  a  black  hole.
As  adopted  in  the  thermodynamics  of  singular  black
holes,  we  define  the  entropy  of  a  regular  black  hole  by
using the Bekenstein-Hawking entropy, 

S BH =
1
4
AH, (67)

and compute the area of out horizons using Eq. (20): 

AH =

∫
√

gθθgϕϕdθdϕ
∣∣∣

r=rH
= 4π(H+a2)

∣∣∣
r=rH

. (68)

When  the  black  hole  parameters  change,  the  associated
entropy undergoes a corresponding change: 

dS BH =
∂S BH

∂M
dM+

∂S BH

∂J
dJ+

∂S BH

∂rH
drH. (69)

After utilizing the relationship in Eq. (66), we derive 

dS BH = ÂdM+ B̂dJ, (70)

where 

Â = − 1
4T H(H+a2)

ß
H2
Å
∂H
∂rH

∂F
∂M
− ∂H
∂M

∂F
∂rH

ã
+

2a2

M

ï
H2 ∂F

∂rH
− (H+a2)

∂H
∂rH

ò™
,

(71a)

 

B̂ =
a

2T MH(H+a2)

ï
H2 ∂F

∂rH
− (H+a2)

∂H
∂rH

ò
, (71b)

and the following relationship is used: 

4πTS BH =
∂∆

∂rH
= − 1

H

Å
a2 ∂H
∂rH
−H2 ∂F

∂rH

ã
. (72)

In  the  thermodynamics  of  singular  black  holes,  the
first law takes the form 

dM = TdS BH+ΩHdJ. (73)

Â B̂When comparing Eq. (73) with Eq. (70), we give  and 
if the first law remains unchanged for regular black holes: 
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1
Â
= T, (74a)

 

− B̂
Â
= ΩH. (74b)

Therefore,  we  determine  the  necessary  conditions  using
Eqs.  (71a)  and  (67)  for  a  rotating  regular  black  hole  to
satisfy the first law of thermodynamics:
 

∂H
∂rH

∂F
∂M
− ∂H
∂M

∂F
∂rH
= −4, (75a)

 

H
∂F
∂rH
− (1−F)

∂H
∂rH
= −2M. (75b)

 

B.    Second law of thermodynamics
The second  law  of  black  hole  thermodynamics  dic-

tates that the entropy of a system can only increase or re-
main constant  during  the  system's  evolution  without  ex-
ternal  interaction.  This  evolution  naturally  includes  the
incidence of a scalar particle into a black hole. Therefore,
by  utilizing  Eqs.  (51)  and  (53),  we  derive  the  temporal
variations  of  both  energy  and  angular  momentum  of
black holes:
 

dM =
dE
dt

∣∣∣
r=rH

dt = ω(ω−mΩH)(H+a2)dt, (76a)

 

dJ =
dL
dt

∣∣∣
r=rH

dt = m(ω−mΩH)(H+a2)dt. (76b)

dS BH dtThus, we obtain the relationship between  and :
 

dS BH = ÂdM+ B̂dJ = (Âω+ B̂m)(ω−mΩH)(H+a2)dt. (77)

dS BH ≥ 0

Moreover, considering that frequency ω and integer m are
arbitrary, we  deduce  the  necessary  and  sufficient  condi-
tions for :
 

Â > 0 and
B̂
Â
= −ΩH. (78)

Again, using Eqs. (71a) and (67), we reformulate the ne-
cessary  and  sufficient  conditions  for  a  rotating  regular
black hole to satisfy the second law of thermodynamics:
 

∂H
∂rH

∂F
∂M
− ∂H
∂M

∂F
∂rH

< 0, (79a)
 

Å
H+

M
2
∂H
∂M

ã
∂F
∂rH
−
Å

1−F +
M
2
∂F
∂M

ã
∂H
∂rH
= 0.

(79b)

By  comparing  Eqs.  (75a)  and  (75b)  with  Eqs.  (79a)
and (79b), we observe that the validity of the first law in-
dicates the  validity  of  the  second  law.  Alternatively,  ac-
cording to Eqs. (74a) and (74b), we observe that the first
law yields 

dS BH =
1
T

(ω−mΩH)2(H+a2)dt, (80)

which  implies  that  the  second  law  is  naturally  satisfied.
This result  appears  to  be  plausible  but  is  actually  incor-
rect. The reason is two fold: we must compute the entrop-
ies  of  black  holes  and  scalar  particles,  not  that  only  for
black  holes,  and  a  (rotating)  regular  black  hole  does  not
satisfy the first law of a (rotating) singular black hole. In
practice, the first law of mechanics for static and spheric-
ally symmetric  regular  black  holes  often  contains  addi-
tional terms related to regularized parameters, [54], which
has  a  non-negligible  role  in  constructing  the  first  law of
thermodynamics [55]. Further investigation is required to
establish  the  first  and  second  laws  for  (rotating)  regular
black holes.

Based  on  the  above  clarifications  in  this  section,  we
note that both the first and second laws of thermodynam-
ics  are  established  on  Bekenstein-Hawking's area  theor-
em  Eq.  (67).  Therefore,  if  Bekenstein-Hawking's  area
theorem is violated, the two laws are also violated. Con-
versely, if  the  second  law  is  violated,  the  entropy  de-
creases. This implies that the basis of Bekenstein-Hawk-
ing's area theorem, i.e., the entropy increases during evol-
ution, is lost, indicating the nonexistence of the theorem. 

