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Abstract: By using the  pair creation model, we provide a detailed derivation of the transition matrix for a bary-
on decaying into a meson-baryon system. This analysis was successfully conducted for a meson in [J. Segovia, D. R.
Entem, and F. Fernández, Phys. Lett. B 715, 322 (2012)], and we extend the same formalism to the baryon sector,
focusing on the  strong decay width because all hadrons involved in the reaction are very well estab-
lished, the two hadrons in the final state are stable and require no further analysis, all quarks are light and thus equi-
valent, and the decay width of the process is relatively well measured. Utilizing a very common Rayleigh-Ritz vari-
ational method to solve the 2- and 3-body Schödinger bound-state equation in which the hadron’s radial wave func-
tions are expanded in terms of a Gaussian basis, we can relate the expression of the invariant matrix element with the
mean-square radii of hadrons involved in the decay. We use their experimental measures in such a way that only the
strength of the quark-antiquark pair creation from the vacuum is a free parameter. This is then taken from our previ-
ous study on strong decay widths in the meson sector [J. Segovia, D. R. Entem, and F. Fernández, Phys. Lett. B 715,
322 (2012)], and the obtained results are compatible with the experimental results for the calculated 
decay width. Despite requiring the calculation of additional baryon strong decays, a feasible avenue towards a uni-
fied description of both baryon and meson strong decay widths within a single constituent quark model framework
may be attainable. Finally, this research has been developed to lay the foundation for a novel raft of applications to
exotic hadrons, i.e., the description of the baryon’s coupling to meson-baryon thresholds, one of the mechanisms that
is considered to be responsible for providing either a large renormalization to naive states or genuine dynamically-
generated meson-baryon molecules.
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I.  INTRODUCTION

One of the main aims of nuclear and particle physics
communities is to understand hadrons in terms of the ele-
mentary  excitations  of  quantum  chromo-dynamics
(QCD), which are quarks and gluons (the interested read-
er  is  referred  to  the  Particle  Data  Group  (PDG)  and  its
topical  mini-reviews [1]).  QCD is  well  understood in  its
high energy  regime  as  perturbative  theoretical  calcula-
tions have  been  contrasted  with  many  experimental  res-
ults  since the inception of  QCD 50 years  ago.  However,

hadrons  exist  in  a  non-perturbative  regime where, a pri-
ori,  low-level  rules  produce  high-level  phenomena  with
significant  apparent  complexity  [2].  In  other  words,  for
instance, less than 2% of a nucleon's mass can be attrib-
uted to the so-called current-quark masses that appear in
the QCD Lagrangian, a phenomenon known as dynamic-
al  chiral  symmetry breaking (DCSB).  Another important
non-perturbative effect is color confinement, which basic-
ally  states  that  quarks  and gluons  (color  objects)  are  not
degrees of freedom readily accessible via experiment, i.e.,
they are confined inside hadrons.
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This complexity makes hadron spectroscopy, the col-
lection  of  readily  accessible  states  constituted  from
gluons and quarks, the starting point for all further invest-
igations. A very successful classification scheme for had-
rons in terms of their valence quarks and antiquarks is the
so-called  quark  model  [3, 4],  which  basically  separates
hadrons in quark-antiquark (meson) and three-quark (ba-
ryon)  configurations.  The  quark  model,  and  its  more
modern variations and extensions, have been experiment-
ally verified since the late 1960s and, with some caveats,
they have been demonstrated to be very valuable. For in-
stance,  the  phenomenological  quark  models  represent  a
reliable  theoretical  approach  to  hadron  spectra  in  heavy
quark  sectors,  are  sufficiently  flexible  to  apply  to  exotic
matter, and  enable  the  easy  computation  of  electromag-
netic, weak, and strong reactions, whose predictions have
been very useful in experimental searches.

Among the  wide  range  of  chiral  quark  models  de-
veloped over the last 50 years [5], our theoretical frame-
work is a QCD-inspired constituent quark model (CQM)
proposed  in  Ref.  [6]  and  extensively  reviewed  in  Refs.
[7, 8].  Moreover,  the  CQM has  been  recently  applied  to
conventional mesons  containing  heavy  quarks,  describ-
ing  a  wide  range  of  physical  observables  that  involve
spectra  [9, 10],  strong  decays  [11, 12], hadronic  trans-
itions  [13, 14],  and  electromagnetic  and  weak  reactions
[15, 16].  Moreover,  the  interested reader  may appreciate
that  the  naive  model  has  been  extended  to  describe
meson-meson  molecules  [17]  and  compact  multiquark
systems [18].

3P0

3P0

To  extend  our  CQM  in  the  baryon  sector,  we  must
take three steps: (i) compute baryon spectra, (ii) model a
baryon decaying strongly into a meson plus another bary-
on, and (iii) describe baryon-meson interactions and their
resulting  bound- and  resonance-states  from  the
quark–(anti-)quark forces dictated by CQM. All these are
being  undertaken  (see,  for  example,  the  advances  in  the
third  case  by  one  of  us  in  Refs.  [19, 20]).  However,  the
first task that has been completed by our group is the ex-
tension  of  the  phenomenological  model  to  describe
baryon strong decays. The same decay model was used in
[21] to calculate the total strong decay widths of mesons,
which belong to heavy quark sectors. Therein, a global fit
of the experimental data showed that, contrary to the usu-
al wisdom, the only free parameter of the  model de-
pends  on  the  meson  sector;  thus,  the  scale-dependent
strength  follows  a  logarithmic  behavior  with  respect  the
typical  scale  of  the  particular  meson  sector  (Eq.  (10)  in
Ref. [21]).

3P0

Hadron  strong  decay  is  a  complex  non-perturbative
process  that  has  not  yet  been  described  from  the  first
principles of QCD. In the search for explainations, Micu
[22] formulated the  model in the 1960s to obtain had-
ron  decay  rates  using  the  corresponding  wave  functions
and a strength parameter as the only required inputs. His
approach was innovative for its simplicity and the few as-
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3P0
3P0

sumptions that  were  made.  A  few  years  later,  Le  Yaou-
anc et al. [23] developed Micu's model using the work of
Carlitz  and  Kislinger  based  on  theory  [24].  The
remarkable features of this research were the assumption
that  constituent  quarks  drive  the  decay  process  and  the
use  of  harmonic  oscillator  wave  functions  to  determine
analytic expressions of the terms fitted by Micu from ex-
periments.  The  only  free  parameter  was  the  so-called
pair-creation  constant, γ.  The  research  of  Le  Yaouanc et
al. facilitated the calculation of many ratios between de-
cay widths of mesons and baryons [25], popularizing the
model. In the following years, the  model was widely
used  to  describe  decay  properties  of  hadrons,  such  as
charmonium  states  [26, 27].  In  1982,  Hayne et  al. im-
proved the analytic expression corresponding to the trans-
ition  matrix  [28].  In  1996,  Blundell et  al. analyzed  the
data of various decay widths to fit the strength parameter
γ [29],  finding a  value that  is  frequently  used in  modern
works  such  as  [30],  but  other  values  can  be  possible
[31−41]  depending on  the  specific  details.  In  addition,  a
parallel  study  on  the  flux-tube  pair  creation  model  [42]
showed that it contains, and thus can be simplified to, the

 model, making it even more famous. Recent variants
of  the  model  modify the pair  production vertex [43]
or  modulate  the  spatial  dependence  of  the  pair-produc-
tion amplitude [44].

