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Abstract: Horndeski theory constitutes the most general model of scalar-tensor theories. It has attracted much at-
tention in recent years in relation with black holes, celestial dynamics, stability analysis, etc. It is important to note
that, for certain subclasses of Horndeski models, one can obtain analytic solutions for the background fields. This fa-
cilitates  the  investigation  of  the  corresponding  stability  problems  in  detail.  In  particular,  we  aim to  determine  the
constraints to the model or theory under which the stability conditions can be satisfied. In this study, we focused on a
subclass of Horndeski theory and a set of analytic background solutions. In addition, the odd-parity gravitational per-
turbation and 2nd-order Lagrangian were investigated. Through careful analysis, the instability was identified within
the neighborhood of the event horizon. This allows exclusion of a specific geometry for the model. Such an instabil-
ity is implanted in the structure of the corresponding Lagrangian and is not erased by simply adding numerical con-
straints on the coupling parameters. As a starting point of our research, the current study provides insights for fur-
ther exploration of the Horndeski theory.
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I.  INTRODUCTION

The  detection  of  the  first  gravitational  wave  (GW)
from  the  coalescence  of  two  massive  black  holes  (BHs)
by advanced LIGO/Virgo marked the beginning of a new
era  —  the  GW  astronomy [1].  After  100  years,  one  of
Einstein's  crucial  predictions  was  finally  confirmed  [2].
Following this observation, approximately 90 GW events
have been identified by the LIGO/Virgo/KAGRA (LVK)
scientific  collaborations  (see  for  instance  [3−6]).  In  the
future,  more advanced ground- and space-based GW de-
tectors  will  be  constructed  [7, 8], such  as  Cosmic  Ex-
plorer  [9],  Einstein  Telescope  [10],  LISA  [11],  TianQin
[12, 13],  Taiji  [14],  and  DECIGO  [15].  These  detectors
will enable probing signals with a much wider frequency
band  at  larger  distances.  The  advances  in  this  field
triggered the interest in the observation of the quasi-nor-
mal  mode (QNM) of  black holes  [16], extreme mass  ra-
tio inspirals (EMRIs) [17], etc.

In  general,  GWs  emitted  during  the  ringdown  stage
are studied using the perturbation theory [18, 19]. In gen-

eral relativity  (GR),  this  theory  has  been  employed  ex-
tensively  in  terms  of  scalar,  vector,  and  tensor  (gravita-
tional)  perturbations  [20].  In  fact,  the  QNMs  generated
from gravitational perturbations are closely related to the
test and confinement of theories of gravity [21]. The res-
ultant QNM frequencies  reflect  some  aspects  of  the  sta-
bility  of  the  spacetime  under  consideration  [22]. Simul-
taneously, the  gravitational  perturbations  on  the  back-
ground  fields  also  play  an  important  role  in  the  stability
analysis.

For a spherically symmetric geometry, such a perturb-
ation  problem  can  be  divided  into  odd- and  even-parity
sectors.  In  most  cases,  the  latter  exhibit  a  more  intricate
structure  (see  for  instance  [23]).  It  is  important  to  note
that, under the framework of GR, the characters of gravit-
ational  perturbations  are  relatively  easy  to  track  (see  for
instance  [24]). However,  moving  to  the  realm  of  modi-
fied theories  of  gravity,  the  structure  of  the  original  ac-
tion (or  equivalently,  the  Lagrangian)  can  become soph-
isticated, which often sets barriers to achieve the desired
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physical information. One approach to address this prob-
lem is  to work on the original  perturbed Lagrangian and
eliminate  its  non-dynamical terms  (according  to  the  de-
grees  of  freedom  of  the  theory)  before  further  analysis
[16].

Basically, we can substitute the entire background as
well  as  perturbation  terms  into  the  original  Lagrangian.
Treating  a  perturbation  term  as  a  1st-order  infinitesimal
quantity allows extracting the 2nd-order part from such a
Lagrangian. Subsequently,  by  using  effective  mathemat-
ical techniques and (probably) introducing suitable gauge
invariants, one can (in principle)  achieve notable simpli-
fication and eliminate  all  the non-dynamical  terms.  As a
result, it  is  straightforward  to  manage  the  reduced  Lag-
rangian. Such a reduced Lagrangian is crucial for the sta-
bility  analysis  [25−27]. Furthermore,  under  certain  cir-
cumstances, this type of stability analysis enables a meth-
od to set constraints on a modified theory based on the in-
herence of its self-consistency [27].