C.    Third law of thermodynamics and weak cosmic
censorship conjecture

The above discussions on thermodynamics are  based
on  the  general  premise  that  an  incident  scalar  particle
does  not  destroy  an  event  horizon  of  black  holes.  In
spacetime with singularities, this premise is also required
by the weak cosmic censorship conjecture, where no na-
ked singularities  are  permitted.  However,  the  weak  cos-
mic  censorship  conjecture  loses  its  necessity  in  regular
black  holes,  where  no  singularities  exist.  Therefore,  we
can  comprehend  the  weak  cosmic  censorship  conjecture
as a  mechanism  that  safeguards  the  thermodynamic  sta-
bility  of  black  holes  because  thermodynamic  quantities
are  only  well-defined on  event  horizons.  Next,  we  reex-
amine whether an incident scalar particle breaks an event
horizon, i.e., to  verify  whether  the  weak  cosmic  censor-
ship  conjecture  holds  for  a  rotating  regular  black  hole.
Because  the  energy  and  angular  momentum  of  scalar
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particles  are  significantly  smaller  than  those  of  black
holes,  incident scalar particles can only destroy an event
horizon when a black hole is near its ultimate state.

Generally,  the  ultimate  states  for  a  rotating  regular
black hole exist in two primary categories. The first scen-
ario entails  that  a  black  hole  initially  has  multiple  hori-
zons, which subsequently coalesce into a one with a non-
zero radius  in  the  final  stage  of  black  holes;  this  is  re-
ferred  to  as  an  extreme  black  hole  case.  The  alternative
scenario is that a black hole ultimately has one event ho-
rizon with a vanishing radius, which can be considered a
one-way wormhole featuring a null throat [21, 45]. 

1.    In the first scenario

rH

Let us scrutinize the first scenario. Based on the exist-
ence  condition  Eq.  (61)  of  horizons,  we  rewrite  as  a
function of M and J: 

rH = rH(M, J). (81)

limr→∞∆ = r2

∆min

In terms of , we know that the value of Δ is
negative between an inner  horizon and an outer  one and
that a minimum value of Δ, denoted by , satisfies the
condition in terms of Eq. (18): 

∂∆(M, J,rmin)
∂rmin

= F(M,rmin)
∂H(M,rmin)

∂rmin

+H(M,rmin)
∂F(M,rmin)

∂rmin
= 0, (82)

rminfrom which we can deduce that  depends only on M: 

rmin = rmin(M). (83)

re

Je

If multiple minimum values exist, the largest one among
them will  be  selected.  We note  that  the  extreme horizon
radius  satisfies  both  Eq.  (61)  and  Eq.  (82).  Thus,  we
can  express  the  angular  momentum  of  an  extreme
black hole as a function of M: 

Je =
√
−M2F(M,re(M))H(M,re(M)) ≡ je(M), (84)

where 

re(M) = rmin(M). (85)

Eq. (84) shows that the upper bound on the angular mo-
mentum is determined only by mass; thus, it is termed as
an  "extreme  function."  Based  on  Eq.  (60),  the  Hawking
temperature  of  an  extreme  black  hole  is  zero.  The  third

law of thermodynamics stipulates that it requires an infin-
ite amount of time, or equivalently, an infinite number of
steps to reach the absolute zero temperature. This implies
that the evolution of a black hole into its extreme config-
uration cannot be achieved through any finite number of
steps. Subsequently,  we  demonstrate  that  the  weak  cos-
mic  censorship  conjecture  is  compatible  with  the  third
law of thermodynamics in the first scenario.

From the above analyses,  the  condition for  existence
of event horizons is 

∆min ≤ 0. (86)

By using Eqs. (18) and (84), we rewrite it as follows: 

J2 ≤ −M2F(M,rmin(M))H(M,rmin(M)) ≡ j2
e(M), (87)

Jne

where the equality is valid only for extreme black holes.
Therefore,  for a near-extreme black hole,  we assume the
relationship between angular momentum  and mass M
is 

Jne = (1− ϵ) je(M), (88)

ϵ

0 < ϵ ≪ 1
where  is  an  arbitrary  positive  infinitesimal  parameter,

.  After the incidence of a neutral scalar particle
into  a  near-extreme  black  hole,  when  we  consider  Eqs.
(76b) and (88), the angular momentum becomes 

Jne+dJ = (1− ϵ) je(M)+m(ω−mΩne)(H+a2)dt, (89)

and  when  we  consider  Eq.  (76a),  the  extreme  function
then becomes 

je(M+dM) = je(M)+
d je(M)

dM
ω(ω−mΩne)(H+a2)dt. (90)

Next, we prove that the weak cosmic censorship con-
jecture is  consistent  with  the  third  law of  thermodynam-
ics in the first scenario, that is, both are valid or both are
broken. According to Eq. (87), the condition for absence
of horizons after the incidence of a neutral scalar particle
assumes the form 

Jne+dJ > je(M+dM), (91)

which implies  the  invalidity  of  the  weak cosmic  censor-
ship  conjecture,  and  the  condition  for  a  black  hole  to
reach its extreme configuration is 
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Jne+dJ = je(M+dM), (92)

which implies the invalidity of the third law of thermody-
namics.  More  specifically,  considering  Eqs.  (89)  and
(90), we combine Eqs. (91) and (92) as 

−ϵ je(M) ≥
Å

d je(M)
dM

ω−m
ã

(ω−mΩne)(H+a2)dt, (93)

d je(M)
dM

> 0

where  the  equality  holds  for  an  extreme  configuration.
From  Eqs.  (76a)  and  (76b),  we  deduce .
Therefore,  we  determine  that  the  right-hand  side  of  Eq.
(93) satisfies1) the following inequality: Å

d je(M)
dM

ω−m
ã

(ω−mΩne)(H+a2)dt

= m2 d je(M)
dM

ñ
ω

m
−
Å

d je(M)
dM

ã−1
ô(ω

m
−Ωne

)
(H+a2)dt

≥ − m2

4
d je(M)

dM

ñÅ
d je(M)

dM

ã−1

−Ωne

ô2

(H+a2)dt,

(94)

ω

m
=

1
2

ñÅ
d je(M)

dM

ã−1

+Ωne

ô
Ωne(M, Jne,rne) ϵ = 0

where  the  equality  is  valid  for  the  condition 

.  To simplify  Eq.  (94),  we expand
 near the extreme configuration  as 

Ωne(M, Jne,rne) = Ωe− je(M)κϵ +O(ϵ2), (95)

κ ≡ dΩH(M, J,rH)
dJ

∣∣∣
J= je(M)

where . Considering Eqs. (94) and
(95), we refine Eq. (93) as 

ϵ ≤ m2

4 je(M)
d je(M)

dM

ñÅ
d je(M)

dM

ã−1

−Ωe+ je(M)κϵ

ô2

(H+a2)dt.