3P0

∆(1232)→ πN

This  study involves determining a  detailed analytical
expression  of  the  transition  matrix  of  a  baryon decaying
into  a  meson-baryon  system  using  the  strong  decay
model  to  parametrize  the  required  quark-antiquark  pair
creation  from a  vacuum and Gaussian  expansions  of  the
hadron wave functions to simplify the evaluation of mat-
rix  elements  and  express  them in  terms  of  the  measured
hadron  sizes.  The  strength γ of  the  decay  interaction  is
fixed to  our  previous evaluation of  meson strong decays
[21]  to  provide  a  free-parameter  prediction  of  the

 decay width. Comparing it with the exper-
imental  value  enables  us  to  assess  our  calculation  and
possibly  extend  our  decay  model  from the  meson  sector
to the baryon one.

3P0

∆(1232)→ πN

The remainder of this article is organized as follows.
Sec.  II  provides  a  detailed  description  of  the  model
and  derivation  of  the  transition  matrix,  starting  from the
initial and final hadron states and the transition operator.
A few assumptions  are  made to  simplify  the  expression,
and their limitations are specified. Section III presents an
application of the model, obtaining the decay width of the
process , and the data used are specified. In
this section, the quark-antiquark pair creation constant, γ,
for  baryons  appears  to  follow  the  analytic  expression
presented in [21] for mesons. Finally,  we summarize the
study and draw some conclusions in Sec. IV. 

3 P0II.   MODEL APPLIED TO BARYONS

The  quark-antiquark pair  creation  models  are  phe-
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3P0

JPC = 0++
3P0

nomenological  models to describe hadron strong decays.
Among these  models,  the  strong decay model  is  the
most  popular.  It  states  that  the  quark-antiquark pair  cre-
ated from a vacuum must conserve the vacuum's angular
momentum,  parity,  and  charge  conjugation, viz. the
quark-antiquark pair  must  have  quantum num-
bers. Another important property of the  model is that
it  considers  only  diagrams  in  which  the  quark-antiquark
pair separates  into  different  final  hadrons.  This  was  ori-
ginally  motivated  by  experimental  observations  and  it  is
known  as  the  Okubo-Zweig-Iizuka  (OZI)  rule  [45−47],
which states  that  disconnected  diagrams  are  more  sup-
pressed than connected ones.

+

The  model  defined  as  above  describes  baryon  into
meson  baryon strong decays as represented in panel (a)
of Fig. 1. Thus, its associated transition operator is given
by 

T = −3γ′
∑
µ,ν

∫
d3 pµd3 pν

ï
Y1

Å
p⃗µ− p⃗ν

2

ã
⊗ (sµsν)1

ò
0

×a†µ(p⃗µ)b†ν( p⃗ν)δ(3)( p⃗µ+ p⃗ν), (1)

3 δ(3)( p⃗µ+ p⃗ν)
Yl( p⃗ ) =

pl Yl( p̂)
l = 1

1
J = 0 γ′

3P0

where μ is the quark, and ν is the antiquark created. The
-dimensional  Dirac  delta  function, ,  ensures

the  conservation  of  momenta,  and  the  function 
 is the solid harmonic that characterizes the angu-

lar momentum ( ) of the pair created. We can also ob-
serve that it is coupled to the spin-  of the pair to provide
a total angular momentum of . Meanwhile,  is the
only  unknown constant  of  the  model that  character-
izes the strength of the quark-antiquark pair creation from
the  vacuum,  and  it  is  normally  fitted  to  the  data.
Moreover,  note  that  this  transition  operator  is  a  non-re-

√
3 3

lativistic reduction  of  an  interacting  Hamiltonian  in-
volving  Dirac  quark  fields  that  describe  the  production
process [21]. Here,  is replaced by  when transition-
ing from meson decays to baryon ones because the term
must cancel out with the color contribution.

The decay width of the process can be calculated us-
ing the following relation: 

ΓA→BC = 2π
EB(k0)EC(k0)

mAk0

∑
JBC ,l

|MA→BC |2, (2)

k0

JBC

JA

where  is  the  relative  momentum of  the  final  products
with  respect  to  the  initial  state  [48]. The  squared  modu-
lus of the invariant matrix element must be summed over
all  possible  values  of  and the  relative  angular  mo-
mentum l whose inner product is equal to the total angu-
lar momentum of the decaying baryon, .

To calculate  the  invariant  matrix  element  that  ap-
pears in the formula of the decay width, 

MA→BC = δ
(3)(K⃗0)⟨BC|T |A⟩ , (3)

K⃗0where  is the center-of-mass momentum of the decay-
ing  baryon,  we  must  establish  expressions  for  the  initial
and final states: 

|A⟩ =
∑

MLA ,MS A

⟨LAMLA S AMS A |JAMJA⟩

×
∫

d3 pαd3 pβd3 pηδ(3)(P⃗A− K⃗A)χACA

×IAϕA( p⃗α, p⃗β, p⃗η)a†α( p⃗α)a†β( p⃗β)a†η( p⃗η)|0⟩ , (4)

 

|BC⟩ =
∫

d3KBd3KC

∑
m,MB,MC ,MIB ,MIC

⟨JBC MBClm|JAMA⟩δ(3)(K⃗ − K⃗0)δ(k− k0)
Ylm(k̂)

k
⟨JBMBJC MC |JBC MBC⟩

× ⟨IBMIB IC MIC |IBC MIBC ⟩
∫

d3 pδd3 pϵd3 pζd3 pσd3 pτδ(3)(K⃗B− P⃗B)δ(3)(K⃗C − P⃗C)

×χBCBIBϕB( p⃗σ, p⃗ζ , p⃗ϵ)a†σ( p⃗σ)a†ζ ( p⃗ζ)a†ϵ (p⃗ϵ)χCCCICϕC( p⃗δ, p⃗τ)a†δ( p⃗δ)b†τ( p⃗τ)|0⟩.

(5)

ϕA,B,C

χA,B,C CA,B,C

IA,B,C

|BC⟩

In  these  equations,  the  functions  are  the  Fourier
transforms  of  the  hadron’s  wave  functions  in  coordinate
space. They  describe  the  probability  of  finding  the  had-
ron  in  momentum  space.  Moreover, , ,  and

 are  the  spin,  color,  and  isospin  wave  functions  of
the hadrons involved in the decay, respectively. In the fi-
nal state , the internal products ensure the conserva-
tion of angular momentum and isospin between the bary-

on and meson in the final state but also its coupling with
the initial baryon state.

MA→BCThe invariant matrix element, , is a product of
a color factor, a flavor factor, and a spin-space overlap in-
tegral, i.e.
 

MA→BC = IColorIFlavorISpin−space , (6)
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such that each component can be calculated separately.
 

