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I.  INTRODUCTION

The study of gravitational waves has become a highly
important subject in cosmology since the direct observa-
tion  of  gravitational  waves  by  LIGO  and  VIRGO  [1].
Gravitational waves can be described as a solution to the
Einstein equation, where the metric is perturbed around a
certain  background.  When  the  background  is  chosen  as
the black hole spacetime, one can, for example, consider
the  gravitational-wave  radiation  from  a  relatively  light
object rotating around the black hole, which can be stud-
ied  using  the  black-hole  perturbation  theory  [2].
However, when the mass of the object is not so light, the
contribution to  the  background  spacetime  from  this  ob-
ject may  not  be  negligible.  In  such  a  case,  the  back-
ground must be modified or other methods must be used,
such as  the post-Newtonian approximation [3]. One sys-
tematic method  for  modifying  the  background  is  pro-
posed as effective one-body (EOB) dynamics [4, 5].

The background of EOB dynamics is deformed by the
black hole spacetime and hence may not satisfy the vacu-
um  Einstein  equation.  Motivated  by  this,  we  consider  a
general spherically  symmetric  spacetime as  a  simple  ex-
ample of the background, which is not necessarily a vacu-
um. A particular form of the background appears in EOB
dynamics for the spinless binary system [4, 5]. The spher-
ically  symmetric  spacetime  satisfies  the  Petrov  type  D
condition,  which  has  played  a  key  role  in  deriving  the
gravitational-wave equation in previous studies [6−8] us-
ing  the  Newman-Penrose  formalism  [9],  similar  to  the

Teukolsky equation [10] in the vacuum case. The advant-
age  of  using  the  Newman-Penrose  formalism  is  that  the
role  of  the  Einstein  equation  is  restrictive  and  is  merely
used  to  relate  the  Ricci  tensor  to  the  energy-momentum
tensor.  Therefore,  the  extension  to  the  non-vacuum case
is relatively easier. It has been found that in order to ob-
tain  the  decoupled  wave  equation,  the  gauge  condition
must  be  taken  such  that  some of  the  coupled  degrees  of
freedom vanish [6−8]. To date, two types of the gravita-
tional-wave equation have been proposed [7, 8] owing to
the difference in the gauge conditions.

In this study, we investigate massless wave equations
with different spins, that is, the (massless) Klein-Gordon,
Weyl,  and  Maxwell  equations  on  the  same  background
spacetime. To avoid complexities, we first provide a uni-
fied expression for these equations consisting of the New-
man-Penrose quantities, as in [11−14], and obtain the ex-
plicit wave equation and ordinary differential equation for
the radial coordinate.

0
±1/2 ±1 ±2

The  remainder  of  this  paper  is  organized  as  follows.
In  Section  II,  we  introduce  our  parameterization  of  the
background  of  a  spherically  symmetric  spacetime  and
present the quantities in the Newman-Penrose formalism.
In Section III,  we observe the wave equation for  spin ,

, ,  and  on this background. Subsequently, we
provide  the  unified  expression  for  these  equations  with
general spin s and obtain the explicit Teukolsky-like mas-
ter  equation  and  the  corresponding  radial  equation.  In
Section IV, we discuss the gauge dependence in the grav-
itational-wave equations proposed in previous studies. Fi-
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nally,  Section  V  presents  a  summary  and  discussion.  In
Appendix A, we list our notations and conventions. 

II.  BACKGROUND METRIC AND TETRADS

We consider the general spherically symmetric back-
ground as 

ds2 =A(r)dt2−B(r)dr2−C(r)r2(dθ2+ sin2 θdφ2). (1)

C(r) = 1
D(r) =

√
A(r)B(r)

By  choosing  appropriate  radial  coordinate r,  we  can
set , which corresponds to the standard coordinate.
We define , and then background met-
ric (1) becomes 

ds2 =A(r)dt2− D(r)2

A(r)
dr2− r2(dθ2+ sin2 θdφ2). (2)

The null tetrads corresponding to metric (2) are taken as 

l = lA
µdxµ = dt− D(r)

A(r)
dr,

n = nA
µdxµ =

A(r)
2

dt+
D(r)

2
dr,

m = mA
µdxµ = − r√

2
(dθ+ i sinθdφ),

m̄ = m̄A
µdxµ = − r√

2
(dθ− i sinθdφ), (3)

which satisfy 

ds2 = 2ln−2mm̄, (4)

where the  bar  denotes  the  complex  conjugate.  Super-
script (or subscript) A is used as the symbol of the back-
ground  quantities  [10].  Conversely,  for  the  perturbation
quantities  of  the gravitational  field,  we use superscipt B,
which will appear later.

