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Abstract: In this work, we develop a general perturbative procedure to determine the off-equatorial plane deflec-
tions in the weak deflection limit in general stationary and axisymmetric spacetimes, enabling the existence of the
generalized Carter constant. Deflections of both null and timelike rays, with the finite distance effect of the source
and detector considered, are obtained as dual series of M/ro and ry/rs4. These deflections enable a set of exact
gravitational lensing equations from which the apparent angular positions of the images are solved. The method and
general results are then applied to the Kerr-Newmann, Kerr-Sen, and rotating Simpson-Visser spacetimes to study
the effect of the spin and characteristic (effective) charge of the spacetimes and the source altitude on the deflection
angles and image apparent angles. We find that, generally, both the spacetime spin and charge affect only the deflec-
tions from the second non-trivial order, whereas the source altitude influences the deflection from the leading order.
Because of this, measuring the effects of the spacetime spin and charge from the apparent locations of the images in
gravitational lensing in realistic scenarios is difficult. We also present the off-equatorial deflections in the rotating
Bardeen, Hayward, Ghosh, and Tinchev black hole spacetimes.

Keywords: deflection angle, gravitational lensing, stationary and axisymmetric spacetimes, off-equatori-

al plane, perturbative method

DOI: 10.1088/1674-1137/ada34a

I. INTRODUCTION

The deflection of light rays in gravity has been ex-
tensively studied from the early stage of General Relativ-
ity [1, 2]. Today, gravitational lensing (GL) has de-
veloped into an effective tool in astronomy, ranging from
measuring the mass of galaxies or their clusters [3],
studying distributions of dark matter [4], investigating the
properties of supernovas [5], to testing alternative gravit-
ational theories [6, 7].

The simplest scenario of signal deflection and GL is
that of light rays in static and spherically symmetric
(SSS) spacetimes or in the equatorial plane of stationary
and axisymmetric (SAS) spacetimes in the weak deflec-
tion limit (WDL). With the rapid development of astro-
particle physics [8, 9], gravitational wave detection [10],
and black hole (BH) imaging [11, 12], significant efforts
have been devoted to the extension of the deflection and
GL of timelike signals [13—18], with finite source and de-
tector distance [19], and in the strong deflection limit
[20—22]. Different analytical methods have also been de-
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veloped, including perturbative methods [22—25] and the
more recent Gauss-Bonnet theorem-based methods
[16—-18, 26].

However, extension to the non-equatorial deflection
and GL in SAS spacetime is still rare (essentially non-
equatorial motion does not occur in SSS spacetime), ex-
cept in Kerr [27-33] and Kerr-Newmann (KN) [34, 35]
spacetime. Owing to the complexity of the motion equa-
tions for off-equatorial trajectories, only a few works
have studied deflection and GL in the quasi-equatorial
motion of null rays [36, 37] or they have been studied
only numerically in the general non-equatorial case [38,
39] in other spacetimes; neither has the deflection of both
null and timelike rays been investigated. In Ref. [33], the
general non-equatorial deflection and GL in Kerr space-
time were studied perturbatively for the first time for both
null and timelike rays in the WDL, with the finite dis-
tance effect considered. One of the motivations of the
current work is to study the condition under the form of
SAS spacetime for the perturbative method to be feasible
for non-equatorial deflection and GL. We show that for
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many SAS spacetimes satisfying a separation condition
that enables a generalized Carter constant (GCC), the per-
turbative method is always valid for both null and time-
like rays with the finite distance effect automatically con-
sidered. The second motivation is to reveal the effects of
various spacetime parameters on such deflections and
GL. The spacetimes being considered are the KN, Kerr-
Sen (KS) [40], rotating Simpson—Visser (RSV) [41], and
other spacetimes [42—45].

The remainder of this paper is organized as follows.
In Sec. II A, we introduce the basic setup of the problem,
establish the equations of motion, and study a condition
for the perturbative method to work. In Sec. III, we ex-
plore a perturbative method to solve the deflection angle
in both # and ¢ directions. The off-equatorial GL equa-
tions are then solved in Sec. IV to obtain the apparent
angles of the lensed images. In Sec. V, the method and
deflection and GL results are applied to the KN, KS, and
RSV spacetimes, and the effects of their characteristic
parameters are studied. We conclude the paper with a
summary and discussion in Sec. VI. Throughout the pa-
per, we use the natural unit G = ¢ =1 and the spacetime
signature (—,+,+,+).

II. GENERAL FRAMEWORK

In this section, we derive the deflection angles in the
6 and ¢ directions for SAS spacetimes. We show that this
is always possible when the metric functions satisfy cer-
tain conditions, such that a proper separation of variables
in the equations of motion, or equivalently the existence
of'a GCC, can be accomplished.

A. Preliminaries

We begin from the most general SAS spacetime,
whose metric can always be expressed in the following
form:

ds® = —Adr* + Bdtdg + Cd¢* + Ddr* + Fd#?, (1)

where ¢, 1,0, ¢ are the Boyer-Lindquist coordinates, and
A, B,C, D, F are functions of » and 8 only. This metric al-
lows two commutative Killing vectors:

- (B w-(8) oo

where the spacelike y* corresponds to the rotation sym-
metry and timelike & to the time translation symmetry.
These Killing vectors correspond to two conserved quant-
ities of the motion:

1.
E = Ai~ > Bj, Q)

L= %Bt’+C¢. 3)

Here, the dot denotes the derivative to the proper time or
affine parameter 4 of the motion, and £ and L can be in-
terpreted as the energy and angular momentum of the
particle (per unit mass), respectively. In asymptotically
flat spacetimes, E can also be related to the asymptotic
velocity v of the particle through

1
Vi

E =

4)

The asymptotic velocity v is the magnitude of the spatial
component of the four-velocity of the test particle. From
these equations, we can obtain two first derivatives:

. 2BL+4EC

T B2+4AC )
. 4AL-2BE

T B2+4AC ©)

Now, for the equations of motion of the » and 6 co-
ordinates, we can simply express their geodesic equa-
tions. However, they are second-order equations that are
very complicated to simplify. In this work, we will limit
our choices of the SAS spacetimes, i.e., placing condi-
tions on the metric functions, such that the motions en-
able a third conserved constant, i.e., the GCC [46]. We
note that unlike the Kerr spacetime case, which not only
contains a Carter constant [47] but even second-order
Killing tensors [48], the existence of the GCC is not guar-
anteed in all SAS spacetimes. For those SAS spacetime
without the GCC, many of them are non-integrable sys-
tems and even the geodesics are chaotic, such as Jo-
hannsen-Psaltis spacetime [49] and Zipoy-Voorhees
spacetime [50]. We will not study these spacetimes in this
work.

To observe the requirements of the existence of such
a GCC and obtain (simpler) equations of motion for » and
0, we use the Hamiltonian-Jacobian approach. Our start-
ing point is the action of the free particle for a separable
solution, which is

S = _%K/l—Et+L¢+S(r)(F)+S(0)(9), ™)

where k=0, -1 fornull and timelike particles, respect-
ively. Here and hereafter, any function with an (r) or (6)
superscript is a function of 7 or 8 only. The Hamilton-Jac-
obi equation is given by
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1 oS 9 1
2o 0 =
2g Ox* Ox¥ ZK 0. ®)

Substituting Eq. (7), this becomes
1 /dSO\® 1 /ds®\?
B(dr>+f(de>_

We then seek metrics that allow this equation, after being
multiplied by a proper total factor function G(r,6), to be
separable into » and @ dependent parts. This can be ac-
complished if the metric functions A, B,C,D,F and
factor G can cast the left-hand sides of the following
equations into their right-hand sides [46]:

4AL* —4BEL—-4CE* _
B2 +4AC -

©

G(r,0) G(r,6)

Do) - D(r), 00 - F(0), (10a)
X(rn0)Gn0) _ ®

Biaic = X0 +X9), (10b)
G(r,0) = G+ G9(9), (10c)

where X € {A, B, C}. Note that the condition (10c) is for
the separability of the x = —1 case and unnecessary for
null signals. Condition (10a) implies

F(r,6) _ D(r)
D(r,0) ~ F ()

(11)

In practice, the functions on the right-hand sides of Eq.
(10) as well as G(r,0) can be obtained from the left-hand
sides and Eq. (11). Additionally, a freedom of a multi-
plicative constant occurs in functions D(r) and ¥ (8), and
additive constant freedom occur in each pair of functions
X" and X®. Indeed, we can demonstrate that these
freedoms will be canceled out in the final equations of
motion (17) and (18) and therefore do not affect the phys-
ics. Moreover, many SAS spacetimes, including the Kerr
spacetime, satisfy these conditions (10).

