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Abstract: We study a three-loop induced neutrino mass scenario from a non-holomorphic modular A4 flavor sym-
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Majorana phases, which are shown through chi square analyses. In addition, we discuss the lepton flavor violations,
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tion by adding one singlet scalar boson without changing predictions in the neutrino sector.
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I.  INTRODUCTION

The  successful  construction  of  the  non-holomorphic
modular  symmetry  framework  by  Qu  and  Ding  [1]  has
enabled us to safely handle the beyond the standard mod-
el  (BSM)  without  super-symmetric  theories  when  using
the  framework  for  a  flavor  symmetry.  In  fact,  the  non-
holomorphic symmetries have been applied to some non-
supersymmetric  models  [2−12]  in  order  to  restrict  the
number of model parameters. In constructing a model, we
have  the  advantage  of  applying  non-supersymmetric
framework to reduce the number of new fields when ex-
tra  fields  are  required  to  cancel  a  gauge  anomaly  in  the
supersymmetric case.

Radiatively induced neutrino mass models are repres-
entative  scenarios  that  do  not  require  the  super-symmet-
ric framework, and new particles can be connected to the
standard model particles. Sometimes, the model can pos-
sess  a  dark  matter  (DM)  candidate  [13] that  often  re-
quires an  additional  symmetry  to  stabilize  it.  Thus,  con-
structing radiative  neutrino  mass  models  (with  DM)  us-
ing the  non-holomorphic  modular  symmetry  can make a
model more attractive by realizing more predictability.

A4In  this  study,  we apply  a  non-holomorphic  flavor
symmetry  to  a  well-known  three-loop  neutrino  mass

A4

g−2

model [14]. The three-loop neutrino model is phenomen-
ologically interesting, as the scale of new particles would
be smaller compared to lower loop (or tree) level models
owing to  loop  suppression.  We  then  expect  rich  phe-
nomenology  such  as  collider  and  lepton  flavor  physics.
The  non-holomorphic  modular  symmetry  framework  is
suitable  for  constructing  such  a  three-loop  model  in  a
minimal manner;  if  we  consider  a  holomorphic  frame-
work, we need to add more fields to cancel the gauge an-
omaly.  Then,  we need to determine the minimal number
of free parameters to fit the observables in the lepton sec-
tor  under  the  non-holomorphic  modular  symmetry.
Through chi-square numerical analysis, we search for the
minimum model to predict the lepton masses and mixing
angles in addition to reproducing the current neutrino ob-
servables in Nufit 6.0 [15]. Then, we perform further nu-
merical  analyses  to  satisfy  lepton  flavor  violations
(LFVs),  the  muon  anomalous  magnetic  moment,  (muon

), lepton universality, and DM. The results show that
relic density is too large within the limit of perturbation,
thereby requiring a new interaction that  adds one singlet
scalar boson without changing predictions in the neutrino
sector.

This paper is organized as follows. In Sec. II, we ex-
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g−2

g−2

plain  our  minimum  three-loop  neutrino  mass  model  and
construct  the  renormalizable  Lagrangian  in  the  lepton
sector,  Higgs  sector,  charged-lepton sector,  heavier  Ma-
jorana  fermion  sector,  and  active-neutrino  sector.  Then,
we  formulate  the  LFVs,  muon ,  lepton  universality,
and  relic  density  of  the  DM.  In  Sec.  III,  we  perform χ
square analysis and present predictions for normal and in-
verted  hierarchies  in  the  neutrino  sector.  By  employing
the  benchmark points  of  the  best-fit  values  in  the  lepton
sector, we further demonstrate the numerical analyses for
the LFVs, muon , lepton universality, and relic dens-
ity of  the  DM.  We  present  the  conclusions  and  discus-
sion in Sec.  IV. In Appendix A, we show the three-loop
function in the neutrino sector. 

II.  MODEL SETUP

GSM×A4 GSM

A4

A4

LL ℓR A4

NRLLH

In this section, we show the setup of the model based
on  a  symmetry,  where  is  the  SM  gauge
symmetry and  is the modular one. In the lepton sector,
we introduce a singlet fermion, which is a triplet under 
with modular weight 0. In the scalar sector, we introduce
two  charged  singlets  distinguished  by  modular  weights
+2 and –1. The SM leptons  and  are also  triplets
with  modular  weights –1 and  +1,  respectively.  The  as-
signments are summarized in Table 1. By assigning mod-
ular  weights,  we  can  eliminate  unwanted  terms  such  as

,  and  the  neutrino  masses  are  generated  at  the
three-loop level, as discussed below.