From the tetrad basis (3), we can compute spin coeffi-
cients  and the  components  of  the  Ricci  tensor  and Weyl
scalars as 

κA = νA = σA = λA = πA = τA = ϵA = 0, (5)

 

ρA = − 1
rD , µA = − A

2rD , γA =
A′
4D ,

αA = −βA = − cotθ
2
√

2r
, (6)

 

ΦA
01 = Φ

A
10 = Φ

A
02 = Φ

A
20 = Φ

A
12 = Φ

A
21 = 0, (7)

 

ΦA
00 =

D′
rD3

, ΦA
22 =
A2D′
4rD3

, (8)
 

ΦA
11 =

1
8r2D3

î
2D3−2AD− r2(A′D′−A′′D)

ó
, (9)

 

ΛA = − 1
24r2D3

î
−2D3− r2A′D′+2A(D−2rD′)

+ rD(4A′+ rA′′)
ó
, (10)

 

ΨA
0 = Ψ

A
1 = Ψ

A
3 = Ψ

A
4 = 0, (11)

 

ΨA
2 =

1
12r2D3

î
2(AD+ rAD′−D3)

− rA′(2D+ rD′)+ r2A′′D
ó
, (12)

D(r) = 1

where  we  follow  the  notations  of  Newman-Penrose  [9]
and Pirani [15]. The same notation is also used for Teuk-
olsky  [10].  We  also  list  the  definitions  of  the  above
quantities in the appendix. The prime symbol denotes the
derivative with respect to r. Equation (11) implies that the
background belongs to Petrov type D, which is important
to derive the wave equation on this background. As a spe-
cial case, for , we have 

ΦA
00 = Φ

A
22 = 0, (13)

and  the  nonvanishing  quantities  in  the  background  are
simplified as 

ρA = −1
r
, µA = −A

2r
, γA =

A′
4
,

αA = −βA = − cotθ
2
√

2r
, (14)

 

ΦA
11 =

1
8r2

(2−2A+ r2A′′), (15)

 

ΛA = − 1
24r2

(−2+2A+4rA′+ r2A′′), (16)

 

ΨA
2 =

1
12r2

(−2+2A−2rA′+ r2A′′), (17)

A = 1−2M/r
D = 1

We  also  note  that  when  choosing  and
,  the  background  reduces  to  the  Schwarzschild

spacetime,  where M is  the  mass  of  the  Schwarzschild
black hole. 

III.  WAVE EQUATIONS WITH VARIOUS SPINS

s = 0

Here,  we  consider  the  wave  equation  with  various
spins s on  the  background  specified  by  (5)–(12)  in  the
previous section, namely, the Klein-Gordon ( ), Weyl
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s = ±1/2 s = ±1
s = ±2

( ), and Maxwell equations ( ) and the equa-
tion  from  the  Newman-Penrose  formalism  ( ) un-
der  the  probe  (test  field)  approximation;  therefore,  the
back reactions from matter  and electromagnetic  fields to
the gravitational  background  are  assumed  to  be  negli-
gible.  For  simplicity,  we  also  assume  that  the  fields  are
massless and minimally coupled to the background of the
gravitational field, unless otherwise specified. 

A.    spin 0
The  massless  Klein-Gordon equation  in  the  gravita-

tional background is 

□ϕ = ∇µ(gµν∂νϕ) =
1√−g

∂µ(
√−ggµν∂νϕ) = T, (18)

∇µwhere T is the source.  is the covariant derivative with
respect to the curved spacetime (not for the local Lorentz
transformation), of  which  the  projection  by  the  null  tet-
rads gives 

DA = lµA∇µ, ∆A = nµA∇µ, δA = mµ
A∇µ, δ̄A = m̄µ

A∇µ. (19)

gµνBy decomposing  in terms of the null tetrads, (18) can
be rewritten as 

[
(∆−2γ+2µ)D+ (D−2ρ)∆− (δ̄−2α)δ− (δ−2α)δ̄

]A
ϕ = T,

(20)

where  the  superscript A outside  the  parentheses  denotes
that all  the  quantities  and  operators  inside  the  paren-
theses  are  background  ones,  and  we  use  the  relation  for
the spin coefficients, 

∇µlµA = −2ρA, ∇µnµA = −2γA+2µA,

∇µmµ
A = ∇µm̄µ

A = −2αA. (21)

For later convenience, we rewrite (20) such that the order
of  the  differential  operators  is  rearranged,  satisfying  the
commutation relations 

∆ADA−DA∆A = 2γADA, δ̄AδA−δAδ̄A = 2αA(δ− δ̄)A.

(22)

We also use 

∆AρA = (2γ−µ)AρA−ΨA
2 −2ΛA, (23)

which is  from  the  background  part  of  that  of  the  New-
man-Penrose equation. Then, (20) can be rewritten as 

[
(∆−2γ+µ)(D−ρ)− (δ̄−2α)δ−Ψ2−2Λ

]A
ϕ =

1
2

T. (24)

−2ΛAϕ

Rϕ = 24ΛAϕ R

Note that the last  term  on the right hand side
is  responsible  for  the  minimal  coupling.  If  we  consider
curvature coupling, there is a contribution proportional to

,  where  is the  Ricci  scalar  (see  the  ap-
pendix). 

