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Abstract: In this paper, we study the thermodynamics of Schwarzschild-anti-de Sitter black holes within the frame-
work of non-commutative geometry. By solving the Einstein equation, we derive the corrected Schwarzschild-AdS
black hole with Lorentzian distribution and analyze the thermodynamics. Our results confirm that if the energy-mo-
mentum tensor outside the event horizon is related to the mass of the black hole, the conventional first law of ther-
modynamics will be violated. The study of criticality reveals that the black hole undergoes a small black hole-large
black hole phase transition similar to that of the Van der Waals system, with a critical point and critical ratio slightly
smaller than that of the Van der Waals fluid. As the non-commutative parameter increases, the phase transition pro-
cess shortens, leading to a critical point, and ultimately to the disappearance of the phase transition. The violation of
the conventional first law results in a discontinuity of the Gibbs free energy during the phase transition, indicating
the occurrence of zeroth-order phase transition. Moreover, we investigate the Joule-Thomson expansion, obtaining
the minimum inversion temperature and minimum inversion mass.
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I. INTRODUCTION

Non-commutative geometry is a theory of spacetime
quantization [1-7], described by commutator [%,%"]=
i®", where # and %" are spacetime coordinate operators,
©" is an anti-symmetric constant tensor, ® is a paramet-
er with dimension of [L?] that represents the minimum
spacetime scale, and VO is a small quantity of the order
of the Planck length ¢, [1, 8]. Extensive research has
been conducted to consider the effects of non-commutat-
ive fields in gravitational theories [9—16]. An interesting
fact is that the commutator of coordinate operators being
a nonzero constant ® matrix is incompatible with Lorentz
covariance [1], which potentially suggests a close rela-
tionship between non-commutative fields and the viola-
tion of Lorentz symmetry. This also provides a new in-
sight into theories about the violation of Lorentz covari-
ance [17—22]. Non-commutative geometry also provides
a reasonable modification to Schwarzschild spacetime.
Compared to the point-like mass distribution in the ordin-
ary Schwarzschild spacetime, the mass distribution of a
spherically symmetric star is altered to a Gaussian distri-
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bution p = ﬁ €xXp (—4%) and Lorentzian distribu-
tion p = M VO/[x*? (r? +7r®)2] spread throughout the en-
tire space [23]. Unlike the Schwarzschild spacetime with
singularities, these two distributions both lead to a regu-
lar de Sitter core at short distances. Many studies have in-
vestigated the properties of black holes (BHs) against the
background of non-commutative geometry [9-12,
23-28]. In Ref. [9], the authors found that the evapora-
tion endpoint of a Schwarzschild BH, corrected by a
Gaussian distribution, is identified as a zero-temperature
extremal BH, even in the case of electrically neutral and
non-rotating objects. Moreover, there exists a finite max-
imum temperature that the BH can attain before eventu-
ally cooling down to absolute zero. The Schwarzschild
BH with the Lorentzian distribution has also been extens-
ively studied, including its gravitational lensing effects,
quasinormal modes, BH shadows, and thermodynamic
properties [25].

BH thermodynamics is a relatively young branch of
BH physics. Since Hawking and Page made the ground-
breaking discovery of phase transitions in Schwarzschild-
AdS BHs in 1983 [29], this area has garnered significant
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attention, particularly concerning thermodynamics in
anti-de Sitter (AdS) spacetime, which often yields more
intriguing and profound conclusions. By correlating the
BH's mass and the cosmological constant with enthalpy
and pressure, researchers derived the first law of AdS-BH
thermodynamics [30], laying the groundwork for a de-
tailed exploration of this subject in AdS spacetime. A
classic example is the Reissner-Nordstrom (RN)-AdS
BH, whose thermodynamic properties were thoroughly
researched in Ref. [31], revealing phase transitions akin
to those of Van der Waals fluids, alongside critical points
characterized by identical critical ratios and critical expo-
nents. Additionally, the RN-AdS BH undergoes a Joule-
Thomson process with inversion points, accompanied by
a minimum critical mass [32]. Overall, extensive re-
search indicates that BHs in AdS spacetime exhibit ther-
modynamic properties similar to those of Van der Waals
systems [31, 33—39]. Notably, for a static spherically
symmetric BH, if the energy-momentum tensor of the
spacetime explicitly includes the BH's mass, the first law
of thermodynamics for BHs requires modification [36,
37, 40], complicating the study of enthalpy and Gibbs
free energy.

