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Abstract: We present a comprehensive theoretical approach for describing the amplitude of the processes

J/W¥ — yab, where a and b are pseudoscalar mesons. Our approach systematically incorporates final-state rescatter-

ing between the pseudoscalar pair ab, contributions from intermediate resonances, and coupled-channel effects via

rescattering of @ with an intermediate state X (which subsequently decays to yb). This formalism ensures unitarity in

the two-body rescattering amplitude and dynamically dressed couplings between resonances and the pseudoscalar

pair. Using a toy model, we perform numerical calculations and demonstrate that coupled-channel effects signific-

antly influence the lineshape of the invariant mass spectrum of the final states. These findings highlight the neces-

sity of including coupled-channel dynamics in interpretations of J/y radiative decays.
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I. INTRODUCTION

Quantum Chromodynamics (QCD), which consti-
tutes the fundamental theory of strong interactions [1],
presents one of the most profound challenges in modern
physics: the mechanism by which quarks and gluons form
hadrons. While perturbative methods successfully de-
scribe high-energy regimes, the low-energy domain re-
mains intractable due to nonperturbative phenomena such
as color confinement. Recent experimental discoveries of
new hadrons [2] have further challenged the convention-
al quark model, where mesons are understood as quark-
antiquark pairs and baryons as three-quark systems.
These observations provide critical insights into exotic
resonance dynamics and nonperturbative QCD, yet our
understanding remains limited by sparse statistical data
and incomplete amplitude parameterizations [3]. Many
candidates are observed exclusively in single production
or decay channels, necessitating rigorous constraints on
reaction amplitudes to reduce systematic uncertainties.

Traditional Breit-Wigner (BW) parameterizations suf-
fice for narrow, isolated resonances but fail for overlap-
ping states or those near thresholds. In such cases, pre-
serving fundamental amplitude properties — unitarity
(from probability conservation) and analyticity (from
causality) — requires more sophisticated coupled-channel
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frameworks [4]. The K-matrix formalism [5], for in-
stance, enforces unitarity through real matrix elements
but suffers from limitations: its fixed matrix structure
struggles with new channels, and parameter uncertainties
degrade accuracy for high-statistics data. Crucially, it
neglects the energy-dependence of the real part of self-
energy corrections, leading to inconsistencies in lineshape
descriptions and pole extractions [6—8].

A key objective in QCD is the search for glueballs —
exotic states dominated by gluonic interactions — which
directly probe non-Abelian gauge dynamics. Radiative
J/y decays to pseudoscalar meson pairs offer a unique
window into glueball production, as demonstrated by ex-
tensive BESIII studies [9, 10]. These gluon-rich pro-
cesses are ideal for identifying scalar and tensor glueball
candidates [11], though challenges persist due to broad,
overlapping resonances and flavor-blind gluonic decays
that populate multiple channels [12]. Conventional BW
methods are inadequate for resolving these complexities.

In this study, we develop a unitary coupled-channel
amplitude for J/¢y — yab (where a and b are pseudoscal-
ars), incorporating two-pseudoscalar rescattering via
coupled-channel Lippmann-Schwinger (LS) equations
[13—16], intermediate meson-photon couplings (aX —
vb), and energy-dependent self-energies absent in K-mat-
rix approaches. Our framework avoids the pitfalls of the
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BW and K-matrix methods by embedding unitary two-
body amplitudes directly into the decay process, enabling
unbiased resonance property extraction from experiment-
al data. We validate the model’s efficacy using toy calcu-
lations and demonstrate its application to J/y — yKs K.

The remainder of this paper is structured as follows.
In the following section, we outline the model construc-
tion and formalism. Section III presents the calculation of
the J/y — yKsKs process as an example of using this
formalism. Concluding remarks and a discussion are giv-
en in Section IV.