In this study, we investigated the stability of the 2nd-
order Lagrangian  of  a  subclass  of  Horndeski  theory  un-
der  odd-parity  gravitational  perturbations.  As  the  most
general  model  of  scalar-tensor theories,  Horndeski  the-
ory  (and  beyond)  has  recently  attracted  much  attention
[25, 28−31].  In  Horndeski  theory,  the  action  contains  a
scalar field and the metric tensor field, which give rise to
the metric and scalar fields equations with no derivatives
beyond  the  second  order.  Horndeski  theory  features  the
same symmetry as that of GR, including local Lorentz in-
variance  and  diffeomorphism  [32].  In  fact,  the  stability
problem in  Horndeski  theory  has  been  intensively  stud-
ied during the past decade [33, 34]. Many typical config-
urations of the Lagrangian have been investigated. In this
study, we  focused  on  a  set  of  specific  background  solu-
tions  of  the  theory  and  analyzed  the  details  concerning
how  the  stability  is  preserved  or  broken.  According  to
[27], the choice of coupling parameters at the Lagrangian
level  can  affect  the  criterion  for  stability  analysis  in  a
comprehensive  manner.  This  is  demonstrated  in  this
study through analytic background solutions.

The rest  of  the paper is  organized as follows.  Sec.  II
provides the background hairy black hole solutions to the
fields in  Horndeski  theory  and  demonstrates  the  corres-
ponding  odd-parity  perturbations.  A  notably  simplified
2nd-order  Lagrangian  is  obtained  from  the  original  one.
We present the stability analysis in Sec. III and study how
instability emerges. Finally, some concluding remarks are
provided in Sec. IV.

c =G = 2M = 1
In  this  paper,  we  adopt  a  unit  system  in  which

,  where c denotes  the speed of  light, G is
the  gravitational  constant,  and M denotes  the  total  mass
of  the  black  hole.  All  the  Greek  letters  in  indices  range
from 0 to 3. The other usages of indices will be described
in due course. 

II.  BACKGROUND FIELDS AND ODD-PARITY
GRAVITATIONAL PERTURBATION

ϕ(r)
We  consider  an  action  in  Horndeski  theory  with  a

scalar field denoted by  [35], 

S =
∫

d4x
√−g

{
Q2(χ)+Q3(χ)□ϕ+Q4(χ)R

+Q4,χ
[
(□ϕ)2− (∇µ∇νϕ)

(
∇µ∇νϕ

)]}
, (1)

where 

χ ≡ −1
2
∇µϕ∇µϕ, (2)

and 

Q2 = α21χ+α22(−χ)w2 , (3)

 

Q3 = α31(−χ)w3 , (4)

 

Q4 = κ
−2+α42(−χ)w4 , (5)

κ ≡
√

8π
α21 = α31 = 0

w2 = 3w4 = 3/2

∇
□ □ ≡ ∇µ∇µ

with .  For the 4-current  to vanish at  infinity and
considering the finiteness of energy, we set 
and  [35]. The comma in the subscript de-
notes  the  derivative  with  respect  to  the  quantity  close  to
it, R is  the Ricci  scalar,  denotes the covariant  derivat-
ive operator, and the operator  is defined as .

(t,r, θ,ϕ)

The  static  and  spherically  symmetric  background
metric  is  expressed  in  the  line-element  form  as  [in  the
Boyer-Lindquist coordinate ] 

ds2 = −Adt2+B−1dr2+ r2dΩ2, (6)

dΩ2

ϕ0

where  is the unit two-sphere line element, and A and
B are  functions  of r.  Their  explicit  expressions,  together
with  the  background  scalar  field  (denoted  by ),  are
found to satisfy 

A(r) = B(r) = 1− 1
r
+

q
r

lnr,

ϕ′0 = k
2
r

…
− α42

3Bα22
, (7)

k = ±1
q = (2/3)3/2κ2α42

√
−α42/α22 α42·

α22 ≤ 0

where  a  prime  in  the  superscript  denotes  the  derivative
with  respect  to r and .  The  charge q satisfies

.  Clearly,  we  must  set 
.