(96)

● If we have the condition Å
d je(M)

dM

ã−1

−Ωe = 0, (97)

the above inequality becomes 

ϵ ≤ m2

4 je(M)
d je(M)

dM
[

je(M)
]2
κ2(H+a2)ϵ2dt. (98)

After  comparing  the  orders  of  infinitesimals  on  both

sides, we conclude that this inequality never holds, indic-
ating that both the third law of thermodynamics and weak
cosmic censorship conjecture are valid in this scenario.
 

● If we have the condition Å
d je(M)

dM

ã−1

−Ωe , 0, (99)

we  maintain  the  finite  term  and  ignore  infinitesimals  in
Eq. (96): 

ϵ ≤ m2

4 je(M)
d je(M)

dM

ñÅ
d je(M)

dM

ã−1

−Ωe

ô2

(H+a2)dt. (100)

ϵ dt

dt

Because both  and  are the same order of infinitesim-
als, we  can  always  determine  an  appropriate  time  inter-
val  such  that  this  inequality  holds,  which  means  that
both  the  third  law  of  thermodynamics  and  weak  cosmic
censorship conjecture are broken. 

2.    In the second scenario

je(M)
Now,  we  examine  the  second  scenario.  Considering

Eq. (84), we redefine  as follows: 

je(M) ≡
√
−M2F(M,r)H(M,r)

∣∣∣∣
r=0
. (101)

According  to  Eq.  (60),  the  Hawking  temperature  of  this
ultimate state is no longer zero. Therefore, following the
analyses for the first scenario, we conclude that the third
law  holds,  but  the  weak  cosmic  censorship  conjecture
may not hold in the second scenario because event hori-
zons may disappear  or  black holes  may transform into a
wormhole. 

3.    Results in the two scenarios

In the two scenarios, Eq. (97) is the sufficient and ne-
cessary condition for the weak cosmic censorship conjec-
ture to be valid, and it is also the necessary condition for
the third  law  of  thermodynamics  to  be  valid  for  an  ex-
treme black hole. However, if the ultimate state of a black
hole  is  a  one-way  wormhole  in  the  second  scenario,  the
weak cosmic censorship conjecture may not hold, but the
third law of thermodynamics is still valid. This results in
an interesting challenge to  establish  the  so-called worm-
hole thermodynamics  to  describe  the  evolutionary  pro-
cess from a black hole to a wormhole.

F(M,r) H(M,r)
Moreover, we express Eq. (97) in a specific form, i.e.,

in  terms of  and .  By using Eqs.  (84)  and
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(82), we derive 

d je(M)
dM

=
je(M)

M
− M2

2 je(M)

Å
H(M,re)

∂F(M,re)
∂M

+F(M,re)
∂H(M,re)

∂M

ã
, (102)

and then substituting the above equation into Eq. (97) and
considering  Eqs.  (22)  and  (85),  we  finally  rewrite  Eq.
(97) as 

H(M,re)
∂F(M,re)
∂M

+F(M,re)
∂H(M,re)

∂M
= −2H(M,re)

M
,

(103)

re

re = 0
where the definition of  is given by Eqs. (82), (83), and
(85) in the first scenario and  in the second scenario. 

D.    Interpretation

re

rH

In the above three subsections, we have examined the
conditions for the first, second, and third laws of thermo-
dynamics to be valid, as well as for the weak cosmic cen-
sorship  conjecture  (see  Eqs.  (75a),  (75b),  (79a),  (79b),
and  (103)).  We  note  that  the  definition  of  given  by
Eqs.  (82),  (83),  and  (85)  is  solely  determined  by  metric
functions of  a  static  spacetime,  thus  rendering the  valid-
ity  condition  Eq.  (103)  for  both  the  third  law  and  weak
cosmic  censorship  conjecture  completely  dependent  on
metric  functions  of  a  static  spacetime.  However,  in  the
validity  conditions  for  the  first  and  second  laws  (Eqs.
(75a), (75b), (79a), and (79b)), we note that a variable 
exists  that  varies  with  the  rotation  parameter a in addi-
tion to metric functions of a static spacetime.

re

re

rmax

r ∈ [re,rH(s)]
”(s)”

When  a  static  metric  is  given,  the  minimum horizon
of  a  rotating  black  hole  corresponds  to  of  an  extreme
configuration,  where  is  independent  of  the  rotation
parameter a.  Moreover,  the  maximum  horizon  de-
pends only on a static metric. Therefore, the range of ho-
rizons  for  a  rotating  black  hole  is ,  where

 denotes  a  static  black  hole  considered  a  seed.  We
now rewrite the validity conditions for the first law as 

∂H
∂r

∂F
∂M
− ∂H
∂M

∂F
∂r
= −4, (104a)

 

H
∂F
∂r
− (1−F)

∂H
∂r
= −2M. (104b)

That for the second law is expressed as 

∂H
∂r

∂F
∂M
− ∂H
∂M

∂F
∂r

< 0, (105a)
 

Å
H+

M
2
∂H
∂M

ã
∂F
∂r
−
Å

1−F +
M
2
∂F
∂M

ã
∂H
∂r
= 0, (105b)

r ∈ [re,rH(s)]where . Thus,  we  express  the  validity  condi-
tions  only  by  metric  functions F and H of  a  static  seed
spacetime.  In  other  words,  we  determine  the  conditions
under  which  a  rotating  black  hole  satisfies  the  laws  of
thermodynamics  only  using  the  metric  functions  of  its
static  seed  black  hole.  We  note  that  such  conditions  are
valid  for  any  rotating  black  holes  constructed  using  the
revised  NJA  as  our  calculations  are  performed  in  the
spacetime beyond event horizons. 