II. FORMALISM

A. Mechanisms of J/y radiative decay into two
pseudoscalar mesons

We analyze the process J/y — yab, where a and b de-
note pseudoscalar mesons, incorporating two coupled-
channel effects:

1. Rescattering ab — ab: Dominated by intermediate
resonances (XY) originating from bare states.

2. Rescattering Xa — X’b: Assumes constant decay
widths for X (which couples to ya) and neglects X's
coupled channels.

These approximations are justified because

e Electromagnetic interactions (e.g., photon rescatter-
ing) are negligible compared to strong interactions.

e Including X's strong decays would require a three-
body formalism at least, breaking two-body unitarity — a
reasonable trade-off for this work.

The decay processes J/y — yab can be classified into
the four categories illustrated in Fig. 1. In Fig. 1(a), the
process corresponds to a direct three-body decay gov-
erned by the vertex of J/yyab. The contribution of rescat-
tering a’b’ — ab is included in Fig. 1(b). It is worth men-
tioning that the first vertex shares that in Fig. 1 (a), and
the rescattering contribution is described by the full 7-
matrix of a’b’ — ab, which is discussed in detail in the
next section. InFig. 1(c), the process corresponds to the
bare state X. J/y first radiatively decays to the bare state
X, and then, X couples to the final ab state. Here, we need
a new vertex of J/yyX, full propagator matrix of bare
states X, denoted as Ayy, and dressed vertex of Xab. Im-
portantly, the propagator matrix and dressed vertex of
Xab are both determined by the 7-matrix of the rescatter-
ing a’b’ — ab. Finally, in Fig. 1(d), we show the contribu-
tion of the rescattering of Xa, which is completely inde-
pendent of the previous three mechanisms. Conventional

Y Y
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“b b b
(a) (b)
_, b 7V
Y X 7
I/ a J/V N
Axy b vooX

(c) (d)
Fig. 1. Diagrams of the four categories of reactions. In this
paper, pseudoscalar mesons are represented by dashed lines
and bare states by solid lines. Grid-patterned boxes denote
coupling vertices associated with specific initial and final
states, while solid black circles depict propagators modified
through self-energy corrections. Solid black triangles symbol-
ize propagators of bare states with parameter-adjusted proper-
ties.

isobar models (e.g., BW) only include the category
shown in Fig. 1(c), violating unitarity for overlapping res-
onances.

B. Coupled-channel T-matrix

The S-matrix connects the initial and final states,
which encodes the probabilities of transitions between
them. Because the S-matrix satisfies unitarity for the con-
servation of probability, i.e., STS =1, it is well defined
and can be expressed through phase shifts and inelasticit-
ies, which can be extracted from the experimental observ-
ables. Furthermore, the 7-matrix calculated from the in-
teraction vertices based on the theoretical models can also
be used to derive the S-matrix through the standard scat-
tering theory. However, under different notations, the
connection between them may differ. In this paper, we
use the following definition for the 2 — 2 process [17]:

S ji =065 = 21 \/ P (E)T fi(Kons kons E) \/Pi(E), (1)

where f and i are for the final and initial states, respect-
ively. p;(E)is the state density of the channel i for two
body systems:

Eil(ki)EiZ(ki)

k2 2
E - (2)

pi(E) =

where k; is defined as the on-shell momentum for chan-
nel i, ie., E= /K2 +m} + \/k} +m}, and E is the total
energy in their CM frame. Then, the differential cross
section between two channels can be expressed as fol-
lows:
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do; (271)4,0 (EpE)
o =i ST, ©)

where 3 is for the average of the spin states of initial
state 7 and summation of the spin states of finial state f. In
addition, for the differential decay width, it is expressed
as

dliny  2mpr(E)C 2
a0 = a2l “

Typically, the 7T-matrix defined here has a factor differ-
ent from usual covariant amplitude M defined based on
Particle Group data [1] as follows:

1 1

T P = 5
T @ny 2Eq2En2E2Es, ©)
for 2 - 2 and
1 1
T P = 6
T @nylr 2MQ2E2Es, ©)

for 1 — 2. It is related to the definition of the LS equa-
tion to solve the T-matrix. Here, the symbol fi refers to
the final and initial states, while T; represents the 7-mat-
rix elements.