On the basis of the background fields just defined, we
are  on  the  position  to  consider  the  odd-parity perturba-
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tions1) to them. Note that,  given that the scalar field per-
turbation only has even-parity contributions [39, 40],  we
only  consider  the  gravitational  perturbation  for  the  odd-
parity sector.

gµν = ḡµν+ ϵhµν ϵ

ϕ = ϕ0 hµν

We define the metric as ,  where  is  a
bookkeeping  parameter  (in  contrast,  for  the  scalar  field
we  simply  have ).  The  perturbation  function 
can be parameterized as [16]

hµν =
∞∑

l=0

l∑
m=−l

â
0 0 Clm cscθ∂φ −Clm sinθ∂θ
0 0 Jlm cscθ∂φ −Jlm sinθ∂θ

sym sym Glm cscθ
(

cotθ∂φ−∂θ∂φ
)

sym

sym sym
1
2

Glm
(

sinθ∂2
θ − cosθ∂θ − cscθ∂2

φ

)
−Glm sinθ

(
cotθ∂ϕ−∂θ∂φ

)

ì
Ylm(θ,φ), (8)

Clm Jlm Glm

Ylm(θ,ϕ)
m = 0

∂ϕYlm(θ,ϕ) = 0

Glm = 0
Clm Jlm

lm

where , ,  and  are  functions  of t and r,  while
 denotes the spherical harmonics. From this point

on,  we  set  in  the  above  expressions  so  that
.  The  background  has  spherical  symmetry,

and the corresponding linear perturbations do not depend
on m [38, 41]. In addition, we adopt the gauge condition

 (which can be referred to as the RW gauge [38])
in the following, which will set  and  as gauge in-
variants  [16].  For  simplicity,  we drop the  subscript  " "
in the following to avoid any confusion.

O(ϵ2)

By  substituting  the  full  metric  and  scalar  field  back
into the Lagrangian [the integrant of the action described
by Eq. (1)], and selecting the  terms, we obtain
 

Lodd = L
Ä
β1 J̇2−2β1 J̇C′+β1

4
r

J̇C

+β1C′2+β2J2+β3C2
ä
, (9)

where

β1 ≡
1

2κ2

…
B
A
,

β2 ≡
A2

8A3/2κ2r2ϕ′

ï
8B3/2ϕ′+2

√
2B2κ2

(
4α42 (ϕ′)2

+2α42r2 (ϕ′′)2
+ (α22−2α42)r2 (ϕ′)4−2α42r2ϕ(3)ϕ′

)
+
√

2α42κ
2r2 (B′)2 (ϕ′)2−2

√
2α42Bκ2rϕ′ (rB′′ϕ′+B′ (rϕ′′+2ϕ′))−4

√
BLϕ′

ò
+

2
√

2α42B2κ2r2 (A′)2 (ϕ′)2−ABrϕ′
Ä

2
√

2α42Bκ2rA′′ϕ′+
√

2α42κ
2rA′B′ϕ′−8

√
BA′
ä

8A3/2κ2r2ϕ′
,

β3 ≡
A2

16A5/2Bκ2r2ϕ′

ß
2
√

2B2κ2r
(
2α42r (ϕ′′)2

+ (α22−2α42)r (ϕ′)4−4α42ϕ
′ (rϕ(3)+2ϕ′′

))
+8
√

Bϕ′ (L− rB′)+
√

2α42κ
2r2 (B′)2 (ϕ′)2

+4
√

2α42Bκ2ϕ′
[
ϕ′
(
r2 (−B′′)−4rB′+L

)
−2r2B′ϕ′′

]™
+

3
√

2α42B2κ2r2A′2ϕ′2−4ABrϕ′
î√

2α42κ
2rA′B′ϕ′+2

√
BA′+

√
2α42Bκ2 (rA′′ϕ′+A′ (rϕ′′+2ϕ′))

ó
16A5/2Bκ2r2ϕ′

,
(10)

L ≡ l(l+1)
(n)

α42 = α22 = 0

;  a  dot  on  a  variable  denotes  time  derivative
whereas " ''  in the superscript denotes the n-th derivat-
ive with respect to r. Note that to obtain Eq. (9), integra-
tion by parts [42] and the properties of spherical harmon-
ics  [16] have  been  widely  used.  Note  also  that  the  Lag-
rangian previously defined can be reduced to that of GR
at the  limit.