A few comments about the variable separation condi-
tion (10) might be useful for their clear understanding
here. This work shows that the spacetimes satisfying con-
dition (10) can always be treated using our method,
whereas those spacetimes not satisfying (10) are not treat-
able using the method developed in this work. Hence,
condition (10) is both a sufficient and necessary condi-
tion for the applicability of our method. However, Eq.
(10) is only a sufficient condition for the separability of
the equations of motion and we cannot prove that it is
also a necessary condition, although we cannot provide
any counter-example either. In other words, it is unclear

to us whether spacetimes (unknown to us) exist that do
not satisfy condition (10) but still allow the separation of
its variables.

Using condition (10) in Eq. (9) and separating the r
and 0 dependent parts, we obtain

240 ) ) 2(0) ds©y?
4L°AY — kG —4ELB" —4E“C""” + D(r) d
.

ds® ) 2
dg

=K, (12)

=«kG” —4°A” +4ELB” +4E*C” - F () (

where the assigned constant K is the GCC we are search-
ing for. Note that this GCC also allows some constants
because we can always add or multiply a constant to both
sides of the first equal sign in Eq. (12). However, these
additive or multiplicative constants will not affect the dy-
namics; therefore, they can be selected freely. Thus, Eq.
(12) can be split into two equations:

(dS g )2 kG —4I2A® + 4E2CY + 4ELB + K

=R
dr D(r) .
(13)
(dS ®) )2 _ KG® —412A® + AE°C + 4ELBY — K _ )
do /) F(6) - ’
(14)

where we have defined two compact functions R(r) and
O(0) to simplify the notation. When the metric functions
are known, these two functions can be determined. There-
fore, functions S and S® can be solved, and the action
(7) becomes

1
S =-kA-Et+Lp+ +, VRdr+ [ +,V0do,  (15)

where +, and +, are two signs introduced when taking
the square roots in Eqs. (13) and (14). The motion equa-
tions for  and 6 coordinates are determined using

oS

o = Pu=gnd’ (16)
to be
_+ VR
"T Doy (a7
A ) (18)
F(r,0)
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B. Defining the deflection A¢ and A9

One of the main goals of this work is to determine the
deflection angles of the trajectory in the WDL. Denoting
the source and the detector coordinates as (r,,¢;,0,) and
(ra,94,64), respectively, this goal is equivalent to determ-
ining

Ap=¢p,—psand AO=6,+6,—m. (19)

In the WDL, we can reasonably assume that during the
propagation of the signal, it experiences only one periap-
sis with radius ry,> M, where M is the characteristic
length scale of the spacetime, and one extreme value of
the azimuth angle 6,,. i.e.,

i‘lr:ro = 0» 9'9:0m =0. (20)
The existence of such §,, means that it is either closer to 0
or 7 than both 6, and 6,; therefore, we always have

|cos8,| >|cosb,,|. From Egs. (17) and (18), we observe
that the above can be inverted to

1o =R7(0), 6, =07 (0). 1)

After substituting Egs. (13) and (14), this yields the more
explicit relation

_E(B"+B)+5,VE

2An +AMY @2
2E (A B - A™B) [E (BY +B™) + 5, VE]
k= (A% + Al Y2
K (APGn — AW G + 4E2 (AT COn — AP C™)
* A+ Al :
(23)
where

2= (A +A™) [(G" +G™) + 4E(C™ + C™)]
+E*(B" + B™)?,
X’”O = X(r)(r0)7 Xgm = X(H)(Gm), X € {Aa B9 Ca G}9

and s, = £1 is introduced when solving a quadratic equa-
tion. These relations connect the motion constants
(E, L, K) with (ry, 6,). In Sec. III, we will use (ro, 8,,) to
replace (L, K) because the latter are less intuitive and of-
ten more difficult to measure in astronomy. For example,
ro for the bending by the Sun can be approximated using
the solar radius.

To obtain the deflections A¢ and A6, we first slightly

transform the equations of motion (6), (17), and (18) and
show that they can be integrated. First, from Eqgs. (17)
and (18), we easily find

D F

di= dr= de,
+, \/ﬁ *y \/6

24

which, after dividing G(r,6) and using Eq. (10a), yields

1 1
dr= dé.
+, VRD £, VOF

(25)

In contrast, substituting Eq. (10b) into Eq. (6), we have

_ 4LAV —2EB® +4LA® —2EB®

de G(r,0)

da. (26)
After using Eqs. (10a) and (25), the » and 8 dependent
parts in this equation are separated:

: 4LA" —2EBY 4LA® —2EB®

de. 27
+, VRD +, VOF @7

Integrating Eq. (27), we directly obtain A¢

[T 4LAD —2EBY
no= | [+ [
¢ w o i VRD
O (%] 4LA® —2EB®

+ 51 / + / —de. (28)

O S voF

Note that when integrating from r, to ro (or ry to ry), the
first term of Eq. (27) is expected to have +,=-1 (or
+, = +1). When integrating from 6, to 6,, (or 6,, to 6,),
+5=—-1 (or £y =+1) if 6,, is a minimum or +,=+1 (or
+4=—1) if §,, is a maximum. These sign values cause the
extra s; = sign(cos(8,,)) sign in front of the second integ-
ral in Eq. (28). Similarly, by integrating Eq. (25), we ob-
tain the following relation between initial and final 6 co-
ordinates:

{/m+/md} ﬁdr: 51 Mﬁ+/:]} Ede. (29)

This relation enales us to solve §; when 6,, the spacetime,
and other kinetic variables are known. Therefore, from
this, we can detremine the deflection in the 6 direction as
defined in Eq. (19).

III. PERTURBATIVE METHOD AND
DEFLECTIONS

The integrations (28) and (29), which solve the de-
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flection angles, often cannot be used to obtain closed ana-
lytical forms. Therefore, in this section, we develop the
perturbative method to approximate these integrals and
then obtain the deflection.

A. Perturbative Method

The main concept of the perturbative method is se-
lecting appropriate expansion parameter(s) and expand-
ing the integrands into simpler series such that the integ-
rations become executable. The WDL has a naturally
small parameter 1/r, suitable for this purpose. When ex-
panding the integrands in Egs. (28) and (29), we can also
anticipate that the expansion coefficients will explicitly
depend on the asymptotic behavior of the metric func-
tions. After a short survey of the applicable spacetime
metrics of our method, we found the following expan-
sions can be assumed for the functions X* (u =r, 6) and
D(r) and F(0)

[N}

1
A =50 q0 30a
; r' 4sin’@ (302)
B" = i by ., B?”=0, (30b)
n=2 r”’l
e i Cn o9 sin” @ (300)
= , , c
n=0 2 4
<] dn
D=y ~5.  FO=1, (30d)
n=0
G" = %, G = a*cos’ 6, (30e)
r"-

n=0

where the constant a can be interpreted as the spacetime
spin, and without losing any generality, we can always
assume a > 0. Other coefficients a,, b,, ¢,,d,, g, can be
determined when the metric functions are known. Note
that for the @ functions of the above form, the relation
(20) between 6,, and other parameters becomes very ex-
plicit as

a (E2 +K) ch - (K+ 24°E? +K(,12) E+a®E*+K+L*=0
€2y
and in principle, we can solve 6,, in terms of other para-

meters if required. Substituting the above series and us-
ing the following simple changes of variables

p= @, ¢ =cosf, s=sinf (32)
,

in the integrals of Eqs. (28) and (29), we can further ex-
pand them with 1/r, as the small parameter into the fol-
lowing series forms:

- U+/} inn,(p)(:o)idp

ol [ 50 (a

m i=

(33)

Up#/m gjm,xp)( ) o

_ / /} %(;)idc, (34)

where ¢, Ss.am,» and the small dimensionless quantities
Psa are defined as

Dsa = rO/rs,dv Csdm = COs gs,d,ms Ss.dm = Sin 95,d,m~

The coefficients n,;, ng;, m,;, my; can be computed to any
desired high order. Here, we only list their first few or-
ders:

Neo = 2p ( bE — 28280 )
2 \/do(l—p2) \/Kg0+4E2c0 28md2P |,
(35a)
$25m
Ngo = 12 2 (35b)
ng; =0 (35¢)
2 2
Sor8ma”(k+ E*)
__Ssna@ K+ B 35d
02 = 75 (kgo + 4E2cy) (35d)
1
S , (35¢)
V/(kgo +4E2co)(1 - p*)dy
- (4E>co+kgo)di p(1 + p) + (AE>c) + kg1 )dop
P 214 p) kge +4E2 ) (1- pA)dy
(35)
1
My = — (35g)

Vkgo +4E%c
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kg +4E%c,

=— 35h
2(kgo +4E?cy)3? (35h)

ng2

Some higher-order terms are presented in Appendix A.
For the integrals over p in Egs. (33) and (34), we can
show that their integrands are always of the form
polynomrial(p)/ (1 —172)"”/2 (n=0,1,---) and therefore
integrable [33]. For the integral over c¢ in these equations,
their integrands are always of the form polynomrial(c)/
[(1=c»"\/c2,—c*] (n=0,1) and therefore also integ-
rable.
The results of the integrations are of the form

A = ZiNr,i(pj) (rlo)iJf ZiNGJ(Cf’Cm) (%0)

j=sd i=2 j=s.d i=0

(36)

i

M.(p)| =) = M. (¢ _

ZZ r,t(pj)<r0) ZZ G,t(cjvcm)<r0> ) (37)
Jj=sd i=1 Jj=sd i=1

where N,;, Np;, M,;, My; are the corresponding integral

results of the n,;, ng;, m,;, my; terms. Again, the first few
terms are

28,80 _
Ny = i/d_oz {pj\/l—p§+cos l(pj)}
2b,E \/1-p?

- , (38a)
1/ do(Kgo + 4E2C0)
Nggo = % — 8185 tanfl & . (38b)
2 o-c
Np1 =0, (38¢)
2 2
§28md (K+E ) -1 (Cj)
=" - - — |, 38d
27 D(kgo+4E%c) O \e (38d)
-1
cos i
M, = (ps) (38¢)
\/ (Kg() + 4E2C0)d0
4E%c,dy+ kg, d, 1-p;
Myp = Cido + K& 03/2 { Dj —COS_I(pj)
2 [(kgo +4E?co) dy] l+p;
(Kg() + 4E2C0)d1 :|
_ /1= p? 38
(Kg1+4E2C1)d0 pj ’ ( f)

1 c
My = ———cos™! (—’ ), 38
ol K&o +4E2C0 Cm ( g)
(kg1 +4E%c)) —1(Cj)
My, =——"——"— — 1, 38h
02 2(kgo +4E%cy)3/? cos Cim (38h)

and some higher-order results are given in Appendix A.

B. Deflection angles

We note that the deflection A¢ in Eq. (36) still con-
tains the unknown 6, in its second term coefficients Ny;.
In contrasat, Eq. (37) effectively establishes a relation
between 6, (or cos6,) and other parameters. Therefore, to
solve the deflections A¢ and A8, we must first solve
cosf, from Eq. (37). In the WDL, cos6, can also be ex-
pressed in the series form

cosb, = Zh,» (l) , (39)
o

i=0

where the coefficients #; are solvable from Eq. (37) us-
ing the method of undetermined coefficients. Here, we
only show the first two orders:

ho = ¢y cos [\/151_ z:cos‘l(pj)—cos‘l (?)] ,

Jj=s.d m

(40a)
W= =5\ 1| Vit TG Y Moot
Jj=s.d
kg +4E%c, » }
+ cos™ (pj)|,
2(kgo +4E?co) Vdy ,;1 !
(40b)

and higher order ones are given in Appendix A.

Substituting Eq. (39) into Eq. (36) and performing the
small 1/r, expansion again, we finally determine the de-
flection A¢ as

26=3"3 " Moo (rlo) 45, gzvg,xcs,cm) (é) (41)

j=sd i=2

where N,; is unchanged as in Eq. (38), and the first few
Nj,; values are

_ CsS _ hOSm
N,,=m—s; [tan =) 4tan”' | —=22— s
{ Ve —a NCR

(42a)
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S1 smhl
N =——r——, 42b
" w-nE-n )
. S18uhohi(3h5 —2ch — 1) N S1Smha
P am-12 (2 -m) W -DNS -
S;naz(K+E2) |: —1 (Cs) -1 (ho)}
+ 72(Kg0 +4E26‘0) COS ?m + COS ?m .
(42¢)

Inspecting the above results, we discover that s, is simply
the sign of A¢ at the lowest order, which also means that
sp = x1 correspond to anticlockwise and clockwise mo-
tions, respectively. Naturally, the following relation
holds:

s, = sign(L). (43)
In the infinite r,, limit, we observe clearly from the Nj,
term that A¢ to the leading order equals s,.

Similarly, substituting (39) into Eq. (19), the deflec-
tion in € direction becomes

A9=9S+al—n=2k,-<f) ; (44)

i=0 o
where
ko = 0, —m+cos™ ! (hy), (45a)
hy
k= ——, 45b
| i (45b)
2h3hy — hoh? —2h;,
ky = (45¢)

21— 12y

Note that in the limit r,; — oo, hy approaches —c,; there-
fore, ko approaches 0.

Egs. (41) and (44) are two important results of this
work, and a few comments are necessary concerning
them. First, these results apply to general SAS space-
times that allow the existence of a GCC. This includes
many well-known spacetimes such as the Kerr, KN, and
all SSS apacetime, which can be obtained by setting all
b, =0 for n>2. Second, they apply to both light rays
(setting x = 0) and timelike particles (setting x = —1). In-
deed, we can show that the £ — oo limits of these results
for timlike signals equal exactly their values for null rays.
Third, these deflections also consider the finite distance
effect of the source and detector. This effect can be im-
portant when studying the GL effect. Through setting p, 4
to zero, the infinite distance version of the deflections can

be obtained. Fourth, these deflections apply to both non-
equatorial and equatorial trajectories. For the former, set-
ting 6,4 — n/2, we have verified that the deflection angle
A¢ reduces to its value on the equatorial plane in the Kerr
spacetime [23]. For the latter, these formulas do not rely
on any near-equatorial plane approximation, i.e., 6, and
6, can be far from n/2. Last but not least, the deflections
(41) and (44) can be further expanded around small p,,
values if the source and detector are far away, i.e.,
rsa > ry, and a dual series form will be obtained. Such a
form will be more appealing from the application per-
spective, and we explore this in Sec. V.