The LS equation, defined in the center-mass system
(CMYS) of the final two-body system, is formulated as fol-
lows for the fixed partial wave denoted by angular mo-
mentum L:

TL (kK5 E) = VEy (kK E)

+Zy:/d

2 Vikoa: YT @ K5 E)
E-w,(q)+ie

(7

where the potential V* between two coupled channels in-
cludes contributions from bare states with spins J = L and
the direct vertices. Here, o and f refer to the final and ini-
tial states because the two sides of re-scattering are one of
the considered channels. T7; is the partial wave amp-
litude for @ — B with angular monument L. The on-shell
energy w, of the given channel is defined as w,(q) =
Vm:+@*+ \/m3+q. The corresponding diagrams for
the processes 2 —2 and 1 — 2 are shown in Figs. 2(a)
and (b), respectively
The potential V. ﬁ(k k', E) comprises two terms,

G, (Gs(K)

E—my+ie ’

Vi (kK \E) = VE (kK + Z (8)

(a)

(b)
Fig. 2. LS equation for coupled vertexes: (a) 2 — 2 and (b)

1-2.

where V%, (k,k’) is the bare-state-independent potential
between two channels (energy-independent of E), while
coupling function Gy, describes the coupling between
bare state X with bare mass my and channel a. Note that
the spins of these X should be equal to L. The potential
V2 (k, k') typically includes #- and u-channel exchanges as
well as the contact term. However, for interpolating the
scattering data in the finite energy region, separable po-
tential form is a reasonable way to parameterize this po-
tential. Furthermore, such a separable potential promises
an exact analytical solution to the LS equation; thus, we
choose the following form of v (k,k’):

Vi (kK'Y = vig fr() fi (K, ©)

(14 ) gy

V Ea (K)E,, (k)

where A is the QCD energy cut around 1 GeV, my is the
representative meson mass and usually takes the value
my,, and v, is a real number that indicates the coupling
constant between channel a and f in the partial wave L.
The vertex of the bare state X and channel a, G%,(k), can
be expressed as

FE) = (10)

GXn(k) gon

Moy 1
VTt (b

where gk, is a real dimensionless coupling strength con-
stant.

Based on Eq. (8), the solution of the LS equation in
Eq. (7) is the T-matrix, 7", which can be decomposed in-
to two components as follows:
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Tt =+ T (12)
These two parts t* and Tt indicate the contribution from
the channels without and with the bare states with the
same orbital angular moments L and same matrix ele-
ments af, respectively.
t* is defined as

téﬁ (k,k";E) = Vép (k,k")

+zy:/d

v (k,q)tls (g, k' E)
2 w B
E-w,(q)+ie ’ (13)

Adopting the separable potential V2, as shown in Eq. (9),
the solution of z%; inherits a similar separable form as fol-
lows:

tg (kK E) = f()Ts(E) f (K, (14)

where

PLE) =Y (I=v"M(E)),, viy. (15)

Y

Here, I is a unit matrix, the elements of the matrix vFare
Vag, and the diagonal matrix M(E) is defined as follows:

[ ¢dqlf.(@F

The second term at the right side of Eq. (12), T%, is
derived as

Th(kK . E)=  GhyAwGry, 17)
XY

where Giy and Gy, are the dressed coupling functions of
X - a and B — Y, respectively, and Ayy is the dressed
propagator between the bare state X and Y. The two
dressed coupling functions can be derived as

o E) = Gi(,<k>+ZgX7<E> BB, (5

(ki E) =Gy, (0+)_ i (E)gx(E). (19
Y
with
ng(E) / E (Uy(q) T 16 (20)

In contrast, the T-matrix of 1 —2 is indeed G%,(k;E).
The dressed propagator of the bare states is a matrix, and
elements of its inverse matrix can be expressed as fol-
lows:

(A™)xy(E) = Gxy(E — my) = Zyy (E) = Zyy (E), 2

where
0 (E)= 2 Oxy(@G (@)
z:XY(E‘) - zy:/dqq E—(x)y(k) +i6’ (22)
is the self energy of
S (E) = gxal E)y(E)gys(E). (23)

ap

The corresponding diagram is shown in Fig. 3.