In this work, we investigate the thermodynamics of
Schwarzschild-AdS BHs with Lorentzian distribution in
non-commutative geometry. The remainder of this article
is organized as follows. In Sect. II, we substitute the
Lorentzian distribution into the Einstein equation with the
cosmological constant to obtain the metric of a Schwarz-
schild-AdS BH in non-commutative geometry and dis-
cuss the existence of BH solutions. In Sect. III, we con-
duct detailed research on thermodynamics, including the
revised first law, equation of state, behavior of phase
transitions, and criticality. We also calculate the heat ca-
pacity and Gibbs free energy of the BH. In Sect. IV, we
investigate the Joule-Thomson process. We study the in-
version points and determine the conditions for their ex-
istence, specifically the minimum inversion temperature
and minimum inversion mass. Finally, we summarize our
findings and give a future outlook in Sect. V. Throughout
this paper, the Planck units 71 =k = G = c =1 are used.

II. SCHWARZSCHILD-ADS BH IN
NON-COMMUTATIVE GEOMETRY

The Einstein equation with the cosmological constant
Ais

14 1 4 4 v
R, = S0.R+8,A = 8T, 1)

where Ry is the Ricci tensor, 6), is the Kronecker symbol,
R is teh Ricci scalar, and T} is the energy-momentum
tensor. A spherically symmetric spacetime can be ex-
pressed as

ds’> = —f(ndP + f (7" dr? + 2d6* + P sin* 6de*. (2)

By substituting the metric into the Einstein equation, one
can obtain

fH=1+ ! /’ (87Tr2T8 - r2A) dr. 3)
rJo

The Lorentzian distribution p of mass density in non-
commutative geometry is [9, 23—25]

= pm- VO @
72 (r2 +n®)

where M is the mass of the BH, and ® is a non-commut-
ative parameter with dimension of [L?]. The metric of
Schwarzschild-AdS BH in non-commutative geometry is

2M 8MANO® Ar?
fn=1-24 _Ar
r \rr? 3

+0(0%). (5)

It is clear that the correction of non-commutative geo-
metry is of higher order.

To simplify the calculations, we introduce a paramet-
er a with dimension [L]

8VO
7

a=

(6)

where a and ® are equivalent, as they can both be used to
characterize the strength of the noncommutative geo-
metry.

The metric of a Schwarzschild-AdS BH in non-com-
mutative geometry is given by

2M aM AP

f(")=1—7+7—7- (7

To ensure the existence of a BH, it is necessary to satisfy
f () =0 (r, is the radius of event horizon), M >0, and
r, > 0. It is obvious that a > 0. Meanwhile, AdS space-
time gives A <0. These conditions impose the following
constraints:

M > a, rh>g. (8)

III. THERMODYNAMICS

A. The first law and Smarr relation

The BH's mass, also regarded as its enthalpy, can be
solved from f(r;) =0:
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=3r7 + Ar}

=—"1 9

3a- 6l’h ( )

The temperature of the BH is defined by its surface grav-
ity:

_ f'(r) _ 3a—=3r,—2aAr; +3Ar;

T
4n 6anry, — 12nr?

(10)

In the extended phase space of AdS BHs, the cosmologic-
al constant is related to the BH's pressure:

A

P=——.
8

(11

The BH's entropy satisfies the Bekenstein-Hawking rela-
tion:

A
S = i nr, (12)

where A = [[ \/8w8spd0d¢ = 4rr7 is the surface area of the
BH's event horizon. The above functions are helpful for
deriving the thermodynamic first law. However, when the
energy-momentum tensor 7{ includes the BH's mass (as
seen in Eq. 4), the conventional first law of thermody-
namics dM = TdS + VdP will be violated [36, 37, 40]. It
is easy to verify that

T (fg) (13)

The modified first law is written as

dM = WdM = TdS + VdP + ®,da, (14)

where W is the correction function,

oo T a
— 200y 3
W_1+/ 47rra dr—1—2rh+0(a). (15)

™
Using the modified first law, one obtains

T:W((Z\;)Ra, (16)

and the BH's thermodynamic volume

oM drrd
V=W(—> =" 17
oP/)s, 3 a7

Here,

(9M) =3ry+Ar;
O, =W|(— =— 18
< da/gp 6a-—12r, (18)

could be interpreted as "non-commutative potential.
Treating the noncommutative parameter as a thermody-
namic variable is not merely a formal requirement but
also facilitates the derivation of the BH's Smarr relation.