A.    Spin-space contribution

Before  discussing  the  spin-space  contribution,  we

must determine how many equivalent Feynman diagrams
contribute to the same process, i.e., the symmetry factor.
Focusing on the ladder operators that appear in Eqs. (1),
(4) and (5), where combined adequately, we arrive at the
following expression:

 

⟨0|bτ(p⃗τ)aδ(p⃗δ)aϵ( p⃗ϵ)aζ(p⃗ζ)aσ( p⃗σ)a†µ( p⃗µ)b†ν( p⃗ν)a†α( p⃗α)a†β( p⃗β)a†η( p⃗η)|0⟩ . (7)

This product of creation and annihilation operators can be simplified. Because quarks are fermions, we use the anti-
commutation relations of the ladder operators,
 

{ar( p⃗ ),a†s( p⃗ ′)} = ar( p⃗ )a†s(p⃗ ′)+a†s( p⃗ ′)ar(p⃗ ) = δrsδ
(3)( p⃗− p⃗ ′) , (8)

 

{ar( p⃗ ),b†s( p⃗ ′)} = {ar(p⃗ ),bs( p⃗ ′)} = {a†r (p⃗ ),bs( p⃗ ′)} = {a†r (p⃗ ),b†s( p⃗ ′)} = 0 , (9)

 

{ar( p⃗ ),as( p⃗ ′)} = {a†r ( p⃗ ),a†s( p⃗ ′)} = {br(p⃗ ),bs( p⃗ ′)} = {b†r (p⃗ ),b†s( p⃗ ′)} = 0 , (10)

and arrange them in normal ordering to arrive at
 

⟨0|bτaσaζaϵaδa†µb
†
νa
†
αa
†
βa
†
η|0⟩ = δτνδδµδϵαδζβδση−δτνδδµδϵαδσβδζη−δτνδδµδζαδϵβδση−δτνδϵµδδαδζβ+δτνδδµδζαδσβδϵηδση

+δτνδδµδσαδϵβδζη+δτνδϵµδδαδσβδζη+δτνδϵµδζαδδβδση+δτνδζµδδαδϵβδση−δτνδδµδσαδζβδϵη
−δτνδϵµδζαδσβδδη−δτνδϵµδσαδδβδζη−δτνδζµδδαδσβδϵη−δτνδζµδϵαδδβδση−δτνδσµδδαδϵβδζη
+δτνδϵµδσαδζβδδη+δτνδζµδϵαδσβδδη+δτνδζµδσαδδβδϵη+δτνδσµδδαδζβδϵη+δτνδσµδϵαδδβδζη

−δτνδζµδσαδϵβδδη−δτνδσµδϵαδζβδδη−δτνδσµδζαδδβδϵη+δτνδσµδζαδϵβδδη. (11)

δab δ
(3)( p⃗a− p⃗b) ≡ δab

Note  here  that  we  have  abused  the  notation,
.

δδµ

Each term is a different process that can be represen-
ted by a Feynman diagram. Following the OZI rule, terms
with the factor  can be eliminated as the created quark
and antiquark combine into the same final hadron; the re-
maining ones are pictorially shown in Fig. 2. If all quarks
and  antiquarks  involved  in  the  baryon  strong  decay  are

∆→ πNindistinguishable, as in the case of , the diagrams
can  be  considerd  to  be  equivalent.  Therefore,  the  final
result may be expressed as 

⟨0|bτaσaζaϵaδa†µb
†
νa
†
αa
†
βa
†
η|0⟩ = −18δτνδϵµδζαδσβδδη . (12)

If  this  equivalence  between  quarks  and  antiquarks  does
not  hold,  the  contribution  of  different  diagrams  differs

 

⟨r⟩ (ρ,λ)
Fig. 1.    (a) Feynman diagram of a baryon, A, decaying into a baryon, B, and a meson, C. (b) Schematic representation of a baryon as
an sphere of radius ; a particular set of Jacobi coordinates, , for the quarks in a baryon is also shown.
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between them but  does not  significantly change the sub-
sequent expressions. Thus, we may straightforwardly ex-
tend the computation to describe these cases.

(J)
(E)

Now, the spin-space contribution can be separated in
two terms:  one  collects  the  coupling  of  angular  mo-
mentum and spin, , and the other involves linear mo-
menta, ,
 

ISpin−space = 54γ′
∑

LBC ,L,S

J(A→ BC)E(A→ BC) . (13)

J(A→ BC)

The total angular momentum of the hadron, J, repres-
ents  a  coupling  between  its  angular  momentum, L,  and
spin, S. Therefore, the initial form of  is
 

J(A→ BC) =
{

[LBS B]JB [LCS C]JC

}∗
JBC
{[LBCS ]JBC l}∗JA

×{[LAS A]JA [11]0}JA , (14)

[11]0where the extra  is included to consider the quantum

numbers of the quark-antiquark pair created from the va-
cuum. Note also that complex conjugate symbols affect to
final states as expected.

L−S
(L)

(S )

Equation (14) is a matrix element expressed in terms
of hadron’s individual  coupling into J. The final ex-
pression must have a total angular momentum , which
is  the  inner  sum  of  all  the  angular  momenta  of  the
particles,  and a total  spin ,  which is  the inner sum of
all the  spins  of  the  particles.  These  final  angular  mo-
mentum and spin must be then coupled to the total angu-
lar momentum of the decaying baryon. These transforma-
tions can be performed using Wigner symbols [49]:
 

{[L1S 1]J1 , [L2S 2]J2 }JT =
∑
LT ,S T

ΠJ1 ,J2 ,LT ,S T


L1 S 1 J1

L2 S 2 J2

LT S T JT


×{[L1L2]LT , [S 1S 2]S T ]}JT , (15)

Πl =
√

2l+1where  is used to simplify the notation. With

 

dab (a)
(b)

Fig. 2.    Decay process for a baryon. Below each diagram, the notation  characterizes the diagram using the quark  that begins in
the baryon and ends in the meson and the quark  that results from the pair created and ends in the baryon.
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this relation, the couplings of the initial state and the pair
created can be changed as
 

{[LAS A]JA [11]0}JA =
∑
L,S

ΠL,S ,JA ,0


LA S A JA

1 1 0

L S JA


×{[LA1]L[S A1]S }JA

. (16)

9JBecause the -symbol contains a zero in one of its com-

6Jponents, it can be reduced to a -symbol [49]: 

{
[LAS A]JA [11]0

}
JA
=
∑
L,S

(−1)S+JA+LA+1ΠL,S√
3

×
{

L S JA

S A LA 1

}
{[LA1]L[S A1]S }JA

.