Finally, we consider the rescattering between X and
a. As discussed in the previous subsection, X can decay,
implying that this scattering process inherently involves
the effect of three-body unitary, which is beyond the cur-
rent model. As shown in Fig. 4, the two right diagrams in
the first line show the three-body contribution, and the in-
termediate state could be the three states described by
dashed lines. Then, we make the assumption that we use
a contact term to describe the interaction between X and
a, illustrated by the first diagram in the second line. For
the triangle loop, we directly absorb it into the width of
X, which is indicated by the solid triangle in the right dia-
gram in the second line of Fig. 4. Then, the energy term
of X is replaced as a complex energy E—il'/2, where T’
denotes the width. Consequently, analogous to the solu-
tion of the LS equation mentioned earlier without the bare
state contribution, as shown in Eq. (12), with the same
separable potential form, we can obtain

1 -1
——) - (—) —
(—)

Fig. 3. Self-energy corrections for propagator.

Fig. 4. Diagrams of the scattering between X and a. The Z
diagram and triangle loop are proximate to the contact term
and two particles loop with a fitted parameter of width X.
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F=(1-vM)'p, (24)

M(uX) =/dCICI2

where 7 is the coupling constant matrix.

fiax (@F?
E - W (q) +iT/2

(25)

C. Partial wave amplitudes

In the preceding subsection, we obtained the propag-
ators and coupling vertices involved in the four mechan-
isms of Fig. 1. The dynamical component of the scatter-
ing amplitude is an explicit product of these factors, so it
remains only to introduce the angular distribution com-
ponents to obtain the complete partial wave amplitude.
Here, we incorporate the partial wave amplitudes to ac-
count for the angular distributions. For the background
terms and two processes involving ab scattering, we must
consider two angular momentum degrees of freedom,
while for the Xa process, three degrees of freedom must
be taken into account. Consequently, the four reaction
amplitudes including the orbital angular momentum can
be expressed for an output channel (o) and photon (y) as

(a) —
M.]/w—> ya Z

Ly,La,L5 L5, 8%

X(SS% Ly Li|1S%,,)

(183, L,L5IS S

XUl Vs (=8, f (@)

X YL2L§ (qg)fa (%), (263)

(b)
MJ/;[/H ya - Z

Ly,Ly, L5 L5,S 8%
X (lS;,LzLZISSZ)(SSZ,L LzllSj/lﬁ)
Y Ul MEER(E) 2 ()Y 1,15 (o)

YL1 L (—fly)f(ﬁl/w,y) (qV)

(26b)

YL1 L (_Q)’)f(?/wﬂ/) (C]y)

() —
MI/(//H ya T Z

Ly.Ly L% 5.8 .S*
x (18, L L5|S ST (S 8%, L Li[1S5,,)
X Z Wil Ay (E)GY (G E)Y 1,12 (30)

(26¢)

My ya= D> Vi @S vS5 LiLiI1S5,)

Li,L§ )_’C,SZ_
X uj/l/,_, YCMYL (ml/ll/)

X3 (SxS5 LaLI1S ) Y 1,5 (dh)

LzL XS

X Fyeso (M) fiy (90)
XY (183, LL3IS S 5)Y 1,15 (=)

L3 LZ

fxm(qa) (264)
E(qa) mg+il/2’
Here, the three related momenta are all the back-to-back
moments in their CMS frame, where dynamic factors like
fE -, MY, AL, and G are defined in the last subsection.
The spherical harmonics terms Y;;: with Clebsch-Gordan
coefficients are involved to describe the angular moment
contributions for the partial wave amplitudes.

uﬁ/'ifyam refers to the coupling strength constants of
their subscript processes, where L, L,, and S are the an-
gular momentum between y and «@(X), total spin of «
channel (or the spin of X), and total spin of ya(X), re-
spectively. Here, we do not give a detailed expansion be-
cause the relative partial-wave amplitudes are given ex-
plicitly in Ref. [18]. To clarify the notation, we give an
example for X with J¥ = 0~. In this case, only one partial
wave survives, with L, =1, L, =0,and § = 1:

LS )
WIS w0 = €€l € Pl (27)

where V¢ is the p-wave vertex of the y and X, as defined
in Ref. [18].