For the BH's mass function M = M (S, P,a), perform-
ing a scale transformation r, — kr, on the system, one
can obtain

k™M = M (k% S,k P.k"a), (19)

where dy, ds, dp, and d, are scale dimensions of M, S, P,
and a, respectively. Taking the derivative of both sides of
the above equation with respect to &, one obtains

dyk™ "M = Mgdgk®™ 'S + Mpdpk®™ ™' P+ M,d k% 'a, (20)

oM
where Ms = a5 The same applies to P and a. One could

set k =1 and derive

dyM = MsdsS + MpdpP + M,d,a. @1)

According to Egs. (5), (11), and (12), dy, = 1,
ds =2, dp=-2,and d, = 1. Thus, one finally obtains

M =2(MsS — MpV)+ M,a. (22)

With the help of Egs. (16)—(18), one has

WM =2(TS — PV) +®,a. (23)

It is clear that when W =1, the conventional Smarr rela-
tion appears. This relation is general. One only needs to
fully consider quantities with scale dimensions and de-
rive the Smarr relation using the same method. The gen-
eral Smarr relation is as follows:

WM =2(TS — PV) +d, Dy, (24)

here, y' represents the i-th thermodynamic variable other
than entropy and pressure, d,; denotes its scale dimen-

sion, @y = WF , and repeated indices imply summation.

Strictly speaking, according to Eq. (15), it should be
considered that the first law of thermodynamics is only
violated when the energy-momentum tensor of the space-

time outside the event horizon is affected by the BH's
mass. In fact, the energy-momentum tensor of a Schwarz-

065101-3



Rui-Bo Wang, Shi-Jie Ma, Lei You et al.

Chin. Phys. C 49, 065101 (2025)

schild BH is also related to the BH's mass:

T)=-M& (x), (25)

where §°(x) is the Dirac delta function in three-dimen-
sional space.

It should be noted that for the modified first law of
thermodynamics, in general, Eq. (14) is not an exact dif-
ferential form (see the proof in Appendix A). In other
words, there does not exist a function M satisfying Eq.
(14). This issue will appear again when discussing the
Gibbs free energy.

Now, we investigate the Smarr relation using the Ko-
mar integral [41, 42]. A Killing vector in a static spheric-
ally symmetric spacetime is given by &é=9,, &=
(1,0,0,0). To construct the Komar integral relation in the
presence of a nonzero cosmological constant, it is neces-
sary to introduce the Killing potential w* [30, 42—44],
which satisfies

V"= (26)

The Killing potential is not unique. In this work, we take
the form

Ww'=-0"= . 27)

One could integrate the Killing equation V,V/&" = —Ry ¢+
over a three-dimensional hypersurface X:

/ Vv, ViEdE, = — / R&'ds,, (28)
x

z

where dX, represents the surface elements of X. Accord-
ing to the Einstein equation (Eq. (1)),

14 1 4 4 v
R = -8R~ 6,A+8nT. (29)

/1_2/1

In non-commutative Lorentzian spacetime, one could ob-
tain

Ri&" = AV, " +8rT,¢". (30)
Thus, one has

/ V, VA dS, + AV, dE, + 8T)¢"dT, = 0. (31)
z

By applying the Gauss theorem, one can derive

/ %, (VA€ + Aw™) + / d5,87T8 =0,  (32)
oz z

where 0% is the boundary of X, and dX,, represents the
surface elements of dX. By choosing X as the entire space
outside the horizon, 9 =S USZ, where S} represents
the horizon sphere and S2, corresponds to the sphere at
infinity. Specifically, for a standard Schwarzschild space-
time, no matter exists outside the horizon, which leads to
the Komar integral relation in Refs. [30, 42]:

/ dz,,, (V'€ + Aw™) = 0. (33)
i)

For a non-commutative Lorentzian BH, due to the influ-
ence of the noncommutative parameter a, the mass distri-
bution of the BH can be regarded as a fluid distributed
throughout the entire spacetime. Now, we proceed with
the computation of the Komar integral. The area element
of a two-dimensional sphere is given by dZ, =
—-dz,, = —r*dQ/2, where dQ is the solid angle differential
element. For the spherical surface at infinity, one has