V.  APPLICATION TO THREE MODELS

H(r) = r2 F(r)

F(r) H(r)

Based on the number of shape functions that appear in
a  metric,  we  classify  regular  black  holes  into  two  types
[56], where these regular black holes are static and spher-
ically symmetric and considered a seed of  rotating regu-
lar black holes.  In the first  type,  and only 
is  to  be  determined  (see  Eq.  (1)),  which  is  called  the
"single  function  case,"  such  as  for  Bardeen  black  holes
[57],  Hayward  black  holes  [19],  noncommutative  black
holes [20],  and the other widely studied black holes [17,
18, 47]. In the second type, both  and  are to be
determined,  which  is  called  the  "double  function  case,"
such  as  for  black-bounce  solutions  [21],  loop  quantum
gravity  black  holes  [45],  and  the  other  black  holes  that
have  recently  attracted  interest  and  discussions  [58].
Next, we discuss the thermodynamics of these two types
of  black  holes,  where  Hayward,  black-bounce,  and  loop
quantum gravity  black  holes  are  selected  as  specific  ex-
amples. There are two reasons for our choices: One reas-
on is that these three black holes correspond to the three
categories  of  construction for  regular  black holes,  which
has been mentioned in Sec. I; the other is that these three
black holes  correspond  to  different  types  of  shape  func-
tions, from which we can gain a more comprehensive un-
derstanding of the thermodynamic laws for regular black
holes. 

A.    Single function case
 

1.    Conditions

H(r) H(r) = r2In  Eq.  (1),  is  fixed, ; thus,  the  neces-
sary conditions for a rotating regular black hole to satisfy
the first law of thermodynamics (Eqs. (104a) and (104b))
become 

∂F(M,r)
∂M

= −2
r
, (106a)

 

r2 ∂F(M,r)
∂r

−2[1−F(M,r)]r+2M = 0, (106b)
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r ∈ [re,rH(s)] F(M,r)where . From Eq. (106a), we solve  as
follows: 

F(M,r) = 1− 2M
r
+σ(r), (107)

σ(r)where  is a function independent of M. Subsequently,
substituting Eq. (107) into Eq. (106b), we obtain 

σ(r) =
C1

r2
, (108)

C1 F(M,r)where  is an integration constant. Thus, we fix 
in the single function case: 

F(M,r) = 1− 2M
r
+

C1

r2
, (109)

with  which  the  rotating  regular  black  hole  of  the  single
function case  satisfies  the  same  first  law  of  thermody-
namics as its seed black hole does.

rH = M+
√

M2−a2−C1

a =
√

M2−C1

M+
√

M2−C1

a = 0
C1 C1 < M2

[M,M+
√

M2−C1)

C1 = 0
C1 = Q2

F(M,r)

F(M,r) r ∈ [0,∞)

[M,M+
√

M2−C1)

From  Eqs.  (109)  and  (18),  we  obtain  the  horizon  of
rotating  regular  black  holes, ,
whose  lower  limit  is M,  corresponding  to ,
and whose upper limit is , corresponding to

. To ensure the existence of horizons and a non-van-
ishing  rotation  parameter,  should  satisfy .
Therefore, note that the range of r is no longer from zero
to infinity but coincides with that of event horizons of ro-
tating regular black holes, . Within this
range,  the  rotating black hole  is  reduced to  a  Kerr  black
hole when  and to a Kerr-Newman black hole when

. We have seen that the first law of thermodynam-
ics  imposes  a  highly  stringent  constraint  on  metrics,
which indicates that a static seed black hole must have a
metric with such an  as in Eq. (109). However, it
is significantly challenging to construct a continuous met-
ric function  in the range of ,  where this
function returns to Eq. (109) when r is fixed to the range
of .

Next, we examine the second law of thermodynamics.
The necessary  conditions,  Eqs.  (105a)  and  (105b),  be-
come 

∂F(M,r)
∂M

< 0, (110a)

 

r
∂F(M,r)

∂r
−M

∂F(M,r)
∂M

= 2(1−F(M,r)), (110b)

r ∈ [re,rH(s)]

F(M,r)

where . To  verify  the  validity  of  the  afore-
mentioned conditions,  we must  rely  on a  specific  metric
function , which is discussed in detail for the fol-
lowing models.

∆(M,r)
∣∣

r=0 = a2 > 0Finally,  owing  to ,  the  ultimate
state  of  black  holes  is  an  extreme  configuration  in  the
single function case. Therefore, for the third law of ther-
modynamics and weak cosmic censorship conjecture, the
validity condition Eq. (103) is reduced to
 

∂F(M,re)
∂M

= − 2
M
. (111)

re

F(M,r)
Because  is  a  function  of M,  we  cannot  determine

 using a  direct  integration  from  the  above  equa-
tion, but we leave it to specific models.
 