±1/2B.    spin 
The massless Dirac equation can be decomposed into

two  Weyl  equations.  For  the  positive  chirality  part,  the
Weyl equation in the gravitational background is 

(δ̄−α)Aχ0− (D−ρ)Aχ1 = 0, (25)

 

(∆−γ+µ)Aχ0− (δ−α)Aχ1 = 0, (26)

χ0 χ1

χ0

where  and  are the components of the Weyl spinor.
We can eliminate  using the following commutation re-
lation: 

[
∆+ pγ− (q−1)µ

]A (δ̄+ pα)A

−
(
δ̄+ pα

)A (∆+ pγ−qµ)A

= νADA−λAδA+ p (αλ+ρν−Ψ3)A

+q (−Dν+δλ−4αλ+2Ψ3)A

= 0, (27)

νA = λA = ΨA
3 = 0

χ1

(∆−γ+2µ)A

(δ̄−α)A

χ0

p = q = −1

where p and q are  arbitrary  constants,  and  we  just  use
 for  the  last  equality.  Hence,  (27)  holds

not only in the vacuum, but also for the background spe-
cified by (5)–(12). We obtain the wave equation for  in
a similar  way via the method used to derive the Teukol-
sky  equation  [10].  We  operate  on  (25)  and

 on  (26)  and  then  obtain  the  difference  of  them.
The  terms  with  are  canceled  from  (27)  with

, and the remaining part is 

[
(∆−γ+2µ)(D−ρ)− (δ̄−α)(δ−α)

]A
χ1 = 0, (28)

s = −1/2
χ0 s = 1/2

which gives the wave equation for . In a similar
way, the wave equation for  (for ) is obtained as 

[
(D−2ρ)(∆−γ+µ)− (δ−α)(δ̄−α)

]A
χ0 = 0. (29)

We note that (28) and (29) take the same forms as in
the  vacuum case  [10].  For  later  convenience,  we rewrite
(29) as in the previous subsection. We use (22), (23), and 
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DAγA = ΨA
2 +Φ

A
11−ΛA, (30)

 

(δ+ δ̄)AαA = µAρA+4(αA)2−ΨA
2 +Φ

A
11+Λ

A, (31)

 

DAµA = µAρA+ΨA
2 +2ΛA. (32)

Then, (29) can be rewritten as 

[
(∆−3γ+µ)(D−2ρ)− (δ̄−3α)(δ+α)−3Ψ2

]A
χ0 = 0,

(33)
 

±1C.    spin 
The Maxwell  equation  in  the  gravitational  back-

ground is 

(D−2ρ)Aϕ1− (δ̄−2α)Aϕ0 = Jl, (34)

 

δAϕ1− (∆+µ−2γ)Aϕ0 = Jm, (35)

 

(D−ρ)Aϕ2− δ̄Aϕ1 = Jm̄, (36)

 

(δ−2α)Aϕ2− (∆+2µ)Aϕ1 = Jn, (37)

ϕ0 ϕ1 ϕ2

Fµν

where ,  ,  and  are complex and constructed from
the field strength (the Faraday tensor)  as 1) 

ϕ0 = Fµνl
µ
Amν

A, ϕ1 =
1
2 Fµν(l

µ
AnνA+ m̄µ

Amν
A), ϕ2 = Fµνm̄

µ
AnνA.

(38)

Jl Jn Jm Jm̄ Jµ

Jl = JµlA
µ

ϕ2

p = 0 q = −2

, ,  , and  are the projections of the current  by
the  null  tetrads  as ,  etc.  From (36)  and (37),  we
can construct the wave equation for  via a similar pro-
cedure to that used in the previous subsection. Using the
commutation  relation  (27)  with  and ,  we
have 

[
(∆+3µ)(D−ρ)− δ̄(δ−2α)

]A
ϕ2 = J2, (39)

J2where  is defined by 

J2 = (∆+3µ)AJm̄− δ̄AJn. (40)

ϕ0

In a similar way, we can obtain the wave equation for
 from (34) and (35) as 

[
(D−3ρ)(∆−2γ+µ)−δ(δ̄−2α)

]A
ϕ0 = J0, (41)

J0where  is defined by 

J0 = δ
AJl− (D−3ρ)AJm. (42)

Note that (39) and (41) take the same forms as in the
vacuum case [10]. For later convenience, we rewrite (41)
using (22), (23), and (30)–(32) as 

[
(∆−4γ+µ)(D−3ρ)− (δ̄−4α)(δ+2α)−6Ψ2

]A
ϕ0 = J0,

(43)
 

±2D.    spin 
±2The wave equations for the spin  are obtained from

the perturbed  Einstein  equation  or  the  perturbed  New-
man-Penrose equation.  In  a  previous paper  [8], we stud-
ied and obtained the wave equations, and in the next sec-
tion, we  revisit  the  derivation  to  discuss  the  gauge  de-
pendence. Then, we provide the result of the equations.