(17)

A  similar  transformation  can  be  performed  for  the  final
state:

 

{
[LBS B]JB [LCS C]JC

}∗
JBC
=
∑
LBC ,S

ΠLBC ,S ,JB,JC


LB S B JB

LC S C JC

LBC S JBC


{

[LBLC]LBC [S BS C]S

}∗
JA
, (18)

S BC = Swhere the conservation of spin is used, simplifying . The baryon and meson in the final state have a relative an-
gular momentum between them, denoted by l; reordering the terms as indicated in [49], we obtain
 

{[LBCS ]JBC l}∗JA
= (−1)LBC+S−JBC {[S LBC]JBC l}∗JA

= (−1)LBC+S−JBC
∑

L

(−1)LBC+S+JA+lΠL,JBC

{
S LBC JBC

l JA L

}
{S [LBC l]L}∗JA

=
∑

L

(−1)2LBC+2S+JA+l−JBCΠL,JBC

{
S LBC JBC

l JA L

}
(−1)S+L−JA {[LBC l]LS }∗JA

=
∑

L

(−1)S+L+l−JBCΠL,JBC

{
S LBC JBC

l JA L

}
{[LBC l]LS }∗JA

. (19)

The spin couplings can be also simplified. The corres-
ponding matrix element, 

{[sµsβsα]S B [sνsη]S C }∗S {[sαsβsη]S A [sµsν]1}S , (20)

(ρ,λ)

has  been  written  to  consider  the  delta-functions  of  Eq.
(12).  Now,  because  the  couplings  are  binary  operations,
the  spins  of  the  quarks  inside  baryons  must  be  ordered.
Using the Jacobi coordinate system  shown in panel
(b) of Fig. 2, the named ρ-spin can be introduced 

sρ = sα⊗ sβ , (21)

as the spin of the non-interacting quarks during the decay,
i.e., quarks that do not change their properties in the pro-
cess. Subsequently, the spin of the baryons becomes 

[
sαsβsη

]
S A
=
[
sρsη
]

S A
,[

sµsβsα
]

S B
=
î
sµ
(

sβsα
)

sρ

ó
S B
= (−1)sα+sβ+sµ−S B

[
sρsµ

]
S B
,

(22)

9Jand  the  spin  conservation  can  be  expressed  using  a -
symbol: 

{[sµsβsα]S B [sνsη]S C }∗S {[sαsβsη]S A [sµsν]1}S

= (−1)sα+sβ+sµ+sν+sη−S B−S CΠS B,S C ,S A ,1


sρ sµ S B

sη sν S C

S A 1 S

 .
(23)

J(A→ BC)
When all couplings are modified, the final expression for

 becomes 
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J(A→ BC) = (−1)3/2−S B−S C+LA+L+l+JA−JBC ΠLBC ,L,L,JB,JC ,JBC ,S A ,S B,S C ,S ,S ×
{

L S JA

S A LA 1

}{
S LBC JBC

l JA L

}

×


sρ 1/2 S B

1/2 1/2 S C

S A 1 S




LB S B JB

LC S C JC

LBC S JBC

 . (24)

The remaining term to be calculated is the linear momentum contribution, whose initial expression is
 

E(A→ BC) =
∫

d3KBd3KCd3 pαd3 pβd3 pηd3 pµd3 pν

×δ(3)(K⃗ − K⃗0)δ(3)(K⃗A− P⃗A)δ(3)(K⃗B− P⃗B)δ(3)(K⃗C − P⃗C)δ(3)( p⃗µ+ p⃗ν)
δ(k− k0)

k

×
¶[
ϕB( p⃗σ, p⃗ζ , p⃗ϵ)ϕC( p⃗δ, p⃗τ)

]
LBC

Yl(k̂)
©∗

L

ß
ϕA( p⃗α, p⃗β, p⃗η)Y1

Å
p⃗µ− p⃗ν

2

ã™
L
. (25)

This  expression  can  be  simplified  by  defining  a  new set
of coordinates: 

P⃗A = p⃗α+ p⃗β+ p⃗η , P⃗C = p⃗δ+ p⃗τ ,

p⃗ρA =
ωβ p⃗α−ωα p⃗β
ωαβ

, p⃗C =
ωδ p⃗τ−ωτ p⃗δ
ωδτ

,

p⃗λA =
ωη( p⃗α+ p⃗β)−ωαβ p⃗η

ωαβη
, P⃗ = p⃗µ+ p⃗ν ,

P⃗B = p⃗ζ + p⃗σ+ p⃗ϵ , p⃗ =
p⃗µ− p⃗ν

2
,

p⃗ρB =
ωσ p⃗ζ −ωζ p⃗σ
ωζσ

, K⃗ = K⃗B+ K⃗C ,

p⃗λB =
ωϵ( p⃗ζ + p⃗σ)−ωζσ p⃗ϵ

ωζσϵ
, k⃗ =

ωC K⃗B−ωBK⃗C

ωBC
,

(26)

where two relative momenta must be defined for baryons,
whereas  only  one  relative  momentum  is  sufficient  for
mesons.  Additionally,  we  introduce  a  so-called  reduced
mass  convention  that  redefines  all  masses  in  terms  of  a
reference one, m: 

ωα =
mα
m
, ωαβ = ωα+ωβ . (27)

The delta functions related to momenta provide an ad-
ditional set of conditions, 

K⃗ = K⃗0 = K⃗A = P⃗A = 0 ,

K⃗B = P⃗B ,

K⃗C = P⃗C ,

p⃗µ+ p⃗ν = P⃗ = 0 , (28)

where the center-of-mass of baryon A is taken as the cen-
ter  of  mass  of  the  interaction.  Now,  the  equivalences  in
momenta eliminate some integrals, and the reaming vari-
ables can be expressed in terms of the following ones: 

p⃗ = p⃗µ = − p⃗ν ,

k⃗ = p⃗λA + p⃗ ,

p⃗ρ = p⃗ρA = p⃗ρB . (29)

E(A→ BC)Subsequently, the simplified expression for  is 

E(A→ BC) =
∫

d3 pd3kd3 pρ
δ(k− k0)

kl+1

×
¶[
ϕB( p⃗σ, p⃗ζ , p⃗ϵ)ϕC( p⃗δ, p⃗τ)

]
LBC
Yl(k̂)

©∗
L

×
ß
ϕA( p⃗α, p⃗β, p⃗η)Y1

Å
p⃗µ− p⃗ν

2

ã™
L
. (30)

Continuing  with  the  calculation,  the  hadron  wave
functions can be separated in radial and angular parts: 

ϕA( p⃗α, p⃗β, p⃗η) = fλA ( p⃗λA ) fρ( p⃗ρ)
î
YLλA

(p⃗λA )YLρ ( p⃗ρ)
ó

LA
,

(31)

 

ϕB( p⃗σ, p⃗ζ , p⃗ϵ) = fλB ( p⃗λB ) fρ( p⃗ρ)
î
YLλB

(p⃗λB )YLρ ( p⃗ρ)
ó

LB
,

(32)

 

ϕC( p⃗C) = fC(p⃗C)YLC ( p⃗C) , (33)

where  the  solid  spherical  harmonics  consider  the  Jacobi
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coordinate decomposition of a baryon system, and the ra-
dial parts are assumed to be Gaussian functions:
 

fλA (p⃗λA ) =
∑

i

dλA
i exp

Å
−λAi

2
p2
λA

ã
, (34)

 

fλB (p⃗λB ) =
∑

j

dλB
j exp

Å
−λB j

2
p2
λB

ã
, (35)

 

fρ( p⃗ρ) =
∑

k

dρk exp
(
−ρk

2
p2
ρ

)
, (36)

 

fC( p⃗C) =
∑

l′
dC

l′ exp
Å
−Cl′

2
p2

C

ã
, (37)

where  the  constants  can  be  computed  theoretically  from
hadron  spectra  or  fitted  to  experimental  data  of  hadron
radii.1) The limits  of  the  sums are  fixed according to  the
precision required. Inserting the above expressions in Eq.
(30), we obtain