/ dZ,, (V& + Aw™) = 4nM. (34)
S,

One can calculate and obtain the nonzero components of
Vg

3,
ViE = V¢ =— 2f . 35)

For the horizon sphere, the first term of Eq. (33) is

/ dz,, VHe = / r?dQV'E =2aTA =8aTS.  (36)
2 S%h

"h

The second term of Eq. (33) is

/

The second term of Eq. (32) is exactly the charge associ-
ated with the conserved current J¥ =T#"¢,. One could
substitute in Eq. (4) and derive

dz,, Aw" = -8nP / w"*dQ = —-8nPV. (37)

2 2
"h S "h

dnaM
/2 dz, 87778 = -T2 — _87d,a. (38)

Tn

Combining Eqs. (32), (34), and (36)—(38), we obtain

M =2TS —2PV +2®,a. (39)
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This conclusion is consistent with Eq. (23), because it is
not difficult to verify

WM =M-®,a. (40)

It is important to note that, unlike in the RN spacetime,
the non-commutative parameter a is not suggested as an
independent conserved charge, as it is coupled to the
BH's mass M. In this case, the conserved charge of the
spacetime is still more appropriately suggested as the en-
ergy of the gravitational field. From Eq. (34), it follows
that the total energy of the gravitational field remains
equal to the BH's mass M.

B. Ciritical point

To investigate criticality, the specific volume v =2r,
is introduced [31, 45]. By using this relation, Egs. (10)
and (11) will give the equation of state

P 6a—3v—6anTv +6xTV?

41
6mv3 — 8amv? S
The critical point meets
oP O*P
— =" =, 42
o ? (42)
which leads to
0.036403 0.0027338
v =4.8831a, T, = , P, = L @3)
a a
The critical ratio is
P,
¥ _0.36671. (44)

c

This value is smaller than that of the Van der Waals sys-
tem (0.375) [31]. The graph of P(v) is plotted in Fig. 1.
As shown in the figure, there is only one critical point for
a fixed parameter a. For an isothermal process 7 < T, the
small BH-large BH phase transition occurs. The part
where the pressure increases is unstable, and a useful
solution is to introduce an isobaric curve, which repres-
ents the process of the phase transition. The position of
this isobaric curve is determined by Maxwell's area law
[31, 36, 46, 47]:

7{ VdP =0. (45)

Figure 2 illustrates the result of Maxwell's area law. It
is clear that with increasing temperature, the phase trans-
ition pressure also increases.

0.025¢ :
i — T<T. |
0.020F T=T, |
---T>T.
0.015+ 1
P [
0.010F |, 1
0.005 GePY T 1
0'0007 L L L L L L L L L L L L L L L L L L L L ]
2 4 6 8 10 12
A%
Fig. 1. (color online) Graph of P(v) of Schwarzschild-AdS

BH in non-commutative geometry. We set a=1 and plot
T=08T., T=T., and T = 1.3T.. The black point is the critical
point.

0.0030

0.0029
0.0028F
0.0027F
P 0.0026(
0.0025F
0.0024

0.0023+

0.0022 : : : : :
0 50 100 150 200 250

v

Fig. 2. (color online) Maxwell's area law in the (V,P) phase

graph. The dashed lines represent the phase transitions. We set

a=1.

By defining
T
p= o TE o y="1, (46)

one could obtain the equation of corresponding state

ag+a1v+avt + a3Vt

, (47)

asv? +asv3

where ay,a;,a,,as,as,as are nonzero constants. To calcu-
late the critical exponents, a transformation is also per-
formed:

T v
t=——-l=7-1, w=—-1=v"-1. (48)
T, v,

After performing this transformation, the equation of
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state is expanded as a series, yielding

p=1l+cpt+cntw+cpaw’ +O (th,tw3,w4) , (49)

where ¢y, c;1,co3 are nonzero constants.
There are four critical exponents [48]:

65) _
=T(— @
Cy (aT Voc|z| : (50)
AV « |1, (51
1 6V) .
L 2
K V([)‘P Tocltl ’ (52)
|P—P|oc|V-V,], (53)

where Cy is the isochoric heat capacity. AV is the phase
transition volume, the change of the thermodynamic
volume during the phase transition. 7 is the isothermal
compressibility. Eq. (53) describes the variation of the
pressure with thermodynamic volume at the critical tem-

perature T =T..
32/3]T1/3v2/3
Considering S = YHR

city is

, the isochoric heat capa-

oS
Cv—T(aT)V—O, (54)

which gives a = 0.
To calculate the phase transition volume, Maxwell's
area law is necessary. Eq. (45) yields

w2 d
/ w+1) Ldw=0. (55)
w1 dW

With the condition p(w;) = p(w,), the solution can be ob-
tained as

t
Wy =—W; = ZL (56)
03

1
This indicates 8 = 3
Eq. (52) could be calculated as

a 1 6W> _ 1
K= (w+l)PC((9p T_ c“Pct+O(W)’ 57

which yields y = 1.
When T =T, (t=0),

p=1 +cow’, (58)

which shows that ¢ = 3.

It is concluded that four critical exponents of the
Schwarzschild-AdS BH in non-commutative geometry
are the same as those of the Van der Waals system [31].
These four exponents conform to the Griffiths, Rush-
brooke, and Widom functions [46, 48, 49]:

Griffiths: a+£(0+1)-2=0, (59)
Griffiths: y(6+ 1)+ (@-2)(6-1)=0, (60)
Rushbrooke: a+28+y—-2 =0, (61)
Widom: y-B8(6—-1)=0. (62)

C. Isobaric heat capacity

The isobaric heat capacity is

6S>
=T —
Cr <8T ,

3 271} (2ry —a) (3ry +24Pnr;, — 16aPrri —3a)
- 67721 (SPnr,% — 1) +a? (16P7Tr,% —3) +a (12,.[1 _48P7l'r2) .
(63)

Figure 3 shows the heat capacity as a function of r,.

When P < P,, there exist two different points satisfying
oT

s 0 (marked by the dashed lines), resulting in the di-

vergence of Cp. Meanwhile, there is an unstable region
with negative heat capacity (represented by the segments
in Figs. 1 and 2 where P increases monotonically with V).
As mentioned earlier, this unstable region can be elimin-
ated using Maxwell's area law. As the pressure increases,
phase transition points gradually combine into one at the
critical point. At the critical point, the heat capacity still
diverges to infinity, but the sign of the heat capacity no
longer changes. It has also been shown that when the ra-
dius of the horizon is small, the heat capacity could also
be negative. This interesting phenomenon is demon-
strated in Fig. 4. This negative region is caused by the
BH's temperature 7 <0.From a thermodynamic per-
spective, it indicates that an AdS-BH with an extremely
small event horizon radius is unstable. This negative re-
gion is

g <7¥p < Tnmin, (64)
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10 10 10
8t 8r
5,
6,
& &
) V)
R .
= s 4
_5 2r
0,
-10 : : : T e
2 4 6 8 10 2 6 8 10 5 10 15 20 25 30
T h T
(a) (b) (©
Fig. 3. (color online) Heat capacity Cp as a function of r,. We set (a) a=1,P=0.5P., (b) a=1,P=P.,and (c) a=1,P =2P,.
2.0 w
—P=0.1P,
1.5F P:P¢ 7
-- P=2P,
1.0
S
0.5
0.0
=05 ‘ ‘ ; ‘ ‘
0.5 0.6 0.7 0.8 0.9 1.0 1.1
T
Fig. 4. (color online) Region where the heat capacity Cp is Th

negative when r, is too small. We set a = 1.

where ry, is the positive root of the equation
—3a+3r,— 16aPnr; +24Pnr; = 0. (65)

We also investigated the influence of the non-commutat-
ive parameter a. As shown in Fig. 5, with increasing a,
the distance between two phase transition points gradu-
ally shortens and they eventually converge at the critical
point. As a continues to increase, the phase transition dis-
appears.