Here,  we  take  the  gauge  such  that  the  following
quantities vanish [8]: 

λB = σB = 0, (44)
 

(δ̄− τ̄+2α+2β̄)BΦA
22 = 0, (45)

 

(δ+ π̄−2ᾱ−2β)BΦA
00 = 0, (46)

ΨB
4

where the superscript B denotes the perturbation part. Un-
der the above gauge, the wave equation for the perturba-
tion part of the Weyl scalar  is 

[
(∆+2γ+5µ)(D−ρ)− (δ̄+2α)(δ−4α)−3Ψ2+2Φ11

]A
ΨB

4

= T4, (47)

T4where the source  is defined by 

T4 = (∆+2γ+5µ)A
[
(δ̄+2α)AΦB

21− (∆+µ)AΦB
20

]
− (δ̄+2α)A

[
δ̄AΦB

22− (∆+2γ+2µ)AΦB
21)

]
. (48)

ΨB
0

In  a  similar  way,  we  can  also  obtain  the  wave  equation
for  as [

(D−5ρ)(∆−4γ+µ)− (δ+2α)(δ̄−4α)

−3Ψ2+2Φ11
]A
ΨB

0 = T0, (49)
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T0where the source  is defined by
 

T0 = (δ+2α)A
[
(D−2ρ)AΦB

01−δAΦB
00

]
− (D−5ρ)A

[
(D−ρ)AΦB

02− (δ+2α)AΦB
01

]
. (50)

For  later  convenience,  we  rewrite  (49)  using  (22),  (23),
and (30)–(32) as
 

[
(∆−6γ+µ)(D−5ρ)− (δ̄−6α)(δ+4α)

−15Ψ2+2Φ11
]A
ΨB

0 = T0. (51)
 

E.    Unified wave equation for general spin s
We  can  unify  the  above  wave  equations  (24),  (28),

(33),  (39),  (43),  (47),  and  (51)  and  express  the  unified
equation for general spin s asß[

∆−2(1+ s)γ+ (1− s+ |s|)µ
][

D− (1+ s+ |s|)ρ
]
−
[
δ̄−2(1+ s)α

]
(δ+2sα)

− (1+3s+2s2)Ψ2+
1
3

(|s| −3|s|2+2|s|3)Φ11−2δsΛ

™A

ψ̃(s) = T̃(s), (52)

where we collectively denote the fields and sources as
 

ψ̃(s) =



ΨB
4 for s = −2

ϕ2 for s = −1

χ1 for s = −1/2

ϕ for s = 0

χ0 for s = 1/2

ϕ0 for s = 1

ΨB
0 for s = 2

, T̃(s) =



T4 for s = −2

J2 for s = −1

0 for s = −1/2

T/2 for s = 0

0 for s = 1/2

J0 for s = 1

T0 for s = 2

.

(53)

δs  is defined by
 

δs =

1 for s = 0

0 otherwise.
(54)

We rewrite  (52)  in  a  slightly  simpler  form using  the
following redefinitions: 

ψ(s) = exp
[
(|s| − s) f

]
ψ̃(s), T(s) = exp

[
(|s| − s) f

]
T̃(s), (55)

where f is a function of r, which will be determined soon.
By substituting (55) into (52), we have ß[
∆−2(1+ s)γ+µ+ (|s| − s)(µ−∆ f )

][
D− (1+2s)ρ− (|s| − s)(ρ+D f )

]
−
[
δ̄−2(1+ s)α

]
(δ+2sα)− (1+3s+2s2)Ψ2

+
1
3

(|s| −3|s|2+2|s|3)Φ11−2δsΛ

™A

ψ(s) = T(s).

(56)

µA−∆A f ρA+DA f
f = lnr

We  find  that  and  can  simultaneously
vanish by choosing , namely, 1)

ψ(s) = r|s|−sψ̃(s), T(s) = r|s|−sT̃(s). (57)

Then, (56) is simplified as ß[
∆−2(1+ s)γ+µ

][
D− (1+2s)ρ

]
−
[
δ̄−2(1+ s)α

]
(δ+2sα)− (1+3s+2s2)Ψ2

+
1
3

(|s| −3|s|2+2|s|3)Φ11−2δsΛ

™A

ψ(s) = T(s). (58)

The advantage of the above form is that in the vacu-

ΦA
11 = Λ

A = 0
|s|

ΦA
11 ΛA

um ,  the equation (58) depends on s but not
.  The same transformation (57)  has been performed in

the vacuum case [10]. Similar equations to (52) and (58)
were studied in [11−14]; however, these were considered
for positive and negative s separately, or restricted to pos-
itive s. Here,  we  obtain  the  completely  unified  expres-
sion for both positive and negative s.  Moreover,  we find
the contributions of  and  to the wave equation.

By  substituting  the  background,  the  explicit  form  of
the unified wave equation (58) is
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r2

A
∂2ψ(s)

∂t2
− 1
D(r2A)s

∂

∂r

ï
(r2A)s+1

D
∂ψ(s)

∂r

ò
− 1

sinθ
∂

∂θ

Å
sinθ

∂ψ(s)

∂θ

ã
− 1

sin2 θ

∂2ψ(s)

∂φ2

+

Å
2sr
D −

sr2A′
AD

ã
∂ψ(s)

∂t
− 2iscotθ

sinθ
∂ψ(s)

∂φ
+

ï
s2 cot2 θ− s− s(2s+1)rAD′

D3

+
1
3

(1−δs+3s+2s2)
Å

1− AD2
− 2rA′
D2
+

2rAD′
D3

+
r2A′D′

2D3
− r2A′′

2D2

ã
+

1
6

(|s| −3|s|2+2|s|3)
Å

1− AD2
− r2A′D′

2D3
+

r2A′′
2D2

ãò
ψ(s) = 2r2T(s). (59)

s = ±2

A = 1−2M/r D = 1
D = 1

Note that (59) with  is different from the equation obtained in our previous study [8]. However, this is simply
because  of  the  difference  in  the  transformation  (57),  and  they  are  equivalent.  We  also  note  that  in  the  case  of

 and , (59) reduces to the Teukolsky master equation with spin s on the background of the Schwarz-
schild spacetime. In the case of , the above is simplified as
 

r2

A
∂2ψ(s)