 

E(A→ BC) =
∑
i jkl′

dλA
i dλB

j (dρk )2dC
l′ ×
∫

d3 pd3kd3 pρ
δ(k− k0)

kl+1
exp
Å
−1

2
[λAi p2

λA
+λB j p2

λB
+ρk p2

ρ+Cl′ p2
C]
ã

×
ß[î
YLλB

( p⃗λB )YLρ ( p⃗ρ)
ó

LB
YLC ( p⃗C)

]
LBC

Yl (⃗k)
™∗

L

{î
YLλA

( p⃗λA )YLρ (p⃗ρ)
ó

LA
Y1
(

p⃗
)}

L
. (38)

q⃗ = p⃗− xk⃗
pρ

We now need all functions of Eq. (38) to be expressed in
terms  of  the  integration  variables.  Hence,  we  define

,  where x can  be  any  number;  note  also  that p
and  continue to be variables of the integral. Therefore, 

p⃗λA = (1− x) k⃗− q⃗ ,

p⃗λB =

Å
ωµ
ωαβµ

− x
ã

k⃗− q⃗ ,

p⃗C =

Å
ωµ
ωηµ
− x
ã

k⃗− q⃗ . (39)

The terms are squared,
 

p2
λA
= (1− x)2 k2+q2−2(1− x) k⃗ · q⃗ ,

p2
λB
=

Å
ωµ
ωαβµ

− x
ã2

k2+q2−2
Å
ωµ
ωαβµ

− x
ã

k⃗ · q⃗ ,

p2
C =

Å
ωµ
ωηµ
− x
ã2

k2+q2−2
Å
ωµ
ωηµ
− x
ã

k⃗ · q⃗ , (40)

and replaced in the exponential argument as
 

λAi p2
λA
+λB j p2

λB
+Cl p2

C = k2

ñ
λAi(1− x)2+λB j

Å
ωµ
ωαβµ

− x
ã2

+Cl

Å
ωµ
ωηµ
− x
ã2
ô
+q2

[
λAi+λB j+Cl

]
−2k⃗ · q⃗

ï
λAi(1− x)+λB j

Å
ωµ
ωαβµ

− x
ã
+Cl

Å
ωµ
ωηµ
− x
ãò
. (41)

k⃗ · q⃗Now, to eliminate the  term, we fix x to the following
value:
 

x =
λAi+λB j

ωµ
ωαβµ

+Cl
ωµ
ωηµ

λAi+λB j+Cl
. (42)

To simplify the notation further, we define the parameters
 

A = λAi+λB j
ωµ
ωαβµ

+Cl
ωµ
ωηµ
, (43)

 

2B = λAi+λB j+Cl , (44)

 

2D = λAi(1− x)2+λB j

Å
ωµ
ωαβµ

− x
ã2

+Cl

Å
ωµ
ωηµ
− x
ã2

, (45)

x =
A

2Bwhere . Therefore, the linear momentum contribu-

tion can be now expressed as 

T. Aguilar, A. Capelo-Astudillo, M. Conde-Correa et al. Chin. Phys. C 49, 013108 (2025)
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E(A→ BC) =
∑
i jkl′

dλA
i dλB

j (dρk )2dC
l′

∫
d3qd3kd3 pρ

δ(k− k0)
kl+1

exp
(
−Bq2−Dk2− ρk

2
p2
ρ

)

×
ß[î
YLλB

( p⃗λB )YLρ ( p⃗ρ)
ó

LB
YLC (p⃗C)

]
LBC

Yl (⃗k)
™∗

L

{î
YLλA

(p⃗λA )YLρ ( p⃗ρ)
ó

LA
Y1
(

p⃗
)}

L
, (46)

but the second line of Eq. (46) is still not expressed in terms of the integration variables. Hence, the properties of spher-
ical harmonics and couplings between angular momenta must be used [49] such that
 {î
YLλA

(p⃗λA )YLρ ( p⃗ρ)
ó

LA
Y1
(

p⃗
)}

L
=

∑
l1 ,l2 ,l3 ,l4 ,l5

Bl4
l1 ,l2 Bl5

LλA−l1 ,1−l2C
LλA
l1 C1

l2ΠLA ,LλA ,l3 ,l4 ,l5 ,1
(1− x)l1 xl2 (−1)L+LA+LλA−l1+1kl1+l2−l4 qLλA−l1−l2−l5+1

×
{

LλA Lρ LA

L 1 l3

}
l1 LλA − l1 LλA

l2 1− l2 1

l4 l5 l3


{
YLρ ( p⃗ρ)

î
Yl4 (⃗k)Yl5 (q⃗ )

ó
l3

}
L
, (47)

where we have defined the following coefficients:
 

Bc
a,b = (−1)c

…
(2a+1)(2b+1)

4π

(
a b c

0 0 0

)
, Ca

b =

 
4π(2a+1)!

(2b+1)!(2(a−b)+1)!
. (48)

The remaining term becomes
 ß[î

YLλB
( p⃗λB )YLρ ( p⃗ρ)

ó
LB
YLC ( p⃗C)

]
LBC

Yl (⃗k)
™

L

=
∑

l6 ,l7 ,l8 ,l9 ,l10 ,l11 ,l12

Bl9
l6 ,l7 Bl10

LλB−l6 ,LC−l7 Bl12
l9 ,lC

LλB
l6 CLC

l7 ΠLBC ,LB,LC ,LλB ,l8 ,l8 ,l9 ,l10 ,l11 ,l12

Å
ωµ
ωαβµ

− x
ãl6 Å ωµ

ωηµ
− x
ãl7

× (−1)LBC+LB+LλB+Lρ+L−l6−l7+l10+l12 kl+l6+l7−l12 qLλB+LC−l6−l7−l10

{
LλB Lρ LB

LBC LC l8

}{
Lρ l8 LBC

l L l11

}

×
{

l10 l9 l8

l l11 l12

}
l6 LλB − l6 LλB

l7 LC − l7 LC

l9 l10 l8


{
YLρ ( p⃗ρ)

î
Yl12 (⃗k)Yl10 (q⃗ )

ó
l11

}
L
. (49)

We arrive then at the expression of the linear momentum contribution
 

E(A→ BC) =
∑
i jkl′

dλA
i dλB

j (dρk )2dC
l′

∫
d3qd3kd3 pρ

δ(k− k0)
kl+1

exp
(
−Bq2−Dk2− ρk

2
p2
ρ

)
×

∑
l1 ,l2 ,...,l11 ,l12

Bl4
l1 ,l2 Bl5

LλA−l1 ,1−l2 Bl9
l6 ,l7 Bl10

LλB−l6 ,LC−l7 Bl12
l9 ,lC

LλA
l1 C1

l2C
LλB
l6 CLC

l7

×ΠLBC ,LA ,LB,LC ,LλA ,LλB ,l3 ,l4 ,l5 ,l8 ,l8 ,l9 ,l10 ,l11 ,l12 ,1 (1− x)l1 xl2