2.    Hayward model

The  specific  model  we  select  here  is  the  static  and
spherically  symmetric  Hayward  black  hole  [19, 41],
whose shape function is
 

FH(r) = 1− 2Mr2

r3+2L2M
, (112)

3/(8πL2)
where the regularization parameter L is a convenient en-
coding  of  the  central  energy  density .  The  field
source of  this  black hole  solution corresponds to  the va-
cuum energy density distribution
 

ρ(r) =
3L2M2

2π(r3+2L2M)2
, (113)

pr pθ
pϕ

and  its  radial  pressure, ,  and  transverse  pressures, 
and , are
 

pr = −
3L2M2

2π(r3+2L2M)2
, (114)

 

pθ = pϕ =
3(r3−L2M)L2M2

π(r3+2L2M)3
. (115)

If the first law of thermodynamics is required, when com-
paring Eq.  (112)  with  Eq.  (109),  we  obtain  the  integra-
tion constant
 

C1 =
4M2L2r

r3+2L2M
, (116)

r ∈ [M,M+
√

M2−C1) C1 < M2where  and .  We  observe
that  the  right-hand  side  of  Eq.  (116)  is  not  a  constant;
therefore,  the first  law of thermodynamics does not hold
for rotating Hayward black holes.

r > 0
For the second law of thermodynamics, Eq. (110a) is

valid owing to :
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∂F(M,r)
∂M

= − 2r5

(r3+2L2M)2
< 0. (117)

However, Eq. (110b) assumes the form 

− 16L2M2r2

(2L2M+ r3)2 = 0, (118)

L , 0which does not hold for . Therefore, the second law
of  thermodynamics  is  also  invalid  for  rotating  Hayward
black holes.

re = M

To check the third law of thermodynamics and weak
cosmic censorship conjecture, we define a function U and
derive its form by using Eq. (112) and : 

U ≡ ∂F(M,re)
∂M

+
2
M
= − 2M3

(M2+2L2)2 +
2
M
. (119)

U = 0In terms of this definition, Eq. (111) becomes .
U = 0 L = 0

M = 1

In Fig. 1, we observe that  holds only for ,
suggesting that rotating Hayward black holes do not satis-
fy the third law of thermodynamics and weak cosmic cen-
sorship  conjecture,  where  is  set  without  loss  of
generality. 

B.    Double function case
In this case, our discussions are based on the relation-

ship  between H and M in  two  categories:  where H does
not depend on M and where H does depend on M. 

1.    Category of H independent of M

In this category, the necessary condition Eq. (104a) of
the first law of thermodynamics can be expressed as 

∂H
∂r

∂F
∂M
= −4, (120)

r ∈ [re,rH(s)]where , and the condition Eq. (104b) remains
unchanged.  For  the  second  law  of  thermodynamics,  the

necessary conditions, Eqs. (105a) and (105b), become
 

∂H
∂r

∂F
∂M

< 0, (121)

and
 

H
∂F
∂r

Å
∂H
∂r

ã−1

− M
2
∂F
∂M
= 1−F, (122)

r ∈ [re,rH(s)]

re

where the range of r is still . For the third law
of thermodynamics  and weak cosmic  censorship  conjec-
ture,  the  necessary  condition  is  the  same  as  that  in  Eq.
(111),  but  is  taken  to  be  zero  if  the  ultimate  state  of
black holes is a one-way wormhole.

Here, we use the Kerr black-bounce solution as an ex-
ample,  whose  static  and  spherically  symmetric  metric  is
[21]
 

ds2 = −
Å

1− 2M√
r2+ l2

ã
dt2+

dr2

1− 2M√
r2+ l2

+
(
r2+ l2

)(
dθ2+ sin2 θdϕ2

)
, (123)

where l is a  positive  parameter  responsible  for  the  regu-
larization  of  the  central  singularity.  The  black-bounce
metric is interesting because it is a minimal one-paramet-
er  extension  of  the  Schwarzschild  metric.  This  model
converts  the  central  singularity  of  Schwarzschild  black
holes  into  the  throat  of  wormholes  after  the  introduction
of  parameter l,  thereby  connecting  regular  black  holes
and traversable wormholes. Recently, many regular black
holes  and  traversable  wormholes  have  been  constructed
using  the  black-bounce  proposal  [58−60].  However,  the
key  problem  is  explaining  the  black-bounce  solutions
physically, i.e.,  to  determine  the  theory  and  matter  that
can  yield  such  solutions.  Now it  is  known [34]  that  this
theory is the Einstein gravity coupled with matter, where
the  matter  is  the  combination  of  a  phantom  scalar  field
and  a  nonlinear  electrodynamics  field.  For  the  details
[34], the action is given by
 

I =
∫ √−g d4x

(
R−2gµν∂µϕP∂νϕP−2V(ϕP)−L(F )

)
,

(124)

L(F )

F ≡ FµνFµν ϕP

where  is the Lagrangian density of gauge-invariant
nonlinear electrodynamics  with  the  Faraday  electromag-
netic  invariant, ,  and  is  a  phantom  scalar
field.  The  Lagrangian  density  and  the  potential  of  a
phantom scalar field have the following forms:
 

 

M = 1

Fig. 1.    (color online) Relationship between U and L in rotat-
ing Hayward black holes, where .

Hao Yang, Chang-Jiang Yu, Yan-Gang Miao Chin. Phys. C 48, 075101 (2024)

075101-14



L(F ) =
12Ml2

5(2q2/F )5/4 , (125)

and 

V(ϕP) =
4M cos5ϕP

5l3
, (126)

respectively,  where q is magnetic  charge  of  free  nonlin-
ear electrodynamics. The Faraday electromagnetic invari-
ant and the phantom scalar field is 

F = 2q2

(r2+ l2)2
, (127)

and 

ϕP(r) = tan−1 r
l
+ const., (128)

respectively.
The  corresponding  metric  with  rotation  is  given  by

[46] 

ds2 = −
Ç

1− 2M
√

r2+ l2

Σ

å
dt2+

Σ

∆
dr2

− 4Ma
√

r2+ l2 sin2 θ

Σ
dtdϕ

+Σdθ2+
Asin2 θ

Σ
dϕ2, (129)

where 

Σ = r2+ l2+a2 cos2 θ, (130a)

 