IV. GRAVITATIONAL LENSING

As we have obtained the deflection angles for arbit-
rary inclination angles of the signals, we can study GL in
such SAS spacetime in the off-equatorial plane. Because
our deflection angles (41) and (44) contain the finite dis-
tance effect, we can naturally establish the following GL
equations:

5¢5 = A¢ U (46a)

60 = AG. (46b)

Here, 6¢ and 60 are the two small angles characterizing
the angular position of the source relative to the detector-

z
A
i
b S(rs; s, 05)
----- ] o
—————— IR = Ny
’/’ ) __:“’— \,
< i
~o 1
_______ R
------- T
]
]
]
]
] 1/
1
IR
B Rl LD LD D > Y
X
—————— r-x
D(ra, ¢a, 0a)
Fig. 1. Schematic diagram of one trajectory from the source

at S(ry, ¢, ;) to the detector at D(ry, ¢4, 64). ro and 6,, mark
the minimal radius and extreme 6 points on the trajectory, re-
spectively. (a, 8) marks the apparent angle formed by this tra-
jectory on the celestial sphere of the observer.
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lens axis in the spherical coordinates, as shown in the
schematic diagram in Fig. 1. When r,, 6, are fixed, then
substituting Egs. (41) and (44) into Eq. (46) enables us to
solve the minimal radius and extreme azimuth angle
(r0, 0,,) for each pair of 8¢, 8. However, Eqgs. (46) are
high-order polynomials of r, and more complicated func-
tions of 6,,, which often cannot be solved analytically,
particularly when the effects of higher-order parameters
are sought. Therefore, we often use the numerical meth-
od to solve them.

Generally, two sets of (rg,6,) enable the signal to
reach the detector. When the deflection (66, 6¢) is not
small, these two solutions will often have opposite orbit-
al rotation directions s,, and the s, = sign(cos(é,,)) equals
s, for each solution. Only when the source, lens, and de-
tector are aligned (deflection less than 10~ in the Sgr
A* scenario considered in Sec. V A) and the spacetime
spin is large could exceptions exist (see also Ref. [33]).
Therefore, we label these two solutions as (ro., 6,,,) and
(ro-, 0,,-) to represent the prograde and retrograde rotat-
ing signals, respectively. In this paper, by prograde and
retrograde, we mean that the trajectories are rotating anti-
clockwise and clockwise around the +Z directions, re-
spectively. No retrolensing is involved because we dis-
cuss only the weak deflection cases.

However, to link the solved (ry, 6,,) tothe observ-
ables of the GL, we must still determine the formula for
the apparent angles of the lensed images. For a static ob-
server in the spacetime with metric (1), the associated tet-
rad (e,)* takes the form

ey = %% =Z, (47a)
0= \/15; =5 (47¢)
e = %% =, (47d)

where Z is the four-velocity of the observer. Thus, for a
signal with four-velocity u* = (i, ¢, i+ ), its projection us-
ing the projection operator h*, = ¢ +Z*Z, into the tetrad
frame yields the vector

i =W =

Bp [BP+4AC . ,
-7"5 ZTzc‘“ VDi#+ VFOb.  (48)

Here, (#,6, ) are linked to (L, K) through Egs. (6), (17),
and (18) and then to (rys, 6,,.) through Egs. (22) and (23).

Thus, the apparent angle y. measured by this observer
against the detector's radial direction 7, and «. against
the 7,0, plane and 8. against the 7,¢, plane are, respect-

ively,
Y. = cos™! @7
h [22]171
D
=cos ' | - . , 49a
By pir+ F ) |, (452)
_ T -1 (ﬁ7 é&)
@y == —Cos" —
2 |22l
. 1 B<15 (AB*+4A2C)/B?
= —sin — ,
24 \| BACha Dz FéR ) |,
(49b)
r @)
Be==—cos™'
2 |16
, F
P
= sin 0 . - - s 49¢
( B‘ZiAC¢2+Di2+F02> J (#5e)

where the subscript |; means that all coordinates should
be evaluated at the detector location. These equations are
valid for all trajectories in the SAS spacetimes, including
those that are bent strongly. In the large r; limit,
¥: ~ a2 + B2, therefore, we must focus on two of them,
which are conventionally selected as (a., 8.).

V. APPLICATION TO PARTICULAR
SPACETIMES

In this section, we apply the general method and the
results in Secs. III and IV to some known SAS space-
times to examine the validity of the results and signific-
ance of the spacetime parameters on the off-equatorial
deflection and GL. We focus on deflections A¢, A9, the
ro,6,, and apparent angles a.., ..

A. Deflections and GL in KN spacetime

For the KN BH, the deflection in its equatorial plane
has been considered using analytical methods repeatedly,
and the (quasi-)equatorial motion, as well as numerical
solutions of the trajectories, has also been studied mul-
tiple times [51-55]. However, to our best knowledge, the
perturbative study of the general off-equatorial deflection
has not been conducted yet.

The metric of KN is given by

055103-8



Off-equatorial deflections and gravitational lensing. II. In general stationary and...

Chin. Phys. C 49, 055103 (2025)

TN = 2Mr+ Q2 47 2a(2Mr— Q*)sin* 6

ds? = drdg
KN ZkN
(% +%) - Axna?sin® 0] sin’ 0
+ d¢?
2‘KN
KN Lo >
+——dr +2KNd6 ,
AKN
(50)
where

Skn =1 +a?cos? 6,
Axn =P =2Mr+d* + 02,

and M, Q,a = J/M are the mass, charge, and spin angular
momentum per unit mass of the spacetime, respectively.
In studying the trajectories, we can always select a > 0 if
the motion is allowed to go both clock- and anticlock-
wise. To use the method and results developed in Secs.
IIT and IV, we must first check whether the metric (50)
satisfies the separation requirements (30). Substituting the
metric into these equations, we easily observe that the
separation can be performed, and the r-dependent func-
tions are

2 2 Ma2
A =L -4 P9 o0, 51
KN " gAe 42 2m TO0 (51a)
2 — Mar
BY. — agQ
KN AKN
Ma -2M? 2
_ _Ma 2MataQ | oy, (51b)
r 72
cn = (r2+a2)2
KN — 4AKN
rr Mr a*+4M?-Q? .
Z+7+T+O(7’) N (510)
D)y =1 —2Mr+a* + 0%, (51d)
G =1, (51e)

and X9 (X €{A, B,C, ¥,G)}) are exactly as given in Eq.
(30). This guarantees the existence of the GCC, as was
well-known prior, and the applicability of the results of
deflection angles.

Substituting the coefficients in Egs. (51) directly into
Eq. (41) and (44) and performing the small p,, expan-
sion, the deflection angles in KN spacetime are determ-
ined as dual series of M/ry and p, 4

v e
NELEEY Godt”_ M. p0)
v2r,

4v4rd v2ry
N $1828mCs \/ €2 —C2 {

4
SX

4aM?  8s:aM?  sys
A¢KN = S+ — n n

= (ps+pa)—

21+v)M|?
(ps+pd>—27}
Verp

+0(e)’,
(52a)

s1\/ €2 =2 [2(1+vHM
Abkn =

Sy v2r

(Zkn+32s28,0°0) M> - M (p, +pd)}
4v4r3 v2r,

—(ps+pa)—

cys2,

3
2s3

2(1+v)M
{(ps P ———
V<ro

2
} +0(e)’,
(52b)

where the infinitesimal e represents either the M/ry or
Psa»and

L =8+ 8V — 127 = 3mv* + m2 (2 +v9) 02, (53)

a=a/M,0=0Q/M, and E has been replaced by the
asymptotic velocity v through Eq. (4). We can take a few
limits for these deflections. Through setting v=1 or
psa =0, they reduce to deflections of light rays or deflec-
tions from infinity to infinity, respectively. A more un-
usual limit is to set a = 0, which pushes these deflections
to their values of the signal in an RN spacetime but with
an arbitrary incoming direction. For O =0, they agree
with Egs. (32) and (39) of Ref. [33]. In the infinite dis-
tance and equatorial limit, py, ps, cpocs— 0  and
Sm» 85 — 1, and we have checked that A¢gy in this limit
agrees with Eq. (83) of Ref. [24].

Both Egs. (52a) and (52b) illustrate various effects of
the non-equatorial motion and spacetime parameters. For
the deflection Ag¢ky, the following observations can be
made. First, we observe that the non-equatorial effect
manifests in two ways. The first is through the terms pro-
portional to ¢, y/c2 —c2. These terms will vanish in the
equatorial limit; therefore, we call them non-equatorial
terms. The second way of the non-equatorial effect is
through the factor 57 /s* of the other terms, which will be
called the equatorial terms. If the trajectory were in the
equatorial plane, these factors would all be one. There-
fore, these factors effectively adjust the contribution of
equatorial terms to the deflection. The second comment
concerns the effects of the spacetime charge and spin. For
equatorial motion, Q and & begin to appear in the equat-
orial terms from the second order only, ie., the
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(M/10), (ro/75a)* or (M/ro)(ro/7sq) terms. While in non-
equatorial terms, they begin to appear from the third or-
der.