∂t2
− 1

(r2A)s

∂

∂r

ï
(r2A)s+1 ∂ψ(s)

∂r

ò
− 1

sinθ
∂

∂θ

Å
sinθ

∂ψ(s)

∂θ

ã
− 1

sin2 θ

∂2ψ(s)

∂φ2
+

Å
2sr− sr2A′

A

ã
∂ψ(s)

∂t
− 2iscotθ

sinθ
∂ψ(s)

∂φ

+

ï
s2 cot2 θ− s+

1
3

(1−δs+3s+2s2)
Å

1−A−2rA′− 1
2

r2A′′
ã

+
1
6

(|s| −3|s|2+2|s|3)
Å

1−A+ 1
2

r2A′′
ãò
ψ(s) = 2r2T(s). (60)

First,  we consider the homogeneous case.  The equation allows the separation of the variables,  and we assume the
product form of the solution to be
 

ψ(s) = e−iωteimφR(r)S (θ), (61)

where ω is the frequency of the waves, and m is constant. Then, the separated equations are
 

1
D(r2A)s

d
dr

ï
(r2A)s+1

D
dR
dr

ò
+

ï
r2ω2

A + iω
Å

2sr
D −

sr2A′
AD

ã
+

s(2s+1)rAD′
D3

− 1
3

(1−δs+3s+2s2)
Å

1− AD2
− 2rA′
D2
+

2rAD′
D3

+
r2A′D′

2D3
− r2A′′

2D2

ã
− 1

6
(|s| −3|s|2+2|s|3)

Å
1− AD2

− r2A′D′
2D3

+
r2A′′
2D2

ã
−λ(s)

ò
R = 0, (62)

 

1
sinθ

d
dθ

Å
sinθ

dS
dθ

ã
+

Å
− m2

sin2 θ
− 2smcotθ

sinθ
− s2 cot2+s+λ(s)

ã
S = 0, (63)

λ(s)

S (θ)eimφ

sYlm(θ,φ)

where  is  the  separation  constant.  From (63),  we  can
find that  coincides with the spin-weighted spher-
ical  harmonics  with spin s,  where l and m take
the values of 

l = |s|, |s|+1, |s|+2, . . . , m = −l, −l+1, . . . , l−1, l,

(64)

λ(s) sYlm(θ,φ)respectively.  becomes  the  eigenvalue  of ,
which is given by 

λ(s) = (l− s)(l+ s+1). (65)

ψ(s) T(s)

sYlm(θ,φ)

For the nonhomogeneous case, we expand  and  in
terms of  as
 

ψ(s) =

∫
dω

∑
l,m

R(s)
lmω(r)sYlm(θ,φ)e−iωt, (66)

 

−2r2T(s) =

∫
dω

∑
l,m

G(s)
lmω(r)sYlm(θ,φ)e−iωt. (67)

R(s)
lmω(r)Then,  satisfies
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1
D(r2A)s

d
dr

ñ
(r2A)s+1

D
dR(s)

lmω

dr

ô
+

ï
r2ω2

A + iω
Å

2sr
D −

sr2A′
AD

ã
+

s(2s+1)rAD′
D3

− 1
3

(1−δs+3s+2s2)
Å

1− AD2
− 2rA′
D2
+

2rAD′
D3

+
r2A′D′

2D3
− r2A′′

2D2

ã
− 1

6
(|s| −3|s|2+2|s|3)

Å
1− AD2

− r2A′D′
2D3

+
r2A′′
2D2

ã
−λ(s)

ò
R(s)

lmω =G(s)
lmω. (68)

A = 1−2M/r D = 1
D = 1

We again note that in the case of  and , (68) reduces to the Teukolsky radial equation with spin s
on the background of the Schwarzschild spacetime. In the case of , (68) reduces to
 

1
(r2A)s

d
dr

ñ
(r2A)s+1 dR(s)

lmω

dr

ô
+

ï
r2ω2

A + iω
Å

2sr− sr2A′
A

ã
− 1

3
(1−δs+3s+2s2)

Å
1−A−2rA′− 1

2
r2A′′

ã
− 1

6
(|s| −3|s|2+2|s|3)

Å
1−A+ 1

2
r2A′′

ã
−λ(s)

ò
R(s)

lmω =G(s)
lmω, (69)

which reduces to [11] for positive s.
 

IV.  GAUGE DEPENDENCE IN GRAVITATION-
AL-WAVE EQUATIONS

ΨB
4 ΨB

0

In  previous  studies,  two  types  of  the  gravitational-
wave  equations  have  appeared.  One  can  be  found  in  [6,
8],  and the other  in  [7]. Because these equations are  ob-
tained  from  the  same  set  of  coupled  equations  in  the
Newman-Penrose  formalism  but  with  different  gauges,
both  equations  should  describe  the  gravitational  wave
correctly.  Here,  one question can be raised: although the
unknown variables  and  are gauge-invariant quant-
ities, why can we have two (or more, in principle) forms
of  the  wave equations  for  each variable?  To answer  this
question,  we  revisit  the  derivation  of  the  gravitational-
wave equation on the background,  with emphasis  on the
gauge dependence.