∆ = r2+ l2+a2−2M
√

r2+ l2, (130b)

 

A = (r2+ l2+a2)2−∆a2 sin2 θ. (130c)

Ψ = Σ ∆(rH) = 0
Note  that  the  above  metric  is  consistent  with  Eq.  (15)
when  is  selected.  According  to , we  ob-
tain the horizons as 

rH =

»
(M±

√
M2−a2)2− l2. (131)

l ∈ (0,M]
re =
√

M2− l2

a = M l ∈ (M,2M]
re = 0

a =

When ,  the  event  horizon  of  an  extreme  black
hole is located at , and the rotation paramet-
er  satisfies  the  relation .  When ,  the
event horizon of the ultimate state is located at , and
the  rotation  parameter  satisfies  the  relation 

√
l(l−2M),  resulting  in  the  degeneration  of  the  Kerr

black-bounce solution into a one-way wormhole.
Next,  we  consider  the  necessary  conditions  for  the

laws of thermodynamic and weak cosmic censorship con-
jectures. Owing to 

∂H
∂r

∂F
∂M
= − 4r√

r2+ l2
, −4, (132)

r ∈ [
√

M2− l2,
√

4M2− l2]in the range of  (Eq. (104a)), the
first  law  of  thermodynamics  does  not  hold  for  the  Kerr
black-bounce solution.

The necessary conditions for the second law take the
forms 

∂H
∂r

∂F
∂M
= − 4r√

r2+ l2
< 0, (133)

and 

H
∂F
∂r

Å
∂H
∂r

ã−1

− M
2
∂F
∂M
=

2M√
r2+ l2

= 1−F, (134)

r ∈ [
√

M2− l2,
√

4M2− l2]

(Eqs.  (105a)  and  (105b)),  indicating  that  both  Eq.  (133)
and  Eq.  (134)  are  valid  simultaneously  in  the  range

.  Therefore,  the  second  law  of
thermodynamics  holds  for  the  Kerr  black-bounce solu-
tion. This result shows that the area entropy can be used
to define the Kerr black-bounce entropy, but the first law
of thermodynamics still remains unsatisfied.

l ∈ (0,M]

Finally, let  us  examine  the  third  law  and  weak  cos-
mic  censorship  conjecture  for  the  Kerr  black-bounce
solution. When , according to Eq. (111), i.e., 

∂F(M,re)
∂M

= − 2√
r2+ l2

= − 2
M
, (135)

l ∈ (M,2M]
we observe that the horizon of extreme configurations ex-
ists. When , according to Eq. (111) again, i.e., 

∂F(M,0)
∂M

= −2
l
, − 2

M
, (136)

we observe that the horizon of ultimate states disappears.
However, the horizon undergoes a natural disappearance,
i.e., the Kerr black-bounce solution changes to a one-way
wormhole and then to a two-way one. Consequently, the
Kerr black-bounce solution satisfies the third law of ther-
modynamics and weak cosmic censorship conjecture. 

2.    Category of H dependent on M

In  this  category,  several  necessary  conditions  of  the
laws  of  thermodynamics  cannot  be  further  simplified;
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therefore, our verification to the laws depends on the spe-
cific  forms  of  metrics.  Here,  we  use  rotating  loop
quantum gravity black holes as an example.

The metric functions of static seed black holes can be
expressed as [45] 

F(r) =

Ñ
1− 2M»

r2+4λ2/3
k M2/3

é
r2+4λ2/3

k M2/3

r2+λ2/3
k M2/3

,

(137a)

 

H(r) = r2+λ2/3
k M2/3, (137b)

λkwhere  the  quantum  parameter  originates  from
holonomy  modifications  [22, 23].  This  metric  is  static
and spherically symmetric, which is obtained in terms of
the effective equation of loop quantum gravity and is con-
sidered  to  be  the  quantum  extension  of  Schwarzschild
black holes. In the rotating metric, the function Δ that de-
termines horizons is 

∆ = FH+a2 = r2+4λ2/3
k M2/3−2M

»
r2+4λ2/3

k M2/3+a2,

(138)

and the corresponding horizons are located at 

rH =

…Ä
M±
√

M2−a2
ä2
−4λ2/3

k M2/3. (139)

λk ∈
(
0,M2/8

]
re =
»

M2−4λ2/3
k M2/3

a = M λk ∈
(

M2/8,M2
]

a = 2M1/3
»
λ1/3

k M2/3−λ2/3
k

When ,  the  ultimate  state  of  rotating  loop
quantum  gravity  black  holes  will  remain  at  its  extreme
configuration  with  the  horizon: ,
and the rotation parameter . When ,
the  ultimate  state  will  be  a  one-way  wormhole  with

.
Next,  we  consider  the  necessary  conditions  for  the

laws  of  thermodynamics.  The  first  necessary  condition,
Eq. (75a), for the first law requires 

4r
[
−5λ2/3

k M+λ2/3
k

√
4(λk M)2/3+ r2−M1/3r2

]
M1/3

[
(λk M)2/3+ r2

] √
4(λk M)2/3+ r2

= −4, (140)

r ∈ [re,»
4M2−4λ2/3

k M2/3]
but  it  is  not  satisfied  within  the  range  of 

. Thus,  the  first  law is  invalid  for  ro-
tating loop quantum gravity black holes.

For the second law of thermodynamics, the necessary
condition, Eq. (79b), requires 

2r(λk M)2/3
[
4M−

√
4(λk M)2/3+ r2

][
(λk M)2/3+ r2

] √
4(λk M)2/3+ r2

= 0. (141)

λk = 0It can only be satisfied when , in which case the ro-
tating  loop  quantum  gravity  black  holes  revert  to  Kerr
black holes.  Therefore,  the second law of thermodynam-
ics  is  not  satisfied  by  the  rotating  loop  quantum  gravity
black holes.