According  to  [27] and  introducing  a  new  gauge  in-

variant
 

ζ ≡ 2
r

C−C′+ J̇, (11)

the Lagrangian expressed by Eq. (9) becomes
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(−1)l+1

(−1)l

1) The "odd-parity", or equivalently "axial", gravitational perturbation got its name mainly due to the individual properties of parity transformation when decompos-
ing as tensor harmonics [36]. Basically, the odd-parity part will catch a factor of  under the parity transformation, which is different from its counterpart in the
even-parity sector, viz.,  [37]. Here for simplicity, by following the notation system of, e.g., [38], these odd-pairty parts are collected and given in the form of (8),
as will be seen shortly.
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Lodd = L
ß
β1

ï
ζ2−2ζ

Å
2
r

C−C′+ J̇
ãò

+β2J2+

Å
β3−

2
r2
β1−

2
r
β′1

ã
C2
™
, (12)

for which the Euler-Lagrange (E-L) equation [43] can be
applied on C and J so that their expressions in terms of ζ
can  be  solved.  Similar  to  previous  studies,  for  instance
[16]  and  [27], these  solved  expressions  can  be  substi-
tuted back  into  Eq.  (12),  leading  to  a  Lagrangian  com-
posed  of  a  single  variable ζ (given  that  non-dynamical
terms  have  been  eliminated).  Such  a  Lagrangian  can  be
expressed as 

Lodd = Kζ̇
2
+Gζ′2+Nζ2. (13)

K G N

α42 = α22 = 0

To  abbreviate  the  mathematical  formulation,  we  shorten
the  full  expressions  of , ,  and . These  full  expres-
sions  can be found in  the  supplemental  material  of  [44].
The Lagrangian expressed by Eq. (13) is  reduced to that
of GR at the  limit. 

III.  STABILITY ANALYSIS

K > 0 K

r = 1

Let  us  work  on  the  basis  of  the  reduced  Lagrangian
expressed  by  Eq.  (13).  According  to  [39],  the  no-ghost
stability condition requires . Using Eq. (7) on , at
the point  it becomes 

K|r→1 =

81
…

3
2
α22

…
−α42

α22
L

64π2α2
42

Å
16π
√

6
…
−α42

α22
α42+9

ã
2k

. (14)

α22·
k > 0 −α42 · k > 0

κ22 ≡ α22/k κ42 ≡−α42/k

Clearly,  the  no-ghost  condition  holds  only  when 
, which implies . For later convenience, let

us introduce a set of reduced coupling parameters (which
are always positive):  and .

cr ≡ dr∗/dt = ĉr/A ĉr

ĉ2
rK+G = 0 ĉ2

r = −G ·K−1

ĉ2
r ≥ 0

According to [27], we define the propagation speed at
the  radial  direction  as .  Here,  is  a
quantity introduced  to  better  describe  the  radial  Lapla-
cian  stability  condition,  which  is  found  to  satisfy

 [27],  so  that .  Furthermore,  the
radial Laplacian stability condition is given by .

ĉ2
r

(κ42, κ22)
l = 2

k = ±1
ĉ2

r ≥ 0
ĉ2

r

r = 1

To monitor  the behavior of  as  a  function of r,  we
plotted  it  out  in  the  phase  space  of  by  setting

,  as  shown  in Fig.  1 for  various  values  of r; both
cases, , are  considered.  Within  the  colorful  shad-
owed regions, the radial Laplacian condition, viz., ,
is satisfied. In these regions, the quantity  is considered
at different positions by varying r.  Note from Fig. 1 that
the "stable region" is shrinking as r approaches the event
horizon . It is omitted in Fig. 1 that the stable region

1
r = 1+10−20
disappears  if r is  sufficiently  close  to ,  e.g.,  when

. This  means  that  this  type  of  instability  ex-
ists no matter how the coupling parameters are chosen.