The terms of the deflection Af in Eq. (52b) are either
proportional to +/c2 —c2 or ¢,;, which both approach zero
in the equatorial limit. At the leading orders of both
(M/ro) and p,,, the terms are proportional to +/c2 —c2.
For the effect of both O and &, they both appear from the
second order, which is similar to the equatorial terms in
A¢kn. In both Agky and Abgy, the sign of O does not
matter, as expected because the signal is neutral.

To check the validity of these deflections (52a) and
(52b), in Fig. 2 we compare them with their correspond-
ing numerically integrated values. In this plot, we select a
relatively small ry such that the deflections are appre-
ciable to tell the effects of various parameters. We ob-
serve in Fig. 2 (a) and (b) that as ry increases, both |[A¢kn|
and |Afky| decrease monotonically. The analytical results
approach the numerical value more closely as r, in-
creases, which is expected because both deflections are
series of (M/ry). From Fig. 2 (c) and (d), we observe that
as 0, decreases, the deflection in the O direction in-

10
) — num, sp=+1 3.5 = sp=+1
q 5| — sp=+1 IS - Sp=-1
o
= “(‘D 2.5] — num, sp=+1
li 0 sl - num, sp=-1
o | T (S} o
-é- 5b e ep=-1 g 1.9
< L num, sp=-1 -
SOSET9s 20 22 24 O 8s 20 22
ro [M] ro [M]
(a) (b)
= ; 3.5
9 3 I DS
2 ¥ 25
£ O = 2t
& | e, S sp=—1
&-3 QL5 — hum, sp=+1
< . num, sp;=-1
7005 010 015 020 005 010 015 020
O 1] 6m [1T]
(c) (d)
— |A@-sorT], so=+1  — A6, sp=+1
—_ - |A@-s,TT], sp=—-1 -+ AB, sp=-1
N': 45 2
\ —
o K
A )
44 19 @
X A
i 3
34.3 1.8
4.2 1.7
0 0.2 0.4 0.6 0.8 1.
Q
(e)
Fig. 2.  (color online) Dependences of A¢ and Ad on ry, 6,

and O in KN spacetime. v=1,r,=ry =400M,a=1/2,6, =n/4.
In (a)(b), 0 =1/2, 6,,=x/5. In (c)(d), O =1/2,r9 =20M. In (),
ro = 20M, 6,, = n/5. All red lines represent numerical results.

creases, whereas that in the ¢ direction decreases. This is
intuitively consistent with the physical expectation be-
cause the decrease in 6,, corresponds to the motion of the
trajectory asymptotic line towards the z axis above the
equatorial plane. Fig. 2 (e) shows the effect of O on the
deflections. Previously, the equatorial plane case implied
that |A¢kx| would decrease as O increases [55], which is
still observed here for the off-equatorial motion. We also
note that this is even true for Afky, which shows the
spherical nature of the effect of O on the deflections. Fi-
nally, the effect of the spacetime spin a on these deflec-
tions was studied in Ref. [33] in the Kerr spacetime, and
we found that the effect is not changed qualitatively: a
larger & increases (or decreases) the ¢ of the prograde
(or retrograde) signal.

With the correctness of the series results confirmed,
we can now solve the lensing equations (46) with A9 and
A¢ given by Egs. (52b) and (52a) to obtain the (ry, 6,,) for
a fixed pair (6¢, 66) that characterizes the angular deflec-
tion of the source against the lens-observer axis. For the
non-equatorial motion in a SAS spacetime, the source's
azimuth angle 6, also becomes important. Because these
equations are high-order polynomials if the effects of Q
and a are considered, we have only solved them numeric-
ally. We used the Sgr A* BH as the lens and set
rg =1, =834 kpc and varied (64, 60, 6,). We found that,
qualitatively, the effects of 6¢, 66, 8, and a are similar to
their effects in the Kerr case studied in Ref. [33]. There-
fore, we will not show these figures here. Instead, we
only mention that a larger positive & decreases (or in-
creases) the r, of a counterclockwise (or clockwise) rotat-
ing trajectory; therefore, the trajectory is pulled towards
(or pushed away from) the z axis. 6,, will change accord-
ingly: a larger positive a will increase |cos6,| of both
counterclockwise and clockwise rotating orbits. For the
charge Q, its deviation from zero decreases r, for all a
and orbit rotation directions and increases |cosf,| very
weakly.

Finally, substituting the solved (ry, 6,,) together with
the initial parameters (66, 6, ;) into Egs. (49b) and (49¢),
we can obtain the apparent positions of the two images on
the celestial sphere of the detector:

Q@+KN =
o Lo (Axn—d? sin? 0)+a sin’ 0E (2Mr- Q%)
sing \/AxnZx [ZxnE? + & (Sxy = 2Mr + Q)]

sin

K
(54a)

1 ®i (EKN —2Mr+ QZ)
ZKN I:EKNEZ + K(EKN —2Mr+ QZ)]

Bikn = s18in”

d’
(54b)
where 0. is defined in Eq. (14) and takes the form
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0. = ka*cos’0—[2csc*0—a*E*sin*0—- K. (55)

in KN spacetime. L;, K. can be fixed by (ros,0,s)
through Eqgs. (22) and (23). These apparent angles are
consistent with the results in Ref. [33]. For the null
particle in the WDL, we can make the following power
series approximation by taking M/ry and M/r, as small
quantities:

Szl;'d 2;’\'(”
(56a)
2
LSS S
ﬁiKN = - _~
Sala
3+822— 0% —4sys,..0
Fow+1+ d Q 222 ), (56b)
27'()4L

where and henthforce Fo. =ro. /M, Fy=ry/M, s =
sinf,... When we set 0 =0, they agree with Ref. [33].
However, when 0 #0, its effect does not only appear
from the Q?/(ry.r;) order as we might think superficially
from Eq. (56). Indeed, O affects 7. by an amount simil-
ar to the size of Q itself; therefore, its influence on the
image apparent angles is at the Q/r; order, i.e., one order
lower than what appears in Eq. (56). The off-equatorial
effect influences y.xn from the second order because, at
the leading order, the total apparent angle

Yikn ¥ A/ @xn + Bk Would not be tuned by the factor
Sme/Sq OF +/s:—s2,/sq in front of a.xy and B.kn, re-
spectively.

In Fig. 3, the angular positions of the GL images as
functions of 6¢ (a) and 66 (b) are plotted. It is seen that as
6¢ varies from 0 to 10” while keeping 66 at 17, the two
images are in the first and third quadrants, respectively.
The image in the third quadrant is separated further from
the lens than the one in the first quadrant. Because in this
parameter settings, the effect of spin & on the apparent
angles of the images is weak, when we flip d¢ to the
range of —10” to 0, or 66 to —1”, the images are reflected
by the y and x axes, respectively, in the 2d celestial
frame. More interesting is the effect of 6, in this plot. The
trace of the images as 6¢ varies for 6, = 7/6 almost coin-
cides with that for 8, = /3. The reason can be under-
stood from the fact that when the spin a effect is not
strong, the total deflection in an SAS spacetime is ap-
proximately the same as that in an SSS spacetime. In SSS
spacetimes, 6, characterizes only the altitude of the im-
ages, whereas, when §¢ scans through a range, the traces
of the images will coincide if the origin of the local 2d
celestial sky is allowed to shift, as in Fig. 3 (a). For the
variation in 66 with fixed 6¢ = +1”, different 0, values

PR Gy <10 5 0

Bl + 6¢(")
Y .