Å
ωµ
ωαβµ

− x
ãl6 Å ωµ

ωηµ
− x
ãl7

× (−1)LBC+LA+LB+LλA+LλB+Lρ−l1−l6−l7+l10+l12+1kl+l1+l2−l4+l6+l7−l12 qLC+LλA+LλB−l1−l2−l5−l6−l7−l10+1

×
{

LλA Lρ LA

L 1 l3

}{
LλB Lρ LB

LBC LC l8

}{
Lρ l8 LBC

l L l11

}{
l10 l9 l8

l l11 l12

}
 

Detailed derivation of the 3P0 strong decay model applied to baryons Chin. Phys. C 49, 013108 (2025)

013108-9



×


l1 LλA − l1 LλA

l2 1− l2 1

l4 l5 l3




l6 LλB − l6 LλB

l7 LC − l7 LC

l9 l10 l8

×
{
YLρ ( p⃗ρ)

î
Yl12 (⃗k)Yl10 (q⃗ )

ó
l11

}∗
L

{
YLρ ( p⃗ρ)

î
Yl4 (⃗k)Yl5 (q⃗ )

ó
l3

}
L
, (50)

in which the angular integrals can be solved using the orthogonality of spherical harmonics as follows [49]:
 ∫

d3qd3k d3 pρ
{
YLρ ( p⃗ρ)

î
Yl12 (⃗k)Yl10 (q⃗ )

ó
l11

}∗
L

{
YLρ ( p⃗ρ)

î
Yl4 (⃗k)Yl5 (q⃗ )

ó
l3

}
L

= δLρ ,Lρδl12 ,l4δl10 ,l5δl11 ,l3δL,L

∫
dqdk dpρ q2+l5+l10 k2+l4+l12 p2+2Lρ

ρ . (51)

Additionally,  the  radial  integrals  can be simplified using
the Gamma  function  when  the  exponential  term  is  con-
sidered. The integral over q becomes ∫ ∞

0
dqe−Bq2

qLC+LλA+LλB−l1−l2−l5−l6−l7+l5+3

=
1
2

B−
1
2 (LC+LλA+LλB−l1−l2−l6−l7+4)

×Γ
Å

1
2

(LC +LλA +LλB − l1− l2− l6− l7+4)
ã
. (52)

pρThe same can be performed for the integral over :
 

∫
dpρ e−

ρk
2 p2
ρ p2+2Lρ
ρ =

1
2

(ρk

2

)− 1
2 (2Lρ+3)

Γ

Å
1
2

(2Lρ+3)
ã
, (53)

δ(k− k0)
and the  integral  over k can  be  simplified  using  the  delta
function .

Therefore,  the  lineal  momentum contribution has  the
final expression

 

E(A→ BC) =
∑
i jkl′

dλA
i dλB

j (dρk )2dC
l′ exp

(
−Dk2

0

) ∑
l1 ,l2 ,...,l8 ,l9

Bl4
l1 ,l2 Bl5

LλA−l1 ,1−l2 Bl9
l6 ,l7 Bl5

LλB−l6 ,LC−l7 Bl4
l9 ,lC

LλA
l1 C1

l2C
LλB
l6 CLC

l7

×ΠLBC ,LA ,LB,LC ,LλA ,LλB ,l3 ,l3 ,l4 ,l4 ,l5 ,l5 ,l8 ,l8 ,l9 ,1
(1− x)l1 xl2

Å
ωµ
ωαβµ

− x
ãl6 Å ωµ

ωηµ
− x
ãl7

× (−1)LBC+LA+LB+LλA+LλB+Lρ−l1−l6−l7+l5+l4+1(2)Lρ− 1
2 kl1+l2+l6+l7+1

0 B−
1
2 (LC+LλA+LλB−l1−l2−l6−l7+4)ρ

− 1
2 (2Lρ+3)

k

×Γ
Å

1
2

(LC +LλA +LλB − l1− l2− l6− l7+4)
ã
Γ

Å
1
2

(2Lρ+3)
ã{

LλA Lρ LA

L 1 l3

}

×
{

LλB Lρ LB

LBC LC l8

}{
Lρ l8 LBC

l L l3

}{
l5 l9 l8

l l3 l4

}
l1 LλA − l1 LλA

l2 1− l2 1

l4 l5 l3




l6 LλB − l6 LλB

l7 LC − l7 LC

l9 l5 l8

 ,
(54)

where the limits of the sums can be obtained using trian-
gular conditions of the Wigner symbols.
 

B.    Color contribution
The color matrix element can be expressed as

 

IColor = ⟨CBCC |CA⟩ = ⟨C(ϵσζ)C(δτ)|C(αβη)C(µν)⟩ , (55)

where the color function of the pair created is added. To
calculate this contribution, we must know the color func-
tion of the baryons and mesons:
 

C(αβη) =
1√
6

∑
αβη

εαβη =
1√
6

(rαgβbη− rαbβgη

+gαbβrη−gαrβbη+bαrβgη−bαgβrη) , (56)

 

C(δτ) =
1√
3

∑
δτ

δδτ =
1√
3

(rδrτ+gδgτ+bδbτ) . (57)

Because mesons  are  composed  of  a  quark  and  anti-
quark, a Kronecker delta is sufficient to describe the col-
or function. In contrast, the baryon must have an antisym-
metric color wave function, making the Levi-Civita sym-
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bol sufficient to describe the color of the system.
The  color  wave  functions  are  replaced  in  Eq.  (55),

and considering the particle equivalences of Eq. (12), the
color contribution becomes
 

IColor =
1
18

∑
αβη

∑
µν

∑
ϵσζ

∑
δτ

εαβηδµνεϵσζδδτ

=
1
18

∑
αβηµ

∑
ϵσζδ

εαβηεϵσζδδµδϵµδζαδσβδδη

=
1
18

∑
αβη

∑
δ

εαβηεδβαδδη

=
1
18

∑
αβη

εαβηεηβα . (58)

Now,  the  product  of  Levi-Civita tensors  can  be  simpli-
fied as
 

∑
αβη

εαβηεηβα = −6 , (59)

arriving at
 

IColor = −
1
3
. (60)

3This term cancels with the  placed by hand in the trans-
ition operator, Eq. (1).
 

C.    Flavor contribution
The flavor matrix element may be expressed as

 

ISabor = ⟨[(tµtβtα)IB(tνtη)IC]IA|[(tαtβtη)IA(tµtν)0]IA⟩ . (61)

To  simplify  this  expression,  we  define  the  flavor  of
the non-interacting quarks (α and β) inside baryons simil-
ar to that for the spin:
 

tρ = tα⊗ tβ. (62)

Thus, the final expression to be calculated is
 

ISabor = (−1)tα+tβ+tµ−IB (−1)tν+tη−IC

×⟨[(tρtµ)IB(tηtν)IC]IA|[(tρtη)IA(tµtν)0]IA⟩ . (63)

9JThis can be re-written using a -symbol as
 

ISabor = (−1)tα+tβ+tµ−IB (−1)tν+tη−ICΠIB,IC ,IA ,0


tρ tµ IB

tη tν IC

IA 0 IA

 .
(64)

9J
6J

Because the -symbol has a zero in one of its compon-
ents, it can be simplified into a -symbol: 

ISabor = (−1)tα+tβ+tµ+tη+tρ+IA−IB
ΠIB,IC

Πtµ

{
tη IC tµ
IB tρA IA

}
, (65)

tµ = tνwhere the equivalence of  is used. 