D. Comparison with other methods

Recognizing the importance and relevance of the
comparison between our Lippmann-Schwinger (LS)
formalism and the K-matrix, as well as other approaches,
we provide a detailed discussion in this subsection.

First, as we pointed out in the introduction, because
the K-matrix method neglects the energy-dependence of
the real part of self-energy, it can be modified by introdu-
cing K=(1-VG')V, where G’ is the Chew-Mandelstam
variable and V is a potential. However, such methods still
have significant limitations. The potentials " or K remain
independent of the loop integration, which implies that an
on-shell approximation is applied to both /" and K. While
this framework may provide adequate data fitting, its pre-
dictive capabilities can be questionable.

In our method, we definitely include the off-shell con-
tribution of potential in the loop integration. As shown in
Eq. (16), the M matrix replaces the pure two point loop
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integration in the K-matrix method combined with Chew-
Mandelstam variables or the ip term in the pure K-mat-
rix method. The M matrix incorporates form factor de-
tails from the potential, which indicates that the off-shell
contribution is reasonably included. Furthermore, this po-
tential is established through theoretical interpolation,
with various parameters tightly constrained by symmet-
ries like chiral Lagrangians or SU(3) symmetry. Accord-
ingly, during data fitting, these parameters benefit from
robust theoretical constraint.

Conducting a numerical comparison involves inher-
ent challenges, primarily due to the need for identical po-
tentials when comparing the LS approach with the K-mat-
rix approach, or using both to fit similar datasets to evalu-
ate pole positions. Previous work [19] has explored the
prediction of the P, state, offering detailed comparisons
between our LS approach and the Valenca method, a
variant of the K-matrix+Chew-Mandelstam approach. Us-
ing identical potentials, these calculations yield differing
predictions for the mass of the P. state. Notably, the LS
approach predicts a smaller binding energy, more closely
aligning with experimental measurements at the LHCb.
As such, we do not repeat these calculations here. Later,
we will employ a toy model to illustrate the impact of
coupled channel contributions.

Finally, we discuss the relativistic corrections. Re-
lativistic corrections encompass two primary compon-
ents: kinematic alterations and particle-antiparticle gener-
ation from vacuum states. Our methodology incorporates
the first through a relativistic dispersion relation.
However, the second — which is often overlooked at the
hadronic level — remains unsolved in the context of the
four-dimensional BS equation. The LS approach effect-
ively employs a three-dimensional reduction. This reduc-
tion remains justified at the hadronic level; for example,
the pion, as the lightest hadron, has a mass of approxim-
ately 100 MeV, permitting the neglect of antiparticle con-
tributions during propagation. Nevertheless, if current
quark structures constitute the foundation of the theory,
these relativistic corrections become more pronounced.
Presently, such a non-relativistic approach is prevalently
adopted in hadronic physics.

This section provides a comprehensive discourse on
the comparative strengths and limitations of the various
methodologies, highlighting our advancements and situat-
ing them within existing theoretical frameworks.

III. NUMERICAL RESULTS: TOY MODEL
ANALYSIS

To demonstrate the significance of the coupled-chan-
nel effect, we apply our framework to the decay J/y —
vKsKs. In this toy model, we include two pseudoscalar
coupled channels (KsKs and mym,, with bare masses set
to their PDG values [1]), along with two bare states

(JP€ =0%): an f, with a bare mass of 1.221 GeV and f; at
1.451 GeV. In addition, we include a K, state (J*¢ =1%)
with a mass of 1.403 GeV and width of 0.174 GeV for
the yKs channel. For simplicity, we restrict our analysis
to S-wave partial wave amplitudes. The model paramet-
ers are listed in Tables 1 and 2.