The  relevant  Lagrangian  under  these  symmetries  is
given by 

−Lℓ = ae
[
y1LLe + y2LLτ + y3LLµ

]
eRH

+aµ
[
y2LLµ + y3LLe + y1LLτ

]
µRH

+aτ
[
y3LLτ + y1LLµ + y2LLe

]
τRH

+aν
î
y1(LLµ ·LC

Lτ −LLτ ·LC
Lµ )+ y2(LLτ ·LC

Le
−LLe ·LC

Lτ )

+ y3(LLe ·LC
Lµ −LLµ ·LC

Le
)
ó
S −1 +bνeC

R [y1NR1 + y2NR3

+ y3NR2 ]S +2 + cνµC
R

[
y2NR2 + y3NR1 + y1NR3

]
S +2

+dντC
R

[
y3NR3 + y1NR2 + y2NR1

]
S +2

+M1(NC
R1

NR1 +NC
R2

NR3 +NC
R3

NR2 )

M2

î
y1(2NC

R1
NR1 −NC

R2
NR3 −NC

R3
NR2 )

+ y2(2NC
R2

NR2 −NC
R1

NR3 −NC
R3

NR1 )

+ y3(2NC
R3

NR3 −NC
R1

NR2 −NC
R2

NR1 )
ó
+h.c.,

(1)

Y (0)
3 = [y1,y2,y3] ·

iσ2 SU(2)L

{ae,aµ,aτ}

where we define  [1], and '' '' indicates the
 factor that makes the term  invariant. The first

two terms generate the mass of  the charged leptons,  and
parameters  are  real  without  loss  of  generality

eR,µR, τRand are rephased into , respectively. 

A.    Scalar sector
The scalar potential in the model is given by 

V = µ2
H |H|2+µ2

S 1
|S +1 |2+µ2

S 2
|S +2 |2+λ0[(S +1 S −2 )2+h.c.]

+λH |H|4+λS 1 |S +1 |4+λS 2 |S +2 |4+λHS 1 |H|2|S +1 |2

+λHS 2 |H|2|S +2 |2+λS 1S 2 |S +1 |2|S +2 |2. (2)

The SM Higgs field is denoted by 

H =

Ö
w+

v+ h̃+ iz√
2

è
, (3)

v ≈ 246

w+

W+

and  GeV is the vacuum expectation value (VEV)
in the Higgs basis after the spontaneous symmetry break-
ing, z is  absorbed by the neutral  gauge boson of the SM
Z, and  is absorbed by the charged gauge boson of the
SM . The charged scalar masses are given by 

m2
S 1
= µ2

S 1
+

1
2
λHS 1 v2, (4)

 

m2
S 2
= µ2

S 2
+

1
2
λHS 2 v2. (5)

mS 1,2In  the  numerical  analysis,  we  consider  to  be  free
parameters. 

B.    Charged-lepton mass matrix

Me

After the  spontaneous  electroweak  symmetry  break-
ing, the charged-lepton mass matrix  is given by 

Me =
v√
2

Ü
y1 y3 y2

y3 y2 y1

y2 y1 y3

êÜ
ae 0 0

0 aµ 0

0 0 aτ

ê
. (6)

 

SU(2)L ×U(1)Y ×A4 −kI

{1}
A4 {1,1′,1′′}

Table 1.    Field contents and their charge assignments in the
model  under ,  where  is  the  number  of
the  modular  weight.  Here,  represents  the  combination  of

 singlets .