ĉ2
r

r = 1
For  further  clarity,  let  us  consider  the  quantity  in

the neighborhood of the event horizon  (without set-
ting l to  a  specific  value)  and  insert  the  full  expressions
[44]. This leads to
 

ĉ2
r

∣∣
r→1 = −

2
81

(r−1)2
Å

16
√

6πκ42

…
κ42

κ22
k−9
ã2

+O(r−1)3. (15)

Thus,  for  any  combination  of  the  coupling  parameters,

 

(κ42, κ22)
ĉ2

r ≥ 0

r = 104, 500, 20, 1.001

k = 1 k = −1 l = 2
(κ42, κ22) κ42 κ22

Fig. 1.    Phase space of  for which the shadowed re-
gions satisfy , i.e., the radial Laplacian condition is satis-
fied. The blue,  orange,  green,  and red shadowed regions cor-
respond  to ,  respectively.  Upper  panel:

; lower panel: . Here we set . Note that only the
first  quadrant of  is considered given that  and 
are defined to be positive (cf., Sec. III).
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r = 1
the radial Laplacian instability always exists in the neigh-
borhood of , as  we previously  mentioned.  This  res-
ult is consistent with the conclusions drawn in [33−45]1). 

IV.  CONCLUSIONS

In  this  paper,  we  focused  on  a  specific  subclass  of
Horndeski  theory  describing  the  action  defined  by  Eq.
(1). Using  a  set  of  analytic  background  solutions  ex-
pressed by Eq. (7) (with deviations from GR mainly char-
acterized by two coupling parameters), we systematically
investigated  the  odd-parity  gravitational  perturbation  on
the  background  and  extracted  the  2nd-order  Lagrangian
of the theory. Applying suitable mathematical techniques,
the  original  Lagrangian  was  finally  reduced  to  the  form
expressed by Eq. (13), which presents one degree of free-
dom,  as  expected2). We  further  conducted  stability  ana-
lysis (see for instance [25, 27, 39]) and demonstrated how
the instability emerges.

r = 1
ĉ2

r

r→ 1
r = 1 ĉ2

r (r = 1) = 0

Certain  constraints  to  the  coupling  parameters  were
identified  from  the  no-ghost  condition  [cf.,  (14)].  Based
on that, the subsequent calculations were simplified. This
allows for the calculation and analysis of the radial Lapla-
cian  stability  condition  within  the  valid  phase  space  of
(reduced)  coupling  parameters  (cf., Fig.  1). Figure  1
shows  that  such  a  stability  condition  requires  additional
constraints to the coupling parameters. More importantly,
this stability condition tends to be broken in the neighbor-
hood  of  the  event  horizon .  Indeed,  by  using  the
asymptotic  expansion  of  the  criterion  [cf.,  (15)],  it  is
clear that this condition will not be preserved anymore as

 [although we observed that such a condition can be
satisfied  right  at  the  point ,  where ]  is

precisely satisfied,  no  matter  how the  coupling  paramet-
ers are  chosen.  Thus,  we  conclude  that  the  set  of  back-
ground solutions given by Eq. (7) is not stable and needs
to be excluded from the valid solutions, which is consist-
ent with the predictions presented in [34].

r = 1

Setting  those  coupling  parameters  to  zero  (as  in  the
GR limit) in the final criterion or discriminant [cf.,  (15)]
will  not  always  lead  to  that  of  GR,  departing  from what
we  observed  at  Lagrangian  level.  In  [27, 45], we  ob-
served  similar  phenomena.  This  implies  that  the  (in)sta-
bility of a theory could be a comprehensive effect and is
not necessary for the criterion to behave like a perturba-
tion to  the  stable  GR case.  It  is  also  interesting  to  men-
tion  that,  according  to Fig.  1, the  most  stringent  con-
straints to the coupling parameters are given by the ana-
lysis  within  the  neighborhood  of  (instead  of  other
positions  far  from  the  event  horizon).  This  is  similar  to
the situation described in [39].

In the future, we will address other background solu-
tions and models of Horndeski theory. According to [34],
we  will  pay  more  attention  to  stable  cases.  In  principle,
the corresponding stability analysis can not only help set
constraints to the model but also produce a reduced Lag-
rangian as a byproduct, which can serve for the QNM cal-
culations in the next step. The investigation of more mod-
els will  facilitate  the  derivation  of  some  common  fea-
tures according to conclusions from different cases. 
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2) Notice that, due to the tediousness of the factors of (3), their explicit expressions are omitted in here and provided in [44] instead.
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