Finally,  we  examine  the  evolution  of  rotating  loop
quantum gravity black holes near an ultimate state. When
the ultimate state is an extreme configuration, the condi-
tion, Eq. (103), becomes 

−6λ2/3
k

M1/3
= 0, (142)

M > 0
λk , 0
which is unattainable under the circumstances,  and

. Therefore, this case leads to the disappearance of
horizons when incident scalar particles are incoming, in-
dicating a breakdown of both the third law and weak cos-
mic censorship conjecture. If the final state is a one-way
wormhole, the condition, Eq. (103), becomes 

7λ1/3
k −8M2/3 = 0. (143)

λk = (8/7)3 M2 λkIt is only applicable to , but  falls outside
its  reasonable  range.  In  this  scenario,  the  rotating  loop
quantum gravity black holes may eventually transform in-
to  a  two-way  wormhole.  Thus,  all  the  first,  second,  and
third  laws  of  thermodynamics  are  invalid  in  loop
quantum gravity black holes. 

C.    Summary for above applications
In  summary,  we  list  validity  or  invalidity  for  three

black  hole  models  to  obey  the  laws  of  thermodynamics
and  weak  cosmic  censorship  conjecture  in Table  1.  The
violation  of  the  first  law  is  evident  in  the  three  models.
Meanwhile, both the Hayward and loop quantum gravity
black holes fail to satisfy all the laws, indicating that ro-
tating regular black holes may require new definitions of
thermodynamic quantities  and  new  laws  of  thermody-
namics.  For  Kerr  black-bounce  solutions,  while  the  first

 

Table 1.    This table shows whether the three specific models
of rotating  regular  black  holes  satisfy  the  laws  of  thermody-
namics and weak cosmic censorship conjecture,  where "WC-
CC" is the abbreviation of weak cosmic censorship conjecture.

Hayward
Kerr black-

bounce
Loop quantum

gravity
First law no no no

Second law no yes no

Third law no yes no

WCCC of extreme BHs no yes no
WCCC of one-way

wormholes
no no
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law  is  violated,  both  the  second  and  third  laws  are  still
well  fulfilled.  This  suggests  that  the  area  entropy  has  a
certain  degree  of  thermodynamic  self-consistency.  The
primary challenge lies in modifying the first law of ther-
modynamics  to  achieve  overall  self-consistency  for  all
the laws of thermodynamics. 

D.    Attempts to recover the laws of thermodynamics for
rotating regular black holes

The analyses in the above three subsections show that
rotating regular  black holes break the laws of  thermody-
namics  deduced  from  singular  black  holes.  In  practice,
static  regular  black  holes  behave  similarly,  where  two
modified approaches are mainly adopted: One is to modi-
fy  the  definition  of  entropy  [61−63],  and  the  other  is  to
extend phase spaces by treating regularized parameters as
variables [54, 55, 64]. In the following, we attempt to em-
ploy the two methods in the recovery of the laws of ther-
modynamics for rotating regular black holes. 

1.    Modification of entropy

S M

Modifying the definition of entropy aims to establish
the entropy  that  conforms  to  the  first  law  of  thermody-
namics. As previously mentioned, if the first law of ther-
modynamics deduced from singular black holes holds for
regular black holes, the second law also holds for regular
black  holes.  Therefore,  it  can  ensure  the  validity  of  the
two laws to discover a suitable definition for entropy. Let
us assume that the entropy in question denoted by  sat-
isfies the first law of thermodynamics, 

TdS M = dM−ΩHdJ, (144)

(M, J)and  it  can  be  obtained  through  integration  in  the 
plane.  Note  that  the  entropy  must  be  independent  of  the
choice  of  integration  paths.  Therefore,  according  to  the
path  independence  of  curve  integrals,  the  sufficient  and
necessary condition of a suitable entropy is 

∂

∂J

Å
1
T

ã
= − ∂

∂M

Å
ΩH

T

ã
. (145)

This  condition  is  comparatively  more  flexible  than  the
condition  described  by  Eqs.  (104a)  and  (104b)  because
the  latter  requires  not  only  a  path-independent  entropy
but also an area entropy.

Now,  we  apply  the  condition  Eq.  (145)  to  the  three
specific models discussed above. By defining 

Di ≡
∣∣∣∣ ∂∂J

Å
1
T

ã
+

∂

∂M

Å
ΩH

T

ã∣∣∣∣ , (146)

Diwe  plot  the  diagrams  shown  in Fig.  2 in  which 

M = 1

Di
(M, J)

changes  with  respect  to  the  angular  momentum  for  the
three modes with a given black hole mass  but dif-
ferent regularization parameters. Based on this figure, we
conclude that no appropriate entropy exists for the fulfill-
ment  of  the  first  law  of  thermodynamics  because  is
non-vanishing  in  the  plane. Hence,  require  rotat-
ing regular black holes to satisfy the first law of thermo-
dynamics solely by modifying entropy is not feasible. 

2.    Extension of phase spaces

(Y1,Y2,
Y3, · · · ,Yn)

We  consider  the  regularization  parameters, 
,  as  variables  that  vary  during  the  process  of

particle  incidence to extend a phase space.  Based on the
existence  conditions  of  black hole  event  horizons  before
and after a particle incident process, we express the rela-
tionship among the first order derivatives of variables, 

drH = −
∂∆

∂M

Å
∂∆

∂r

ã−1 ∣∣∣
r=rH

dM− ∂∆
∂J

Å
∂∆

∂r

ã−1 ∣∣∣
r=rH

dJ

−
n∑

i=1

∂∆

∂Yi

Å
∂∆

∂r

ã−1 ∣∣∣
r=rH

dYi, (147)

and derive the corresponding change of entropy: 

dS H =
∂S H

∂M
dM+

∂S H

∂J
dJ+

∂S H

∂rH
drH+

n∑
i=1

∂S H

∂Yi
dYi. (148)