®+ar 0 o o

5 1
1 ©
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o B
+ o

00 0 mxxx mxx O 0O O
X x
-1 3| Om®+o+ X 1
9 = &w%dj
4 —2 0 2 4
al']
(a)
10. T
5 DX 40
4t f, ox +o
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X e
&
o ob+e xéfﬂ o
= 5° & g
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Fig. 3. (color online) Apparent angles of lensed images in
the celestial sky in KN spacetime. (a) 6¢ varies from —10” to
10” with fixed 66=1" (o and x) and —1” (o and +). (b) 66
varies from —10” to 10” with fixed 6¢ =1” (o and x) and —1”
(o and +). The symbols o and o are for 6, =n/3 and x and +
are for 6, = n/6. The color of the symbols from blue to red in-
dicates that the changing angles increase from -10” to 10”.
(¢) Variation in the apparent angles as  increases. In all plots,
a=0=1/2,v=1,M=41x10°Mg, r, =ry =8.34 kpc are used.

In (), 60=10"%", 5¢ =104, 6, = /6. The ao, = 0.60780640",
g = —0.60783265", o, = 1.2776103”, By = —1.2776603"".

enable a different contribution from 60 to the total deflec-
tion 6n, which roughly equals

on ~ /86 +sin® 0,692, (57)

and, therefore, the image traces will not coincide, as
shown in Fig. 3 (b).
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Note that in both plots, we have set a=1/2,0=1/2.
The effect of these parameters under the current paramet-
er settings, as observed from Eq. (56), is very small com-
pared with the apparent angles themselves. Thus, they
cannot be recognized in plots (a) and (b). Therefore, in
(c), we show the small variation in the apparent angles
(@axn, Baxn) as Q increases, where ag. = a.xn(Q =0),
Bo- =B.xn(Q =0). The sizes of the apparent angles of
both images decrease by about 10 as ( increases. Both
the trend and changed amount agree with the prediction
of Eq. (56).

B. Deflections and GL in KS spacetime

The KS BH is a type of rotating and charged BH in
the four-dimensional heterotic string theory [40]. Al-
though both the strong [56] and weak [36] deflection lim-
its of GL effects have been studied in this spacetime us-
ing approaches different from ours, these studies focused
either on the (quasi-)equatorial plane or did not express
the deflections in terms of the original source and kinetic
variables. Here, we extend them to the general non-equat-
orial case and consider the finite distance and timelike ef-
fects.

The metric of the KS spacetime is given by [57]

df:_Zm—MthAMmmf%m¢
ks 2ks
[(r2 +2br+ a2)2 — Agsa? sin® 9] sin’6
d¢?
ks
2Ks | 5 2
+ —dr +Est9 . (58)
Aks
where

ks = r(r +2b) + a* cos? 6,

Ags = r(r+2b)—2Mr+d?,

with b= 0?/(2M) > 0. This metric reduces to the Kerr
spacetime when b =0. The metric functions also satisfy
the separation conditions (10), and the corresponding
functions and their asymptotic expansions are

. a2 a  a*(M-b) _
A= ae =4 ap TOWT (%)
, Mar aM  2aM(M - b) _
= 2D o, (s
» _ (P +2br+d*)?
Cks=—n
4Aks
2 (M+b 2 +4M?
=%+( : L o, (59¢)

D(r)gs = r* —2(M —b)r +a*, (59d)

Gy =1 +2br. (59¢)

Substituting the coefficients Eqs. (59) into Egs. (41)
and (44) and performing the small p,, expansion, we de-
termine the deflection angles in KS spacetime as

4aM? ~ 8s2aM?* sy,
2 22 2
vrg s2yr 52

2(1+v)M LesM? M (ps+pa)
T—(Ps +Ppa)— -

4473 V2ry
N $1828mCs A/ €2, — €2

s4

s

A(bKS = S+

21 +v)M*
{(ps +Ppa) - %}

+0(e)’,
(602)

s1/cA—=c2 21 +vHM
Abgs =

5 —(ps+pa)
Ss Vry

(Zks +32s2s,v°a) M2 M (p, +pd>}
4v4r§ v2r
2(1+v)M

2
CSSm
- + -
250 {(ps Pa) re

2
} +0(e),
(60b)
where
4v*b(p,+ pa)ro

M
+ (8v2 +4m2 + 8v* + 27rv4)lA7 + 7rv4132, (61)

lks =8+ 8v2 — 12m”* = 3mv* +

and b=b/M. Comparing Eq. (60) with the correspond-
ing results in Eq. (52) in KN spacetime, we observe that
the only change is essentially in the definition of (s.
This is understandable because both the KN and KS
spacetimes reduce to the Kerr one if we set O =0 in the
former and b (or Q) in the latter, and these two paramet-
ers only appear from the second order in each of the de-
flections A¢ and Af. The infinite source/detector and null
limits of the deflections (60) can be easily obtained by
setting v=1 and p,, = 0. The equatorial plane case of A¢
was determined in Eq. (49) of Ref. [56] for a light ray and
infinite source/detector and agrees with our result under
these limits.

To study the effect of the new parameter b on the de-
flections, in Fig. 4 (a) we plot the dependence of A¢ks
and Abgs on b. As b increases, both deflections Agys and
Abks for all spin & decrease monotonically. This effect is
qualitatively similar to the effect of 9? in KN spacetime.
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Fig. 4. (color online) Dependences of A¢ and Ad (a) and o
and B (b) on b in KS spacetime: (a) v = 1, a = 1/2,

rs=rq=400M,0, = /4,0, =7/5,r0=20M; (b) v = 1, a=
1/2, M =4.1x10°Mg, rg =ry =834 kpc, 60 = 107", 6¢ = 107", 6, = n/6.

With the deflection known, we can solve the GL Eq.
(46) for ry and 6,,. Again, if we use the deflection angles
of sufficiantly high order such that the effect of b is con-
sidered, these GL equations are polynomials whose solu-
tions are too lengthy to present here and therefore we will
not do so. We also studied the dependence of the solved
(ro, 6,») on b and found that it is also qualitatively similar
to the effect of 0% in KN spacetime. That is, r, decreases
as b increases for fixed &, whereas |cos6,,| increases but
only very weakly in the WDL.

Using these r, and 6,, in Eq. (49), we determine the
apparent angles in the KS spacetime as

. Lo (Axs—d? sin? 0) +2aMEr sin®6

diks = sin” s
sin6 \/AxsZxs [SksE? + Kk (Zxs —2M1)] la
(62a)
0. (Sgs —2M
B = 51 sin”" (s = 2M7) ., (62b)
Sks [SxsE? +k (Sxs —2Mn)] |,

where @, in the KS spacetime also takes the form of Eq.
(55) but its (L., K.) have different relations to (ros, 6,..)
through Eqgs. (22) and (23). For null rays and the small
M/ry and M/r, limit, these apparent angles are approxim-
ated as

A2 %) 7 A
S28ms [ . A 3+a°—b"—2b—4s;,5,.0
aigs = S: <roi+b+1+ 2 n N
dld 0+
(63a)
2
SV Sa— S
Piks = —— ——
Sata

. 34823 — b2 —2b—4s,8,.0
X | for+b+1+ 4 ).
27’(&

(63b)

In contrast to the parameter O in the KN apparent angles
(56), we observe that the parameter b affects the appar-
ent angles in KS spacetime from the order b/r, explicitly.
However, we also indicate that as b increases from zero,
its influence on ro, is also at this order but slightly larger
and with an opposite sign.

Figure 4 (b) shows the apparent locations of the im-
ages in the KS spacetime as b varies. The a,. and f.
values are the same as in Fig. 3 (c) because at b =0, the
KS spacetime reduces to the Kerr one. As argued above,
the total effect of b from 0 to 1 is also the decrease in the
image apparent angles by about 2x 107%". Hence, the ef-
fect of b in the KS spacetime is similar to that of paramet-
er Q% in the KN spacetime, both qualitatively and quantit-
atively.