III.  RESULTS

After the detailed derivation of the analytical expres-
sion for the decay width and transition matrix of a bary-
on  decaying  strongly  into  a  meson  plus  another  baryon,
we  now  provide  an  example  of  calculation  to  check  its
correctness. Moreover, one of our long-term objectives is
to provide a unified picture of mesons and baryons decay-
ing strongly, from our previous analysis in the meson sec-
tor [21].

∆(1232) π(140)
N(940)

∆(1232)→ πN

114 MeV 120 MeV

The  most  convenient  example  for  our  test  is  the
 baryon  decaying  strongly  into  a  pion  ( )

plus  a  nucleon  ( ).  This  is  because  (i)  all  hadrons
involved  in  the  reaction  are  well  established  in  the
Particle  Listings  of  the  PDG [1];  (ii)  the  two hadrons  in
the final  state  are  stable,  avoiding  additional  complica-
tions  in  the  computation  related  by  considering  decay
widths  of  the  products;  (iii)  all  constituent  quarks  inside
hadrons  are  either u- or d-quarks  and,  because  isospin
symmetry is well fulfilled in QCD, we can assume all of
them as equivalent quarks; (iv) the branching fraction of
the  strong decay channel is 99.4%, which
constitutes almost the total decay width; (v) the total de-
cay  width  is  relatively  well  measured  experimentally,
with a value between  and  [1].1)

4

As mentioned earlier, the Δ-baryon is composed of up
(u) and down (d) quarks in different combinations, which
results  in  different  species  with  different  charges  and
decay channels. This species and their properties are giv-
en in the following table:

 
 

Baryon Quarks Charge (in units of e) Decay Channels

∆++ uuu +2 p+ π+ + 

∆+ uud +1 n0 π+ p+ π0 +  or  + 

∆0 udd 0 n0 π0 p+ π− +  or  + 

∆− ddd −1 n0 π− + 

Detailed derivation of the 3P0 strong decay model applied to baryons Chin. Phys. C 49, 013108 (2025)
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∆(1232)−

To calculate the decay width, we must fix the proper-
ties  of  the  initial  and  final  hadrons.  For  simplicity  and
without loss of generality, the studied decaying baryon is

. Therefore, the properties of all the hadrons in-
volved in the reaction are listed as follows (a constituent
quark model description of hadrons is assumed):
  

Hadron L S J Mass/MeV Radius/fm

Δ 0 3/2 3/2 1232 1.03

n 0 1/2 1/2 940 0.84

π+/− 0 0 0 140 0.5

 
Using the  experimental  masses,  the  transferred  mo-

mentum of the reaction can be calculated: 

k0 =

»(
m2

A− (mB−mC)2
)(

m2
A− (mB+mC)2

)
2mA

= 226MeV .
(66)

Having  fixed  the  target  reaction  to  be  studied,  let  us
now  determine  some  relevant  couplings  required  to
provide a  final  numerical  result.  For  example,  the  coup-
ling of angular momenta in the final state can be deduced
as follows: 

JBC = JB⊗ JC =
1
2

and LBC = LB⊗LC = 0. (67)

(ρλ)

For the other values, slightly more work is necessary. For
instance, the baryons have two internal momenta that res-
ult from the -Jacobi coordinates; they should fulfill 

LλA ⊗Lρ = 0 ,

LλB ⊗Lρ = 0 ,
(68)

which dictate that 

LλA = LλB = Lρ , (69)

and we assume that all of them are zero. Additionally, the
final hadrons have a relative angular momentum, l, which
must be considered to assure the conservation of angular
momentum, 

J⃗A = J⃗BC + l⃗ ⇒ 3
2
=

∣∣∣∣12 ⊗ l
∣∣∣∣ , (70)

having two possible values: 

l = 1 or l = 2 . (71)

During the calculation, the Wigner symbols eliminate any

of the values that do not comply with the triangular con-
ditions.

1/2 sρ
Regarding  spin  coupling,  the  quarks  are  fermions

with a spin of , and  must be maintained as it is the
total spin of the two spectator quarks. Therefore, the next
decomposition is performed: 

S A =
3
2
=

Å
1
2
⊗ 1

2

ã
1
⊗ 1

2
=
(

sα⊗ sβ
)

sρ
⊗ sη ,

S B =
1
2
=

Å
1
2
⊗ 1

2

ã
1
⊗ 1

2
=
(

sα⊗ sβ
)

sρ
⊗ sµ ,

S C = 0 =
1
2
⊗ 1

2
= sη⊗ sν . (72)

1
sρ

Note  that  the  spin  of  the  spectator  quarks  must  be
equal  to  to  correctly  provide  the  Δ  quantum numbers.
Thus,  this  requires  the  same  value  of  in  the  nucleon.
Similar reasoning is made for the isospin couplings: 

IA =
3
2
=

Å
1
2
⊗ 1

2

ã
1
⊗ 1

2
=
(
tα⊗ tβ

)
tρ
⊗ tη ,

IB =
1
2
=

Å
1
2
⊗ 1

2

ã
1
⊗ 1

2
=
(
tα⊗ tβ

)
tρ
⊗ tµ ,

IC = 1 =
1
2
⊗ 1

2
= tη⊗ tν . (73)

To estimate the coefficients that appear in the Gaussi-
an  expansion  of  the  hadron’s  wave  functions,  we  must
perform some analysis. The Gaussian form for the meson
can be assumed to be 

f ( p⃗C) = dCe−
C
2 p2

C , (74)

where  only  one  term  of  the  sum  is  used  to  simplify  the
calculation.  The  form of  the  Gaussian  function  provides
the next relation between the variance and the coefficient: 

σ2 =
1
C
. (75)

Thus, the hadron’s radius can be approximated as 

⟨r2⟩ ≈ (h̄c)2

σ2
, (76)

h̄c = 0.197327GeV fmwhere  is included to obtain the cor-
rect units. This is the relationship we will use between the
hadron’s coefficient and its size.

The Gaussian expansion for a baryon is different be-
cause  it  has  two  components.  Following  Ref.  [50]  the
next function is used: 

f ( p⃗λ, p⃗ρ) =
ï

2b2

π

ò3/4

e−b2 p⃗ 2
ρ

ï
2αb2

π

ò3/4

e−αb2 p⃗ 2
λ , (77)
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where α depends on quark masses as 

α =
m1m2(m1+m2+m3)

m3(m1+m2)2
, (78)

3/4which is equal to  in our case. Equation (77) shows us
two important aspects:  (i)  the computation of the baryon
radius  in  terms  of  its  Gaussian's  standard  deviation  and
(ii) the relation 

dC =

ï
2C
π

ò3/4

. (79)

Now,  we  can  compute  the  coefficients  necessary  for
the transition matrix (see Eqs. (42)−(45)), 

A =
9⟨rA⟩2+3⟨rB⟩2+2⟨rC⟩2

4(h̄c)2
, (80)

 

B =
9⟨rA⟩2+9⟨rB⟩2+4⟨rC⟩2

8(h̄c)2
, (81)

 

x =
9⟨rA⟩2+3⟨rB⟩2+2⟨rC⟩2
9⟨rA⟩2+9⟨rB⟩2+4⟨rC⟩2

, (82)

 

D =
1
2

ñ
9⟨rA⟩2
4(h̄c)2

(1− x)2+
9⟨rB⟩2
4(h̄c)2

Å
1
3
− x
ã2

+
⟨rC⟩2
(h̄c)2

Å
1
2
− x
ã2
ô
, (83)

and the product of the amplitudes, 

dλA
i dλB

i (dρk )2dC
l = ρ

3/2
k

ñÅ
2
π

ã5Å81⟨rA⟩2⟨rB⟩2⟨rC⟩2
16(h̄c)6

ãô3/4

.