By combining Eqs. (147) and (148), we obtain 

dS H = ÃdM+ B̃dJ+
n∑

i=1

C̃idYi, (149)

where 

Ã =
∂S H

∂M
− ∂S H

∂rH

∂∆

∂M

Å
∂∆

∂r

ã−1

, (150a)

 

B̃ =
∂S H

∂J
− ∂S H

∂rH

∂∆

∂J

Å
∂∆

∂r

ã−1

, (150b)

 

C̃i =
∂S H

∂Yi
− ∂S H

∂rH

∂∆

∂Yi

Å
∂∆

∂r

ã−1

. (150c)

Ã B̃ Â B̂
C̃i

Here  and  play the same role as  and  in Eq. (70),
but  is  non-vanishing.  Comparing  Eq.  (70)  with  Eq.
(149), we deduce that the extension of phase spaces can-
not revise  the  first  law.  In  conclusion,  neither  the  modi-
fication  of  entropy  nor  extension  of  phase  spaces  can
render  the  laws  of  thermodynamics  for  rotating  regular
black holes, indicating that further research is required to
explore correct laws of thermodynamics for rotating regu-
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lar black holes. 

VI.  CONCLUSION

In  this  paper,  we  establish  criteria  for  the  validity  of
thermodynamic laws and weak cosmic censorship conjec-
ture in rotating regular black holes by examining the pro-
cess of the incidence of neutral scalar particles into a ro-
tating  regular  black  hole.  In  this  process,  we  calculate
mass,  charge,  and  other  conserved  quantities  of  black
holes  in  general  and  provide  the  formula  of  Hawking
temperature for rotating regular black holes.  By examin-
ing the relationships among these quantities, we evaluate
whether  rotating  regular  black  holes  satisfy  the  laws  of
thermodynamics  deduced  from  singular  black  holes.
Moreover,  we  oberve  that  a  complementary  relationship
between the third law of thermodynamics and weak cos-
mic  censorship  conjecture  exists  only  when  the  ultimate
state of a rotating regular black hole is an extreme config-
uration. Alternatively, the ultimate state of a rotating reg-
ular black hole is a one-way wormhole, such that the ro-
tating  regular  black  hole  evolves  into  a  two-way worm-
hole without violating the third law but leading to disap-
pearance  of  event  horizons,  i.e.,  leading  to  invalidity  of
the  weak  cosmic  censorship  conjecture.  To  provide  a
deeper understanding  of  such  an  evolution,  we  must  es-
tablish  the  thermodynamics  of  wormholes  in  a  manner

that connects  the  thermodynamic  states  of  rotating regu-
lar black holes before evolution to those states after evol-
ution.

In addition, for three specific models of rotating regu-
lar black holes, we verify their compliance with the ther-
modynamic laws and weak cosmic censorship conjecture.
However,  as  shown in Table  1,  two  of  the  three  models
do not satisfy all the laws of thermodynamics, suggesting
that a reestablishment of thermodynamics is necessary for
them.  Fortunately,  the  Kerr  black-bounce solution  satis-
fies the second and third laws of thermodynamics. In the
attempt to recover the laws of thermodynamics for rotat-
ing  regular  black  holes,  we  eomploy  the  redefinition  of
entropy  and  extension  of  phase  spaces.  However,  these
two methods fail, indicating the unusual property of rotat-
ing regular  black  holes.  Such  an  unusual  property  im-
plies  the  necessity  of  employing  alternative  approaches
that are distinct from those employed in static and spher-
ically symmetric regular black holes, to recover the ther-
modynamic  laws  applicable  to  rotating  regular  black
holes. Meanwhile,  if  a black hole is treated as a thermo-
dynamic system, the self-consistency of the first, second,
and third laws must fully be guaranteed. The significance
of our results is that we may establish the self-consistent
thermodynamic  laws  by  considering  the  inconsistencies
we have revealed.

Finally,  we  propose  some  ideas  that  are  useful  for  a

 

Di

M = 1

Fig. 2.    Relationship between  and the angular momentum under different regularization parameters in the three specific black hole
models, where the black hole mass .
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deeper understanding of rotating regular black holes.
 

●  To  redefine  the  conserved  quantities  of  a  rotating
regular black hole. The aforementioned conserved quant-
ities, such as mass and angular momentum, are defined in
an  entirety  of  spacetime.  If  we  consider  only  the  region
inside a horizon of a rotating regular black hole as a ther-
modynamic system, we may constrain the scope of integ-
ration within a horizon, which would affect the configura-
tions  of  conserved quantities  and thus  the  corresponding
thermodynamic system.
 

● To obtain a new algorithm for the construction of a
rotating regular black hole. As a mathematical technique,
the  NJA  transforms  a  static  and  spherically  symmetric
black hole into a rotating and axially symmetric one. Ow-
ing  to  its  nonphysical  defects,  such  as  a  complex  radial
coordinate, we may require a more suitable algorithm for

constructing a rotating regular black hole.
 

● To  consider  the  reaction  caused  by  particle  incid-
ence. Our present discussions neglect the spacetime reac-
tion  during particle  incidence.  If  we consider  the  impact
of particle incidence on field equations, the original rela-
tionships  among  conserved  quantities  may  be  altered,
leading to modifications in thermodynamic laws.
 

● To introduce the  quantum correction in  black hole
models. Studies have shown that the first law of thermo-
dynamics  for  some rotating  black  holes  can  be  self-con-
sistent by limiting the running Newton coupling under the
asymptotically  safe  gravity  [65]  .  This  method  provides
an alternative route to recover the first law of thermody-
namics for the rotating regular black holes we have ana-
lyzed.  An  interesting  aspect  is  extending  the  method  to
the recovery of the second and third laws.
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