Leptons Bosons

LL ℓR NR H S +1 S +2

SU(2)L 2 1 1 2 1 1

U(1)Y − 1
2

1 0 1
2

+1 +1

A4 3 {1} 3 1 1 1

−kI –1 +1 0 0 +2 –1

Takaaki Nomura, Hiroshi Okada Chin. Phys. C 50, 023108 (2026)

023108-2



Dℓ ≡ diag(me,mµ,mτ) =
V†eLMeVeR ℓL(R) ≡ VeL(R)ℓ

′
L(R) ℓ′L(R)

Then, the charged-lepton mass matrix is diagonalized
by  a  bi-unitary  mixing  matrix  as 

.  Therefore, ,  where  is  the
mass eigenstate. These three parameters are used to fit the
mass  eigenvalues  of  charged-leptons by  solving  the  fol-
lowing three relations: 

Tr[MeM†e ] = |me|2+ |mµ|2+ |mτ|2, (7)
 

Det[MeM†e ] = |me|2|mµ|2|mτ|2, (8)
 

(Tr[MeM†e ])2−Tr[(MeM†e )2]

= 2(|me|2|mµ|2+ |mµ|2|mτ|2+ |me|2|mτ|2). (9)

D̃ℓ Dℓ ≡ mτD̃ℓ

For  convenience  in  constructing  the  neutrino-mass mat-
rix, we define , which is given by . 

C.    Heavier Majorana fermion-mass matrix
The heavier Majorana mass matrix is given by 

MN = M1


Ü

1 0 0

0 0 1

0 1 0

ê
+ M̃2

Ü
2y1 −y3 −y2

−y3 2y2 −y1

−y2 −y1 2y3

ê ≡ M1M̃N ,

(10)

M̃2 ≡ M2/M1

MN DN ≡ UT
N MNUN D̃N ≡ UT

N M̃NUN

NR ≡ UNψR ψR

where  can be real without loss of generality.
 is  diagonalized  by  ( );

therefore, . Here,  is the mass eigenstate. 

D.    Active neutrino-mass matrix
The active neutrino mass matrix is given at the three-

loop  level  via  the  following  Lagrangian  in  terms  of  the
mass eigenstates: 

aν
(
νLHℓ′CL + ℓ

′
LHTνC

L

)
S −1 +bνℓ′CR YψRS +2 +h.c., (11)

H ≡ hV∗eL Y ≡ VT
eRyUNwhere  and . The Yukawa matrices y

and h are as follows: 

h =

Ü
0 y3 −y2

−y3 0 y1

y2 −y1 0

ê
, (12)

 

y =

Ü
1 0 0

0 c̃ν 0

0 0 d̃ν

êÜ
y1 y3 y2

y3 y2 y1

y2 y1 y3

ê
, (13)

c̃(d̃)ν ≡ c(d)ν/bνwhere  are  complex  free  parameters.  The
neutrino mass matrix is then given by 

(mν)i j ≈ −
λ0(aνbν)2

(4π)6

m2
τ

M1
H∗D̃ℓY∗D̃N FY†D̃ℓH† ≡ κm̃ν, (14)

{ψR,S +1 ,S
+
2 }

ψR

ψR,S +1 ,S
+
2

DNi ≪ mS 1 ∼ mS 2

F ≈ 0.062

Here, F is  a  loop  function  via  three  loop  diagram and it
depends on the mass eigenvalues of . 1) Since
the  masses  of  contribute  to  the  structure  of  neutrino
mass matrix, there would be too many free parameters to
get  some  predictions  for  the  neutrino  sector.  Thus,  we
consider a special situation among the mass hierarchies of

 so  that F is  independent  of  the  structure  of
neutrino mass matrix. When we assume ,
one finds that the dominant part of the loop-function F is
a  constant  and  can  explicitly  be  given  by .  In
detail, one finds Appendix A. Thus, we redefine the neut-
rino mass matrix as follows: 

κ ≡ −λ0F(aνbν)2

(4π)6

m2
τ

M1
, (15)

 

m̃ν ≡ H∗D̃ℓY∗D̃NY†D̃ℓH†. (16)

m̃ν

Uν UT
ν m̃νUν = D̃ν D̃ν = diag[D̃ν1 , D̃ν2 ,

D̃ν3 ]
UPMNS V†eLUν

∆m2
atm

The dimensionless matrix  is diagonalized by a unitary
matrix  as ,  where 

,  and  the  Pontecorvo-Maki-Nakagawa-Sakata unit-
ary matrix  is defined by . Note here that the
lightest neutrino mass is zero due to the two-matrix rank
of the neutrino. Thus, the atmospheric mass squared dif-
ference  is as follows: 

NH : ∆m2
atm = κ

2D̃2
ν3
, (17)

 

IH : ∆m2
atm = κ

2D̃2
ν2
, (18)

∆m2
sol

where NH(IH) represents the normal(inverted) hierarchy.
The solar mass squared difference  is given by 