ΨB
4

D = 1

λB = 0

We focus  on the  wave equation for  and consider
the  case  of  because  in  [7], only  this  case  is  con-
sidered. Here, our gauge conditions (44) and (45) reduce
to  [8]. We  begin  with  the  following  three  equa-
tions in the Newman-Penrose formalism: 

(δ+4β−τ)Ψ4− (∆+4µ+2γ)Ψ3+3νΨ2

= (δ̄− τ̄+2β̄+2α)Φ22− (∆+2γ+2µ̄)Φ21

−2λΦ12+2νΦ11+ ν̄Φ20, (70)
 

(D+4ϵ −ρ)Ψ4− (δ̄+4π+2α)Ψ3+3λΨ2

= (δ̄−2τ̄+2α)Φ21− (∆+2γ−2γ̄+ µ̄)Φ20

+ σ̄Φ22−2λΦ11+2νΦ10, (71)
 

(∆+µ+ µ̄+3γ− γ̄)λ− (δ̄+π− τ̄+ β̄+3α)ν+Ψ4 = 0.

(72)

(A) (B)
Ψ4 = Ψ

A
4 +Ψ

B
4

We split all the quantities in the above into the back-
ground  and  perturbation  parts ;  for  instance,

, etc. We keep the first order of the perturba-
tion only. The background part of the above equations is
satisfied, and the perturbation part becomes 

(δ−4α)AΨB
4 − (∆+2γ+4µ)AΨB

3 +3νBΨA
2

= δ̄AΦB
22− (∆+2γ+2µ)AΦB

21+2νBΦA
11, (73)

 

(D−ρ)AΨB
4 − (δ̄+2α)AΨB

3 +3λBΨA
2

= (δ̄+2α)AΦB
21− (∆+µ)AΦB

20−2λBΦA
11, (74)

 

(∆+2γ+2µ)AλB− (δ̄+2α)AνB+ΨB
4 = 0. (75)

ΨB
4

(∆+2γ+5µ)A (δ̄+2α)A

ΨB
3

p = 2 q = −4

Now,  we  obtain  the  wave  equation  for  using  the
same  procedure  as  in  the  previous  section.  We  operate

 to  (74)  and  to  (73)  and then find
the  difference  of  them.  The  terms  with  are  canceled
by (27) with ,  , and the remainder becomes 

[
(∆+2γ+5µ)(D−ρ)− (δ̄+2α)(δ−4α)

]A
ΨB

4

+ (3Ψ2+2Φ11)A(∆+2γ+5µ)AλB

− (3Ψ2−2Φ11)A(δ̄+2α)AνB

= T4−λB∆A(3Ψ2+2Φ11)A+ νBδ̄A(3Ψ2−2Φ11)A, (76)
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T4where  is defined by 

T4 = (∆+2γ+5µ)A
[
(δ̄+2α)AΦB

21− (∆+µ)AΦB
20

]
− (δ̄+2α)A

[
δ̄AΦB

22− (∆+2γ+2µ)AΦB
21

]
. (77)

For the third line in (76), we have 

∆A(3Ψ2−2Φ11)A = −3µA(3Ψ2+2Φ11)A+8µAΦA
11,

(78)

 

δ̄A(3Ψ2+2Φ11)A = −3πA(3Ψ2−2Φ11)A, (79)

and then substituting the above into (76), we obtain 

[
(∆+2γ+5µ)(D−ρ)− (δ̄+2α)(δ−4α)−3Ψ2

]A
ΨB

4

+2ΦA
11

[
(∆+2γ+2µ)AλB+ (δ̄+2α)AνB

]
= T4−4λB[(∆+2µ)Φ11]A, (80)

δ̄AΦA
11 = 0

νB
where we use (75) and  from the spherical sym-
metry. By eliminating the terms with  using (75) again,
we have 

[
(∆+2γ+5µ)(D−ρ)− (δ̄+2α)(δ−4α)−3Ψ2+2Φ11

]A
ΨB

4

= T4−4(∆+2γ+4µ)A(ΦA
11λ

B). (81)

Moreover, using (78)  and (79),  the  above can be  rewrit-
ten as 

[
(∆+2γ+5µ)(D−ρ)− (δ̄+2α)(δ−4α)

−3Ψ2+2Φ11
]A
ΨB

4

= T4+ (3Ψ2−2Φ11)A(∆+2γ+2µ)AλB

− (∆+2γ+5µ)A
[
(3Ψ2+2Φ11)AλB

]
, (82)

λB = 0
So far, we have not used a gauge condition. If we take

the gauge condition as , Eqs. (80) and (82) are re-
duced to the wave equation (47) in [6, 8] as 

[
(∆+2γ+5µ)(D−ρ)− (δ̄+2α)(δ−4α)−3Ψ2+2Φ11

]A
ΨB

4

= T4, (83)