We first determine the pole positions of the 7-matrix
in the complex energy plane for the two-pseudoscalar
coupled channels by solving Det[Axy(E)']1=0 on the
relevant Riemann sheets. For the ab coupled channels,
we identify two pole positions in the second Riemann
sheets (denoted as uu), as summarized in Table 3. For the
KK channel, the width in the K; propagator is pre-set,
and its pole position is fixed to Moies = Mpae —i'/2.
While the real and imaginary parts of the pole position in
a unitary model generally differ from the BW mass and
width, they converge for narrow resonances [20]. Our
model shows that the two f; resonances, generated via
the bare-state couplings, exhibit narrow widths, resulting
in invariant mass peaks consistent with their pole posi-
tions. In contrast, the broader K, resonance (I ~150
MeV) undergoes significant lineshape modifications due
to K;Ks — K K rescattering, leading to an observable

Table 1. Parameters for the considered Dual-Channel De-
cay PP Model. The meaning of each parameter is defined in
the description provided in the previous section. All energy
units are GeV, and the QCD energy cutoffs A are fixed at 1
GeV.

RA{L} So {0} fo {1}
mg 1.221 1.457
8(R.KK) 0.810 —0.710
8(Rnm) —0.740 0.910
U/, yR) 0.300 0.500
yPP
VKK.KK 0.980 -
VKK 0.870 -
Vanan 0.980 -
U/, yKK) 0.800 -
U(J [y, ynn) 0.800 -
Table 2. Parameters for the considered dual-channel decay

XP model. See Table 1 for descriptions.

R{L} K, {0}
mg 1.403 -
Iz 0.174 -
U(7/y,KR) 1.400 -
V(KR,KR) 1.000 -
8(RyK) 1.000 -
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Table 3. Pole positions in PP scattering case amplitudes.
Their Riemann sheets are specified by (KK,nr). For the K
resonance, we take its pole position from the BW form. The
real part is very close to the input mass of K;, and the im-
agery part is obtain by Im(Mpec) = —I'(Res)/2.

R{L} Mpo1e/GeV RS
Sol0} 1.225-0.010i (ut)
{0} 1.457 - 0.007i (uu)
K110} 1.403 - 0.087i -

shift in the YKy invariant mass spectrum.

We now present the Daliz plots for the reaction. The
distributions of the sum of Fig. 1(a)—(c), pure Fig. 1(d),
and full amplitudes are shown in Fig. 5(a)—(c), respect-
ively. Two clear f, signals presented as red lines in Fig.
5(a) and one signal for K;, as shown by the blue broad
belt in Fig. 5(b), emerge, corresponding to the intermedi-
ate states in our model. Interference between these com-
ponents significantly distorts the K; lineshape, underscor-
ing the necessity of including all mechanisms. An en-
hancement is observed at high Mgk, and low M,
arising from interference between the tree-level diagram
and dynamical rescattering effects.

To elucidate the contributions of dynamical mechan-
isms, Fig. 6 decomposes the contributions of individual
mechanisms. We find that the mechanism shown in Fig.

1(c) provides the primary contribution to two f, reson-
ance peaks, while Fig. 1(a) and (b) remain essentially flat.
However, their interference enhances contributions in the
high-energy region of Mk, x, and also strengthens the
background under both f; resonance peaks. Thus, the
analysis demonstrates that the coupled-channel model is
crucial for a unified treatment of various background con-
tributions, and the correct description of the background
is also extremely important for extracting resonance
structures. Regarding the mechanism shown in Fig. 1(d),
it does not produce any special structure in the invariant
mass spectrum of KK but generates a subtle bump via
interference from other channels in the high-energy re-
gion. This explains the observed statistical enhancement
in the high Mk, region in the Dalitz plot. Similarly, in
the yK invariant mass spectrum, the Xb rescattering
shown in Fig. 1(d) clearly dominates the peak structure,
which undergoes a measurable shift due to the interfer-
ence with contributions of Fig. 1(a)—(c). These results
highlight the critical role of coupled-channel effects in
resonance analysis: interference can distort lineshapes
from simple BW expectations, necessitating a unified
framework for accurate mass/width extraction.