D. Gibbs free energy and zeroth-order phase transition

In this section, we study the Gibbs free energy,
defined as

ry (3ry—8nPry +a (3 +167Pr}))

=M-TS =
G S 6(Q2r,—a)

(66)

It is well known in conventional thermodynamics that
Gibbs free energy satisfies

dG = -SdT + VdP. (67)

For a constant pressure system, the change of the Gibbs

Fig. 5. (color online) Heat capacity for different non-com-

mutative parameters a. We set pressure P = P.(a=1).

free energy during a thermodynamic process is
AG = —/SdT. (68)

Considering Maxwell's area law in the (S,7) coordinate

system [39],
j{ SdT =0,

and that the first-order phase transition is an isothermal
process, one obtains

(69)

AG:—/SdT:O. (70)

The analysis of phase transitions for an isothermal
system is similar. This implies that the Gibbs free energy
of a thermodynamic system does not change before and
after a first-order phase transition. More precisely, any
isothermal and isobaric process that a system undergoes
(which could be an irreversible process) must proceed in
the direction of non-increasing Gibbs free energy. Spe-
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cifically, for a reversible process occurring in an iso-
thermal and isobaric system, the Gibbs free energy re-
mains unchanged. However, for the Schwarzschild-AdS
BH in non-commutative geometry, there is an issue in
that 7dS + VdP is not an exact form; it follows that
—SdT + VdP is also not an exact form. In this case, the
differential of G is

dG = (W' =1)TdS + W 'VdP-SdT + W 'd,da. (71)

The Gibbs free energy is plotted in Fig. 6. In the locally
monotonic region of G(T), the differential form of G can
be rewritten as follows:

dG = (=S + (W' =1)Cp)dT
aT

ly - -1 (—) ) dpP, 72
+<W V-(W'-1)Cp ap), (72)
which leads to
oG _
a—T:—S+(W‘—1)CP, (73)
C . G . )
which is different from T =S5 <0 in conventional

thermodynamics, meaning that G(7) may exhibit a
monotonic increasing region. When P < P., because the
function 7'(S) is not monotonic, the Gibbs free energy
becomes locally multivalued. When P> P., the Gibbs
free energy becomes a single-valued function of 7 and P.
Specifically, there exists a pressure P, such that when
P < Py, the G(T) curve exhibits self-intersection. It can
be obtained that

0257 —
I P<P/’
o20f . P=P; |
[ P/'<P<PC:
0.15] P=P. 1
G N B N P>P,
0.10 e AN 1
[ "\ .'\_
0.051 N 1
L "\‘
0‘007 L L L Il L :\ Il L L Il ‘ L L L
0.0 0.2 0.4 0.6 0.8
T
Fig. 6. (color online) Gibbs free energy for different pres-

sure P. We set ¢ =0.1 and P =0.2P., P;,0.75P, P;,1.4P,.

~0.0012845

p= (74)
which gives a dimensionless constant

P

Ff = 0.46987. (75)

c

However, unlike the thermodynamics of the Van der
Waals system, the intersection points of the curve G(T)
cannot be regarded as the phase transition points. This is
because there is a change in Gibbs free energy before and
after the transition. The location of the phase transition
point should be determined by Maxwell's area law for the
condition P < P,

T(S)=T(S2),

S (76)
/ TdS =T (S)(S.-51),

S

where S and S, are the entropies of the initial and final
states during the phase transition, respectively. The res-
ults are shown in Fig. 7. When considering Maxwell's
area law, the Gibbs free energy is shown in Fig. 8. In this
case, the Gibbs free energy for different pressures is plot-
ted in Fig. 9. As shown in the figure, the vertical section
of G(T) represents the phase transition. The change of
the Gibbs free energy during a phase transition is given
by Eq. (71).

N
AG =/ 2 (W'-1)TdSs.

S

(77

Here, a peculiar phenomenon occurs: according to Ehren-
fest's classification of phase transitions, a discontinuous

0.40

0.38

0.36}

0.34

0.28

0.26

Fig. 7.
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0.32

0.30f

| — P=0.9P, = P=0.8P,

P=0.7P,
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T
Fig. 8. Graph of Gibbs free energy G(T) when considering

Maxwell's area law. The points (Ts,G;) and (7;,G,) represent
the small BH and large BH, respectively. We set a=1 and
P=04P..
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Fig. 9. (color online) Gibbs free energy corrected by Max-

well's area law. We set a =0.1.

Gibbs free energy indicates the occurrence of a zeroth-or-
der phase transition. The zeroth-order phase transition of
BHs is a very intriguing phenomenon. Studies have
shown that the dilaton-electromagnetic coupling interac-
tion could lead to a zeroth-order phase transition [47, 50,
51]. However, unlike the physical mechanism that in-
duces zeroth-order phase transitions, as described in Refs.
[47, 50, 51], our research indicates that for a static, spher-
ically symmetric AdS BH, the violation of the conven-
tional first law of thermodynamics would lead to a
change in the Gibbs free energy of a BH after undergo-
ing a small BH-large BH phase transition.