ΦA
11 = Λ

A = 0 λB

ΨB
3

which  has  a  similar  form  to  the  vacuum  case
. However, from (74),  can be expressed in

terms of  as
 

λB =
1

(3Ψ2+2Φ11)A

[
−(D−ρ)AΨB

4 + (δ̄+2α)A(Ψ3+Φ21)B

−(∆+µ)AΦB
20

]
. (84)

Substituting the above into (82) gives
 

[
F−1

2 (∆+2γ+2µ−F1)(D−ρ)

−(δ̄+2α)(δ−4α)−3Ψ2+2Φ11
]A
ΨB

4

= F−1
2 (∆+2γ+2µ−F1)A

×
[
(δ̄+2α)A(Ψ3+Φ21)B− (∆+µ)AΦB

20

]
− (δ̄+2α)A

[
δ̄AΦB

22− (∆+2γ+2µ)AΦB
21

]
, (85)

or
 

[
(∆+2γ+2µ−F1)(D−ρ)−F2(δ̄+2α)(δ−4α)−3Ψ2

−2Φ11]AΨB
4

= (∆+2γ+2µ−F1)A
[
(δ̄+2α)A(Ψ3+Φ21)B− (∆+µ)AΦB

20

]
−F2(δ̄+2α)A

[
δ̄AΦB

22− (∆+2γ+2µ)AΦB
21

]
, (86)

F1 F2where  and  are defined by
 

F1 = ∆
[
ln(3Ψ2+2Φ11)A

]
, F2 =

Å
3Ψ2+2Φ11

3Ψ2−2Φ11

ãA

. (87)

ΨB
3 = 0Thus, if we take the gauge condition as , (86) is re-

duced to the wave equation in [7] as
 

[
(∆+2γ+2µ−F1)(D−ρ)−F2(δ̄+2α)(δ−4α)

−3Ψ2−2Φ11]AΨB
4 = T̃4, (88)

T̃4where  is defined by
 

T̃4 = (∆+2γ+2µ−F1)A
[
(δ̄+2α)AΦB

21− (∆+µ)AΦB
20

]
−F2(δ̄+2α)A

[
δ̄AΦB

22− (∆+2γ+2µ)AΦB
21

]
. (89)

Next,  we  consider  the  gauge  transformation  in  the
wave equation, for which we take the following tetrad ro-
tations 1) [16]:
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lµ→ lµ, mµ→ mµ+alµ, m̄µ→ m̄µ+ ālµ,

nµ→ nµ+ āmµ+am̄µ+aālµ, (90)

 

nµ→ nµ, mµ→ mµ+bnµ, m̄µ→ m̄µ+ b̄nµ,

lµ→ lµ+ b̄mµ+bm̄µ+bb̄nµ, (91)

 

lµ→ e−clµ, nµ→ ecnµ, mµ→ eiϑmµ, m̄µ→ e−iϑm̄µ.

(92)

ΨB
4

To  avoid  changing  the  background,  we  assume  that
parameters a, b, c, and ϑ are in the first order of the per-
turbation,  and  hence  for  the  perturbation  quantities,  the
transformation of the first order is sufficient. In the wave
equation  (80),  the  left  hand  side  is  gauge-invariant be-
cause  is so, which imples that the right hand side must
also be invariant. Using 

λB→ λB+ (δ̄+2α)Aā, ΦB
21→ ΦB

21+2ΦA
11ā,

ΦB
20→ ΦB

20, Φ
B
22→ ΦB

22, (93)

T4source term  transforms as 

T4→ T4+4
[
(δ̄+2α)(∆+2γ+3µ)

]A (ΦA
11ā). (94)

δ̄AΦA
11 = 0 T̃4

ΨB
3

We  can  find  that  this  transformation  is  cancelled  by
that  of  other terms on the right  hand side of (80),  where
we  use  (27)  and .  We  can  also  show  that  ,
defined by (89), has a nontrivial gauge transformation un-
der (90)–(92), which is cancelled by that of  as 

ΨB
3 → ΨB

3 +3ΨA
2 ā. (95)

ΦB
21

ΦA
11 = 0

Thus, the origin of the gauge dependence of the grav-
itational-wave equation is due to that of the source term,
particularly . Note  that  in  the  vacuum  case,  this  de-
pendence  does  not  appear  because .  We  can  also
show that  the  two gravitational-wave equations  (83)  and
(88) coincide in the vacuum background because of 

F1 = −3µA, F2 = 1, (96)

in the vacuum. 

V.  SUMMARY AND DISCUSSION

In this study, we investigated the wave equations with
various spins on the background of a general spherically

|s| δs

ρA

symmetric spacetime. By introducing spin variable s,  we
unified  these  equations  using s itself,  ,  and .  The
transformation (57) to simplify the equation was possible,
and the form of (57),  in turn,  became the same as in the
vacuum  case  although  the  background,  particularly  spin
coefficient , was deformed.