C. Deflections and GL in RSV spacetime

RSV spacetime is another modification from the Kerr
spacetime that satisfies the separation conditions (10). Its
metric is given by [41]

,_ ZR—2M \/r2+lzdt2_ 4Masin® N2 + 2

ds® = drd¢
ZR z:R
2+12+22_A 2'29 -29
N [(r a’) RA SIN ]sm d¢2
R
2R ) 2
+ —dr” +XRd6", (64)
Ar

where

Sk =12+ +a’cos?0,
AR=P+P+a®-2MNr2+1,

The parameter />0 is a length scale responsible for the
regularization of the central singularity. When /=0, this
reduces to the Kerr spacetime. It can also describe a two-
way traversable wormhole (/ > 2M), one-way wormhole
(I=2M), and regular BH (I < 2M) at different values of /
[41]. The GL effects of null rays with source/detector at
infinite distance in the equatorial plane were studied in
the strong deflection limit in this spacetime in Ref. [39].
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The WDL deflection angle of the null signal on the equat-
orial plane without the finite distance effect was obtained
using the Gauss-Bonnet theorem method in Ref. [58].

The asymptotic expansions of separated functions as-
sociated with the metric are

2 2 2
w__@ __a Ma ot 65
R TIA T 4R 2p PO (3
] MaNr?+12 M. 2M?
B = "QTH __Ma _ ~ TL00),  (65b)
R r r
P2 +a*+ )
C(V)
R 4AR
P Mr @ +4M*+ P _l
=7t 2 +0(n, (65¢)
D =1 —2Mr+d®+ P +0(r)", (65d)
Gy =r+I. (65¢)

Substituting the coefficients in these functions into Egs.
(41) and (44) and after the small p,, expansion, the de-
flection angles in the RSV spacetime becomes

4aM> ~ 8s2aM? L 52

Agr = +
9= = som vrg s2vrd 52
2(1+v)M Do+ pa) GM? M(PH‘Pd)}
v2ry Ps™ Pa 44 v2ry
$1828mCs A/ €2, — C? 21+vY)M?
e IR (L 0w
st v2ry
+0(e)’,
(66a)
514/ =221 +vHM
Abg = = g { - —(ps+pa)
K 0

_ (r+32ss,0%a) M* - M (p, +pd)}

g V2ro
82 2(1+v)YM
-5 {(ps +pa)— TO} +0(e)’,  (66b)
where
L =8+ 8V — 12m* = 3mv* —mv* 12, (67)

and [=1/M. The reduction of Eq. (66a) on the equatorial
plane for null rays with infinite source/detector distance

agrees with Eq. (21) of [58]. Similar to KS deflections
(60), the deflections (66) also differ from the KN case
result (52) in its ¢z. However, unlike 02 in ¢kn and b in
ks, here, the regularization length scale /> has a negative
sign in (g; therefore, its effects on the deflections
(A¢r, ABR), (ro,0,), and apparent angles (a.gr,B:r) in Eq.
(69) are all opposite to those two parameters, as shown in
Fig. 5 (a) and (b), respectively.

After solving (ry, 6,,) and substituting into Eq. (49),
we determine the apparent angles in the RSV spacetime
to be

, L. (Ax—d’sin*6) +2aME r? + sin’ 6

4R =sin” ,
sind \/AxSi [Sa2 +x (Zx - 2M VP ) |l
(68a)
- 0. (ZR_ZMW)
ﬁtR = 51 S1n ’
S Sk +x (Sk—2M NP+ ) ||y
(68b)

where 0. is still given by Eq. (55), whereas its (L., K.)
depends on (ro., 6,,..) through Egs. (22) and (23). The ap-
proximations of these apparent angles are

3+&2+i2—4szs,n+&>, (693)

S$28m+ A
Q4R = ~ Pos +1+ ~
Sala 270

si/s9—52, . 3482+ P —4sys,.0
Pir = ———" | Fo.+1+ - .
Sala 27p.

(69b)

In Fig. 5 (b), we plot the dependences of the deflec-
tions (A¢gr, A6r) and the apparent angles (a.gr,S:r) On I.
Unlike the effect of Q in KN spacetime, here, [ increases
ro.; consequently, the apparent angles of the images in-
crease. The amount of reduction of either a.x or B.g as [
increases to 2.5 is comparable to that for O in the KN
case or b in the KS case.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we have studied the off-equatorial de-
flections and GL of both null and timelike signals in gen-
eral SAS spacetimes in the WDL, with the finite distance
effect of the source and detector. We find that as long as
the metric functions satisfy certain common separable
variable conditions (10), which allows the existence of a
GCC, the deflection angles in both the ¢ and 6 directions
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Fig. 5. (color online) Dependences of A¢ and Ad (a) and «a
and 8 (b) on [ in RSV spacetime. In (a), ry = ry = 400M, 6,, = /5,
ro =20M, 6, =n/4 are used to clearly show the effect. In (b),
M =41x10°My, ry = rg = 8.34kpc, 60 = 107", 6¢ = 1074, 4, =

7/6. In both plots, v=1,a = 1/2 are used.

can always be determined using the perturbative method.
The results, as shown in Egs. (41) and (44), are dual
series of M/rq and ry/r,4, and can be directly used in a
set of exact GL equations (46). These equations are then
solved to determine the apparent angles of images in such
spacetimes (49).

These results are then applied to the KN, KS, and
RSV spacetimes to validate the correctness of the meth-
od and results and to determine the effect of the space-
time spin as well as that of the characteristic parameter

Table 1.

(typically an effective charge) of these spacetimes. We
find that both the spacetime spin and charge generally ap-
pear in the second order of both A¢ and A8, whereas the
non-equatorial effect appears from the very leading non-
trivial order, as shown in Egs. (52), (60) and (66).

For the image apparent angles, again both the space-
time spin and (effective) charge appear in the subleading,
as manifested in Eqgs. (56), (63), and (69). Therefore,
these parameters are quite difficult to detect from the ap-
parent angles in relativistic GL in the WDL.

To demonstrate the generality of our method, we sup-
plement a few other spacetimes whose off-equatorial de-
flections can be determined using our method in Ap-
pendix B. We summarize the results computed in the
main text and this appendix in Table 1 to clearly present
the results and the effect of the main parameter(s) in the
spacetime on the deflection and/or apparent angles.

The results of this work can, in principle, be applied
to any spacetime with a (non-spherical) axisymmetry.
However, in the solar system, the only known object that
can bend the light is the Sun, and yet its dimensionless
spin parameter & is only of order 107 [59]. Therefore,
the effect of the spin or the off-equatorial plane effect in
the deflection angle and/or apparent angle of images can-
not be observed for the Sun in the foreseeable future. In-
stead, most spacetimes studied in this work are BH space-
times. Therefore, the results are more applicable to more
extreme rotating BHs, and particular examples are M87*
[11] and Sgr A* [12], whose spin parameter & can poten-
tially reach a much larger order (roughly a fraction of
one). We can also assume that such BHs carry extra para-
meters such as those appearing in the Kerr-Sen or rotat-
ing-Simpson-Visser spacetimes and attempt to use future
observations to constrain the corresponding parameters.

A few potential extensions to this work that can be
explored. The first is to study the magnification and time
delays of the images in the off-equatorial GL. Ref. [33]
shows that, for the Kerr spacetime, the spacetime spin
might have a stronger effect on the time delay than on im-

Spacetimes and their off equatorial deflections. From the second to last columns are the metric equation number, main para-

meter of the spacetime, deflection angles in that spacetime, lowest order in the deflection angle from which the main parameter ap-

pears, equation number of the image apparent angles for the spacetime studied in the main text, and effect of the parameter on the ap-
parent angles, i.e., the monotonicity of the apparent angle as the parameter increases.