At the critical point, G (T) is continuous, but the heat
capacity C, diverges to infinity, which results in

oG

o7 =-S+(W'-1)Cp— oo, (78)

which indicates that the phase transition occurring at the
critical point is a first-order phase transition. This phe-
nomenon is shown in Fig. 10.

IV. JOULE-THOMSON PROCESS

The Joule-Thomson expansion in BH thermodynam-
ics has been widely studied [32, 52—68]. The Joule-
Thomson process is a thermodynamic system's throttling
(constant enthalpy) expansion. As previously mentioned,
the mass M of an AdS-BH is considered as its enthalpy.
Although the first law has been modified, studying the
constant mass process of BHs remains highly significant.

To study the constant mass process, we take M and r,
as variables and rewrite the BH's pressure and temperat-
ure:

_ —3aM +6Mr, -3r;

P s 79
8rr (79)
—2aM +3Mr, — r?
7% +3%rh rh. (80)
2nr;,
The Joule-Thomson coefficient is
B (Bl) _ 12aMr,—12Mr; +2r;, @1
H=\opr),~ 6aM-9Mr,+3r

A process with u >0 is referred to as a cooling process,
whereas a process with u <0 is called a heating process.
The point where ¢ = 0 is known as the inversion point.
The curve formed by all the inversion points in the
(P, T) coordinates is called the inversion curve. As shown
in Fig. 11, we plotted the inversion curves for different

08— Hl T | T
r L'\i 3 3 —a=0.2
I | |
i H l L e a=0.3
0.6F~ .. S 1 1 -
LT A ; ; a=0.4
1 | |
- a=0.5
G 04f P L e a=0.6 -

0.2 e

015 020 025 030
T

Fig. 10.  (color online) At the critical points, the first-order

phase transitions occur. The slope of the Gibbs free energy

with respect to temperature diverges to infinity. The black

points are the critical points.
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values of the parameter a. The figure clearly shows that
as the inversion pressure P; increases, the inversion tem-
perature 7; also increases. Moreover, when P; is not too
small, 7; increases with increasing non-commutative
parameter a. In the constant mass curves we will draw
next, the inversion curve will divide the (P,T) phase
space into two disconnected regions. The BH's cooling
process is located in the upper left of the inversion curve,
while the heating process is in the lower right.

Specifically, when P; =0, one has the minimum in-
version temperature

) 1
Tmin — , 82
! 15ar (82)

yielding a ratio that is independent of a:

T_min
= 0.58294. (83)

c

This value lies between the results of the RN-AdS BH
(0.5) and Van der Waals system (0.75). Interestingly, one
study showed that the Joule-Thomson expansion of Van
der Waals systems reveals the presence of a maximum in-
version temperature 77 [32], whereas the BH we are
studying does not exhibit this phenomenon.

Whether a BH undergoes an inversion point during its
constant mass expansion depends on its mass M. It can be
proven that under the conditions P >0, r, >0, and M > 0,
the equation y = 0 has a solution if and only if

25a

M > MM = (84)

247

where MM is the minimum inversion mass. Figure 12
shows the inversion curves and families of Joule-Thom-

Fig. 11.  (color online) Inversion curves for different non-
commutative parameters.

son expansion curves for different parameters a. It can be
clearly observed from the figure that BHs with mass less
than M™" cannot experience an inversion point and will
remain in the heating process throughout.

V. CONCLUSION AND OUTLOOK

In this paper, we investigated the thermodynamics of
the Schwarzschild-AdS BH within the framework of non-
commutative geometry. By solving the Einstein equation
with a Lorentzian distribution and the cosmological con-
stant, we derived a corrected Schwarzschild solution and
studied its thermodynamics. Our analysis confirmed that
the explicit inclusion of the BH's mass in the energy-mo-
mentum tensor disrupts the conventional first law of BH
thermodynamics.

This study showed that the BH has a critical point,
with a critical ratio of 0.36671. As the non-commutative
parameter increases, the phase transition process shortens
and eventually disappears after the critical point. Addi-
tionally, our calculation revealed that the BH exhibits the
same critical exponents as those of the Van der Waals
system, suggesting a deeper connection between BH ther-
modynamics and classical thermodynamic systems.