We also discussed the gauge dependence in the form
of  the  gravitational-wave  equations  from  a  previous
study. The  gauge  dependence  of  the  wave  equation  ori-
ginates from that of the source term, and hence it cannot
be avoided, except in the vacuum case. If we take anoth-
er  gauge,  the  form  of  the  gravitational-wave  equation
changes,  which  also  affects  the  unified  expressions  (52)
and (58).

s , 0 R(−|s|)
lmω (r)

R(|s|)
lmω(r)

A  similar  analysis  using  the  metric  perturbation  was
performed  in  [17–19], where  the  wave  equations  re-
sembled the Regge-Wheeler and the Zerilli equations [20,
21], and its generalization to general spin s has also been
studied  [22]. In  the  vacuum  case,  there  is  a  transforma-
tion  between  the  Teukolsky  and  Regge-Wheeler equa-
tions,  known  as  the  Chandrasekhar  transformation  [23].
Moreover, for , the relationship between  and

can  be  regarded  as  a  special  case  of  the
Chandrasekhar transformation [10, 24]. It would be inter-
esting to investigate whether similar relations hold in the
current case as in [25].

A possible generalization would be to extend the res-
ults  to the axisymmetric background, which contains the
Kerr  black  hole  as  an  example.  In  the  vacuum case,  the
backgrounds  satisfying  the  type D condition  are  fully
classified  as  the  so-called  the  Kinnersley  metric  [26].  It
would be interesting to find the non-vacuum extension of
the  Kinnersley  metric  and  the  wave  equation  on  that
background  with  general  spin.  The  gravitational-wave
equation  on  a  certain  non-vacuum axisymmetric  back-
ground  was  proposed  in  [27].  However,  this  equation
does not allow for the separation of the variables, hence,
further modification is needed [28].

The  study  of  the  (gravitational)  wave  equation  using
the Newman-Penrose formalism is applicable to not only
EOB  dynamics  but  also  modified  gravitational  theories,
as long  as  the  gravitational  degrees  of  freedom  are  de-
scribed  by  the  metric  tensor,  such  as  the  scalar-tensor,
Horndeski  [29],  and  degenerated  higher  order  scalar-
tensor  theories  [30].  In  these  theories,  the  equations  of
motion  become  complicated.  However,  in  the  Newman-
Penrose  formalism,  the  role  of  the  Einstein  equation  is
rather restrictive. In particular, the original Newman-Pen-
rose equations (70)–(72) for  the wave equation originate
from the Bianchi identity, which also takes the same form
in these theories. Then, one can perform a similar analys-
is to  ours.  It  would  be  interesting  to  obtain  wave  equa-
tions in  these theories,  especially  the equations for  other
degrees  of  freedom,  for  example,  the  perturbed  scalar
field in the above theories. 
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APPENDIX A NOTATIONS AND CONVENTIONS

(+−−−)

In this  paper,  we  follow  the  notations  and  conven-
tions  of  Newman-Penrose  [9]  and  Pirani  [15].  Here,  we
list  some  of  the  definitions  for  convenience.  The  metric
has the sign  , and the Riemann curvature is de-
composed as 

Rµναβ =Cµναβ−
1
2
(
gµαRνβ−gµβRνα+gνβRµα−gναRµβ

)
+

1
6
R(gµαgνβ−gµβgνα), (A1)

Cµναβ Rµν

R
where  is the Weyl tensor. Ricci tensor  and Ricci
scalar  are defined by 

Rµν = Rρ
µνρ, R = gµνRµν. (A2)

The twelve spin coefficients are defined by 

κ = mµlν∇νlµ, τ = mµnν∇νlµ,

ϵ =
1
2

(nµlν∇νlµ− m̄µlν∇νmµ),

σ = mµmν∇νlµ, ρ = mµm̄ν∇νlµ,

γ =
1
2

(nµnν∇νlµ− m̄µnν∇νmµ),

ν = −m̄µnν∇νnµ, µ = −m̄µmν∇νnµ,

β =
1
2

(nµmν∇νlµ− m̄µmν∇νmµ),

λ = −m̄µm̄ν∇νnµ, π = −m̄µlν∇νnµ,

α =
1
2

(nµm̄ν∇νlµ− m̄µm̄ν∇νmµ), (A3)

∇µwhere  is  the  covariant  derivative  with  respect  to  the
curved  spacetime.  The  Ricci  tensor  is  decomposed  into
the following components:
 

Φ00 = −
1
2

Rµνlµlν, Φ01 = −
1
2

Rµνlµmν,

Φ02 = −
1
2

Rµνmµmν, Φ10 = −
1
2

Rµνlµm̄ν,

Φ11 = −
1
4

Rµν(lµnν+mµm̄ν), Φ12 = −
1
2

Rµνnµmν,

Φ20 = −
1
2

Rµνm̄µm̄ν, Φ21 = −
1
2

Rµνnµm̄ν,

Φ22 = −
1
2

Rµνnµnν,

 

Λ =
1
24
R = 1

12
Rµν (lµnν−mµm̄ν) . (A4)

Finally, the Weyl scalars are defined by
 

Ψ0 = −Cµνλρlµmνlλmρ,

Ψ1 = −Cµνλρlµnνlλmρ,

Ψ2 = −
1
2

Cµνλρ(lµnνlλnρ− lµnνmλm̄ρ),

Ψ3 = −Cµνλρlµnνm̄λnρ,

Ψ4 = −Cµνλρnµm̄νnλm̄ρ. (A5)
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