(84)

ρ3/2
k ρ−3/2

kNote  that  cancels  with  the  that  appears  in  the
spin-space component, Eq. (54).

3P0 γ′
The final constant that must be known is the only-free

paramter  of  the  decay  model, ,  that  characterizes
the strength of the quark-antiquark pair creation from the
vacuum.  Following  Ref.  [21],  the  next  relation  can  be
used to calculate this constant: 

γ′ =
√

25π · γ0

log
Ä
µ

µγ

ä , (85)

γ0 = 0.81±0.02 µγ = 49.84±2.58MeVwhere  and  are con-
stants  fitted  to  the  total  strong  decay  widths  of  mesons,

µ = mq/2 = 313MeV/2 = 156.5MeV
mq

and μ represents  the  quark  sector  to  which  the  decaying
hadron  belongs.  For  the  example  at  hand,  the  Δ-baryon
belongs  to  the  light  quark  sector.  Therefore,  following
Ref.  [21],  we  obtain ,
where  is the value of the constituent light quark mass
in our model, and 

γ′ =
√

16π ≈ 7.09 . (86)

All together, they provide the following value for the
decay width: 

Γ(∆(1232)−→ n(940)+π(140)−) = 113.32 MeV , (87)

Γ∆(1232) = (114−120) MeV
Γ∆(1232)→Nπ = (113−119) MeV

3P0

which  is  just  at,  or  below,  the  minimum  given  by  the
PDG  [1], viz. .  Therefore,

.  This  result  is  remarkable
because,  in  some  sense,  it  is  a  free-parameter  prediction
of the  decay model using only the experimental val-
ues  of  the  hadron’s  radii  reported  in  Ref.  [1]  and  the
scale-dependent strength determined in Ref. [21].

γ′

√
3

γ′

To contrast  this  result,  the  value often used in the
literature  is  the  one  obtained  in  the  fitting  performed by
Blundell  [29]. Because this  value is  fixed for  meson de-
cays, it must be divided by  to extrapolate it for bary-
on decays.1) Therefore, the next value of  can be used: 

γ′ =
13.4√

3
, (88)

having a decay width of 

Γ(∆(1232)−→ n(940)+π(140)−) = 134.95 MeV , (89)

3P0

which is slightly higher than the experimental interval but
relatively  correct  [1], confirming  that  the  analytical  de-
velopment of the  model for baryon decays appears to
be correct, and the radii of the involved hadrons are well
estimated.

∆→ πN

Note herein that, because this is a strong Δ-baryon de-
cay, the only variation among charge channels lies in the
corresponding  Clebsch-Gordan  coefficient  and  possible
final  states.  Theoretically,  this  implies  that  each  charge
channel can be calculated independently. However, from
an experimental perspective, when one channel is known,
the others  are  of  no practical  interest.  This  characteristic
is  evident  in  the  PDG,  where  the  differences  in  the

 strong decay due to the possible charge states are
not documented, and a single value is provided. 

Detailed derivation of the 3P0 strong decay model applied to baryons Chin. Phys. C 49, 013108 (2025)
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IV.  SUMMARY

3P0

This  work  have  shown  in  detail  how  to  obtain  the
transition matrix element  for  a  baryon decaying strongly
into a meson and another baryon through the well-known

 quark-antiquark pair creation model.

∆(1232)→ πN

Because one of our long-term objectives is to provide
a  unified  picture  of  mesons  and baryons  from our  chiral
quark  model,  an  important  feature  is  to  describe  meson
and baryon strong decays under the same umbrella. Such
a study was conducted on the meson in Ref. [21], and we
have sought to extend the same formalism to the baryon
sector, focusing on the  strong decay width
because all hadrons involved in the reaction are very well
established,  the  two  hadrons  in  the  final  state  are  stable
and  require  no  further  analysis,  all  quarks  are  light  and
equivalent, and  the  decay  width  of  the  process  is  relat-
ively well measured.

3P0

JPC = 0++

3P0

We can conclude that the core concept of the  de-
cay model remains robust: the dominant strong decays of
mesons – and by extension,  baryons – are  driven by the
creation of a quark-antiquark pair from the vacuum with
quantum numbers , followed by the recombina-
tion of this quark and antiquark into separate final states.
While  we  aim  for  the  model  to  capture  at  least  the
most fundamental aspects of all strong decays of mesons
and  baryons,  we  acknowledge  that  fully  describing  the
finer  details  is  a  challenging,  if  not  unattainable,  task.
This is the essence of what we mean by ''unification.''

Utilizing a  Gaussian  expansion  method  for  the  had-
ron’s radial wave functions, the expression of the invari-
ant matrix element  can be simplified into a  sum of  mul-
tiple terms  composed  basically  on  some  numerical  val-

∆(1232)→ πN

ues,  wave  function  coefficients,  and  Wigner  symbols.
Those wave function coefficients can be determined from
the mean-square  radii  of  involved hadrons,  and we have
used  their  experimental  measures  in  such  that  the  only
one free parameter is the strength of the quark-antiquark
pair  creation  from  the  vacuum.  This  has  been  obtained
from  our  previous  study  on  strong  decay  widths  in  the
meson  sector  [44],  and  we  have  obtained  a  reasonably
compatible  result  with  the  experiment  for  the  calculated

 decay width.

3P0
3P0

The  past  two  decades  have  been  a  golden  age  of
meson  spectroscopy.  Worldwide  experimental  facilities
have  reported  many  new  exotic  charmonium- and bot-
tomonium-like  hadrons,  which  are  collectively  called
XYZ  states,  whose  nature  is  still  unclear.  It  is  expected
that the same puzzling scenario will appear in the baryon
sector  in  the  near  future,  with  some  pentaquark  signals
already  reported  by  the  LHCb@CERN.  This  work  has
been developed in setting one of the three steps towards a
novel raft of quark model applications to exotic baryons.
Within  the  quark  model  framework,  exotic  baryons  as
meson-baryon molecules  should  be  explained  by  basic-
ally the diagonalization of a matrix that has three blocks:
(i)  baryon  spectrum,  (ii)  meson-baryon  states  formed  by
the residual  interactions  between  the  quarks  that  consti-
tute the involved hadrons, and (iii) the coupling of bary-
on  and  meson-baryon  sectors  through,  for  instance,  the

 decay model. This is the context in which our deriva-
tion of the  decay model for baryons acquires its  rel-
evance,  with  some  steps  already  performed  for  the
meson-baryon block [51], and we are researching the first
item in which baryon wavefunctions will be obtained.
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