IV. SUMMARY AND OUTLOOK

In this study, we developed a unitary coupled-chan-
nel framework for a system of two pseudoscalar mesons,

1M |2 arb.units
0.20

Wi (GeV<)
MLj«{Ge\I?}

IM|? arb.units 6
020

Mfweevﬁ

2 4 6 8 10 2 4

ME(GeV?) ME(Gev?)

(a) (b)

(color online) Dalitz plot on M?(KK) and M?*(yK)for different squared amplitudes. (a) Tree-level, PP-rescattering, and Bare

Fig. 5.
states; (b) XP-rescattering; and (c) all amplitudes.

da/dQfa.u]

- Fig.1(a)

| Fig.1(b)
----- Fig.1(c)
----- Fig.1(a-c)
----- Fig.1(d)
—— Fig.1

60+

40t

20+

M(KsKs)[GeV]

Fig. 6.

M2 2y
My (Ge?)

(c)

do/dOfa.u]

el A P Fig.1(a)

Fig.1(b)
----- Fig.1(c)
----- Fig.1(a-c)
----- Fig.1(d)
—— Fig.1

60

40

. M(yKg)IGeV]

1.0 1.5 20 25

(b)

(color online) One-dimensional projection plot for each amplitude on M(yK) and M(KK) invariant mass spectra. The lines

refer to the amplitudes given in the legend. (a) M(KK) invariant mass spectrum and (b) M(yK) invariant mass spectrum.
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explicitly distinguishing between resonant signals and
non-resonant background contributions. The model was
applied to the radiative decay J/y¢ — yab, incorporating
rescattering effects between the final-state mesons. This
framework includes the tree-level decay of J/¢ into the
final-state pseudoscalar mesons, the cascade decay of J/y
radiating into a resonance particle that subsequently de-
cays into ab, the rescattering process where J/y radiates
into ab, followed by final-state interactions, and the chain
of J/y decaying into one pseudoscalar meson and an in-
termediate resonance, which then radiates another
pseudoscalar meson via scattering. Additionally, the de-
cay of the f; resonance includes contributions from
meson rescattering. In contrast, conventional isobar mod-
els typically describe cascade decays through a BW para-
metrization of intermediate resonances, supplemented
with ad hoc background terms. Such approaches often in-
troduce arbitrariness in modeling background structures,
leading to uncertainties in resonance parameter extrac-
tion. Our coupled-channel formalism, however, is con-
strained by ab scattering, providing a self-consistent de-
scription of both resonant and non-resonant effects,
thereby minimizing model-dependent ambiguities. Des-
pite its computational complexity, this approach offers
significant theoretical advantages for practical data ana-
lysis.

For the three-body system yab, considering only ab
coupled-channel effects is insufficient. Although photon-
induced electromagnetic interactions are weak (allowing

photon-meson rescattering to be neglected), an additional
coupled-channel effect arises: the rescattering between a
meson X (coupled the ya system) and another pseudo-
scalar meson. We derive the corresponding formalism to
incorporate this process. Combining these four mechan-
isms, we establish a comprehensive theoretical frame-
work for J/y — yab, essential for future experimental
analyses of this decay.

To illustrate the framework, we constructed a toy
model for J/y — yKsKj, introducing two fj-resonances
and one K; meson. The f)-resonances coupled to KK,
with additional contributions from the nr coupled chan-
nel, form a two-bare-state, two-channel system. The K;
meson couples to yKs, as described earlier. By evaluat-
ing all four mechanisms, we compute the Dalitz plot and
invariant mass spectra for KgKs and yKs. The results
demonstrate that the peaks of the fj-resonances emerge
atop smooth backgrounds, while the K| peak exhibits sig-
nificant distortion due to interference effects, deviating
markedly from its nominal resonance profile. These find-
ings highlight the necessity of a unified treatment of sig-
nals and backgrounds for correct experimental interpreta-
tion.

This study aimed to provide a coupled-channel-based
amplitude analysis framework for the analysis of the ex-
tremely high-precision data and to advance the study of
glueballs by taking coupled-channel effects into account
in a self-consistent manner.
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