Spacetime Metric Eq. Para. Def. angle Eq. Order App. angle Eq. Para. effect
Kerr-Newmann (50) 0 (52) 2 (56) N
Kerr-Sen (58) b (60) 2 (63) N
Rotating Simpson-Visser (64) ! (66) 2 (69) /
Rotating Bardeen (B1) with (B2) g (B7) with (B2) 3 or higher
Rotating Hayward (B1) with (B3) k (B7) with (B3) 3 or higher
Rotating Ghosh (B1) with (B4) h (B7) with (B4) 2
Rotating Tinchev (B1) with (B5) J (B7) with (BS) 3 or higher
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age locations. The second is that we might also attempt to
study the off-equatorial deflection of charged particles in
electromagnetic fields. However, the separation condi-
tion (10) must be re-investigated.
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APPENDIX A: HIGHER ORDER ITEMS OF
SERIES

Here, we list some higher-order coefficients in the
series appearing in the main text of the III. For Eq. (35),
we present two more coefficients, which are also used in
the computations in the main text:

(1+p*)(kgo +4E2co)

Cz + C3C2 —C1C4
Mgz = s
37 2(c2 — e)(kgo + 4E2co) 2

where

C, =d*(E*+x),

Cr = |kg, +4E? cz—4a2s (Kg0+4E2C0) a*E

c
Cy=cACr——.

m

The corresponding integral coefficients are

Mr,3 =

1 { 2 2
d3C?
 16(dyCy)*

- siCl +45,5,b0,F

Sdodl(Kgl +4E2C1) _ l6s2b2d3smE
0 (1+p)(kgo+4E%*co) (1 + p)\/kgo+4E>c
3 (A1)

(A2)

3(kg, +4E%c))?

+4E2¢cy—
k8o O kgo + 4E2cq)

4+5 (I+p)*[2+p; _
Pj /1 —3cos” (p, } —4dyd, C4Cs 1+I;/2 Pj /1—p§—Cos I(Pj)
j

1+p;

2+p; 1+p;
+ (16ays,,dg — 3d; +4dyds ) C; {p i/ 1-p? +cos_l(pj)} ~ 32555, Eb,d2C;” {H—Z; 1-pi- Ti; cos ' (p ,-)} }

where

Cy = Kgo+4E ¢y,

and

2C3 —3C1C’2n |:COS_1 (7/)
4(kgo +4E3cy)3? Cm

63 =

The second-order coefficient in Eq. (39) is

J J

(A3)

C5 = K& +4E2C1,

2 _
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2
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2
Ohl

(Kgl + 4E2C] )hl

/2 _ 12
Cn hO

h
hy = — 5 \/Kg0+4E2C0\/C%I_h(z)ZMrﬁ_ 2(C2

Jj=sd n

Cs

1
+ \/ﬁ + ﬁ Zcos_l(pj)) (2C3 —3C1c}2n) +

Jj=s.d

APPENDIX B: APPLICATIONS IN OTHER SAS
SPACETIMES

In addition to the spacetimes that we have discussed
in detail in Sec. V, many spacetimes also satisfy the re-
quirements of the separation of variables we establish in
Sec. II A. Here, we briefly mention the off-equatorial de-
flections in these spacetimes.

The following line element describe a class of space-
times satisfying these conditions

= —2m(r)r a7 4am(r)rsin* 0

ds? = drd
) S 0}
+ <r2 +a’+ 72a2m(2r sin’ 0) sin” 6d¢’
2
+ Kdr2 +3d6?,
where

2=1~2+512(:0529,A=r2—2m(r)r+a2

and a, m(r) are the spacetime spin and mass functions, re-
spectively. This line element covers the Kerr spacetime
when m(r) = M is a constant, the rotating Bardeen BH
[43] when

2\ 3g°M 5
7r2+g2) =M= 007, B

mp(r) =M (
the rotating Hayward BH [43] when
P KM _
mH(r)ZMsz—7+O(F) 5, (B})
the rotating Ghosh BH [44] when
M
mg(r)=Me™" =M - hM +0(r7, (B4)
r

and the rotating Tinchev BH [45] when

() = Me = m -2 1 0. (BS)
r

- hg)

ho
" Axgo + 4E2co) K N
Cy (2C2 + Clcxc,zn) }
+ .

2 /2 2
Cn Cn —Cs

2(kgo +4E?co)
/’lo (2C2 + Clhgci)

2 /o2 2
Cin Cn h()

(AS5)

Here, we have expanded m(r) into the following form:

mr) =y = (B6)
n=0

and the coefficients m, for each spacetime can be easily
obtained from Egs. (B2) — (B5). For the rotating Bardeen
and Tinchev spacetimes, their characteristic parameter
appears from the second order of the expansion, whereas
the rotating Ghosh and Hayward ones appear from the
first and third orders, respectively.

Using the line element (B1) and mass function (B6),
we determine the deflection A9 and A¢ as

damj  8s:am}  sysp,

A¢ = ST+

vr3 s2vr} 52
2(1 +vHmy &mg mo(py+ pa)
BT AR v S
$1528mCs /€2 — 201 +v2)my |
L S 4\/7 (p5+pd)_270}
S Voro
+0(e)’,
(B7a)
s1y/c2—c2 [2(1+v)m
Aj= =V { S~ (Pt pa)
K 0

(£ +32505mv°a) my o (p, +pd)}

i virg
- (g, pp- 2L o,
' (B7b)
where
£ =8+8 —12m* - 3m* - W (B8)

0

and all m; should be obtained from corresponding space-
time.

We also compute the deflection in the Konoplya-
Zhidenko rotating non-Kerr spacetime whose metric is
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given by [42]

N?—W?sin 6
7(2

+ K1 sin” 0dep* +

ds? = — dr* — 2rWsin® 0drdg

N3 dr? +2d6?, (B9)

where

S=r+ad’cos’0, A =r*-2Mr+d?,

(A—n/r) 2Ma  na
N? = LW = -
r? z * r’x
r+a’ 2—aZ(A—n/r)sinzé?
g = L) el . ®W)

and 7 is the deformation parameter that describes the de-
viation from Kerr spacetime. However, we find that to or-
der O(M/ry)?, the parameter 5 does not appear in either
A¢ or Af. Therefore, the deflections to order O(M/ry)* in
this spacetime is also given by Eq. (B7) with m,»; = 0.

For future reference, we also test the applicability of
our methodology to SAS but non-asymptotically flat
spacetimes, such as the KN-(anti)de Sitter spacetime de-
scribed by [60]

A A, .
ds’ = == [adt— (* +d?) dg]” - = (dr —asin®6dg)’
p= =
+0? (dr2 N diez)
P\A A )
(B11)
where

A
P> =r’*+a’cos’0, Ag = 1 + —a’cos>6,

AP A
A = (P+a?) (1—%) -2Mr+ QL E= 14 3d

and Kerr-Taub-NUT spacetime with metric [61]

ds? = — A—a;sinzgdtz + Z[AX_Q(Z; ay)sin’ 6] drdo
2 2 o 29_ ZA 2
+( +ay)*sin“ 6 —y dp? + =dr? + 2deP,
z A
(B12)
where

Y =r2+(fi+acosb)?,
A=r-2Mr+a*-i?,

x = asin*6—2fcos6.

We find that they also satisfy the separation requirements
(10); therefore, the deflection of both null and timelike
rays in the equatorial or off-equatorial plane in them can
be treated using our method. Finally, for C-type metrics,
which do not have the reflective symmetry about the
equatorial plane, including the KN-(A)dS C-metric [62],

2
ds* = %{—M (% —asin29d—¢) + idr2
H T \a K/ f)
2 22 2
4 2, MOS0 {a—dt— (r+a*) dj} }
K

h(6) xr? a
(B13)

where

2m  a*+é? r+a®
—+ +

f(r) = (1—A2r2) (1— o

r r?
&
h(@) =1+2mAcosf+ {AZ (a2 + ez) - } cos6,

7
a2

=1+ —cos’0, H=1+Arcos6,
r

and its subcases with A # 0, we find that only for null but
not the timelike rays, the separation requirements (10)
can be satisfied. Therefore, the deflection can be studied
using our approach. However, for these metrics, we will
not list the formulas in the € and ¢ directions until more
valuable applications are determined.
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