Furthermore, the violation of the conventional first
law caused a sudden change of Gibbs free energy with re-
spect to temperature during a small BH-large BH phase

0.10 T T T T T 0.06

0.8l 0.05
0.04
T 0.03
0,02~

0.01

0.00 L Lo 0.00 ! ‘ ‘
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.000 0.005 0.010 0.015 0.020
P P
(a) (b)

0.04 - 0.030
0.025
0.03f

0.020
T o.015

0.010F

0.005

0.00 0.000
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.001 0.002 0.003 0.004 0.005 0.006
P P
(©) (d)

Fig. 12.
lines) and inversion curves (red dashed lines) for different

(color online) C constant mass curves (blue solid

parameters a. The constant mass curves expand outward as the
mass increases. We set (a) a=0.5,M = 0.51,M§nin (=0.52),0.53,
054,0.55; (b) a=1,M=1.02,M™"(~1.04),1.06,1.08,1.1; (c)
a=15M-= 1.52,M,-mi" (= 1.56),1.6,1.64,1.68; (d) a=2,M=2.02,
MPMin(~2.08),2.14,2.2,2.26.
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transition. This novel phenomenon indicated the occur-
rence of a zeroth-order phase transition.

Finally, we analyzed the Joule-Thomson expansion
and identified the existence of inversion points, which de-
pend on whether the BH's mass exceeds the critical min-
imum inversion mass. We also derived the minimum in-
version temperature, adding to the understanding of BH
thermodynamic behavior under non-commutative geo-
metry. So far, there are no existing works systematically
discussing the thermodynamic properties of Schwarz-
schild-AdS BHs with Lorentzian or Gaussian distribu-
tions, such as their first law, phase transitions and critical-
ity, Joule-Thomson effect, etc. We hope that our work
provides more valuable insights for the theoretical study
of non-commutative geometry.

In future work, we aim to further investigate the high-
er-order effects of non-commutative geometry on the
Schwarzschild spacetime, as Eq. (5) is an approximation
retained up to the order of O(a). Because the BH's mass
explicitly appears in the energy-momentum tensor, the
conventional first law of thermodynamics is violated, res-
ulting in differential forms 7dS +VdP and -SdT + VdP
that are not exact forms. For thermodynamic quantities
such as enthalpy and Gibbs free energy, there may be bet-
ter ways to define these quantities, which would be a
valuable topic for future research.
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APPENDIX A: DIFFERENTIAL FORM dM IS NOT
AN EXACT FORM

The modified first law reads

dM = TdS + VdP. (A1)

Here, we have not explicitly written out the differen-
tial terms of the non-commutative parameter da, as this
does not affect the proof. This form is exact if and only if

oT ) ( GV)
— ) =(=) . A2
(6P s oS /p (A2)
By substituting
oM ) (aM )
T = —_— = _ A
v ( as /p’ V=W OP /g (A3)

into Eq. (A2), one obtains

(5 ), (), (), (5), o

By using the chain rule for composite functions W (M, S) =
W(M(S,P),S), the above formula gives

oW > ( oM )
—_— — =0. A5
( 4S8 /N OP /g (A5)
With the relation S = n77, it is derived that
(a—w) =0. (A6)
(9rh M
Meanwhile, W is
WM, r) =1+ +004 Za—ng (A7)
sTh) — ; TTr aM r.

d

Thus, Eq. (A6) can be simplified as

o1y

671\/(; (M, 1) =0. (A8)
Hogvever, this condition generally does not hold unless
T
— = O 1 =
oM , thatis, W=1.

Thus, dM has been proven to not be an exact form.
There is another method to prove this fact. If there is a
scalar function M satisfying Eq. (14), one could obtain
its Smarr relation

M=2(TS -PV)+D,a. (A9)

Then, one could obtain

M=WM, (A10)

which leads to

dM = MdW + WdM. (A1)

Meanwhile, we require that dM = WdM, which gives

dw =0. (A12)
This does not hold unless W is a constant.

The form —SdT + VdP is not exact either because if
there exists a function G satisfying dG = -SdT + VdP,
then one can construct M=G+TS to meet dM=
TdS + VdP, which causes a contradiction.
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