NH : ∆m2
sol = κ

2D̃2
ν2
, (19)

 

IH : ∆m2
sol = κ

2(D̃2
ν2
− D̃2

ν1
). (20)

The effective  mass  for  neutrinoless  double  beta  decay is
given by 
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NH : ⟨mee⟩ = κ
∣∣+D̃ν2 s2

12c2
13eiα21 + D̃ν3 s2

13e−2iδCP
∣∣ , (21)

 

IH : ⟨mee⟩ = κ
∣∣D̃ν1 c2

12c2
13+ D̃ν2 s2

12c2
13eiα21

∣∣ , (22)

diag[1,eiα21/2,1]

⟨mee⟩ < (28−122)
+
∑

Dν∑
Dν ≤

∑
Dν ≤

where  the  Majorana  phase  is  defined  by 
and we adopt the standard parametrization for the PMNS
unitary  matrix.  The  current  KamLAND-Zen  data  [16]
provide  measured  observables,  and  their  upper  bound  is
given  by  meV  at  a  90%  confidence
level.  The  minimal  cosmological  model  ΛCDM 
provides  an  upper  bound  on  120  meV  [17, 18].
Moreover, the recent combination of DESI and CMB data
gives  a  more  stringent  upper  bound  on  this  bound;

 72 meV [19]. 

E.    Lepton-flavor violations and muon anomalous
magnetic moment

ℓα→ ℓβγ

ℓα→ ℓβγ

 process: First of all, let us consider the pro-
cesses  at  one-loop level 1).  The formula  for  the
branching ratio can generally be written as 

BR(ℓα→ ℓβγ) =
48π3Cαβαem

G2
Fm2

α

(|(aR)αβ|2+ |(aL)αβ|2), (23)

αem ≈ 1/137 Cαβ ≈
(1,0.1784, 0.1736) (α,β) = (µ,e), (τ,e), (τ,µ) GF ≈
1.17×10−5 aL/R

where  is  the  fine-structure  constant, 
 for  ( ), 

 GeV-2 is the Fermi constant, and  is given
by 

(aR)αβ ≈
1

(4π)2

∑
a=e,µ,τ

3∑
i=1

Ç
a2
ν

HβiH
†
iα

12m2
S 1

mℓα

+b2
ν

Y∗βiY
T
iα

m2
S 2

mℓβFI

ñ
D2

Ni

m2
S 2

ôå
, (24)

 

(aL)αβ =
1

(4π)2

∑
a=e,µ,τ

3∑
i=1

Ç
a2
ν

HβiH
†
iα

12m2
S 1

mℓβ

+b2
ν

Y∗βiY
T
iα

m2
S 2

mℓαFI

ñ
D2

Ni

m2
S 2

ôå
, (25)

where 

FI(x) =
1−6x+3x2+2x3−6x2 ln[x]

6(1− x)4
. (26)

mℓα ≫ mℓβBy  assuming  that , the  formula  can  be  simpli-
fied to 

BR(ℓα→ ℓβγ) ≈ 48π3Cαβαem

G2
F(4π)4

 a4
ν

144m4
S 1

∣∣∣∣∣∣ ∑a=e,µ,τ

HβaH†aα

∣∣∣∣∣∣
2

+
b4
ν

m4
S 2

∣∣∣∣∣ 3∑
i=1

Y∗βiY
T
iαFI

ñ
D2

Ni

m2
S 2

ô∣∣∣∣∣2
 .

(27)

g−2
aL aR

The  formula  for  the  muon  can  be  written  in
terms of  and  and simplified as follows:
 

∆aµ ≈ −mµ(aR+aL)µµ ≈ −
m2
µ

(4π)2

∑
a=e,µ,τ

3∑
i=1

Ç
a2
ν

HµaH†aµ
6m2

S 1

+2b2
ν

Y∗µiY
T
iµ

m2
S 2

FI

ñ
D2

Ni

m2
S 2

ôå
. (28)

g−2

O(10−9)

Notice  here  that  this  contribution  to  the  muon  is
negative; however, it  is negligible compared to the devi-
ation in the experimental value  [22].
 

F.    Lepton universality

mS 1 aν

Here, we employ only the results of lepton universal-
ity from a precursor work [23]; the results provide the up-
per  bounds  on  coupling H in  terms  of  and .  We
summarize these results in Table 3.
 

G.    Dark matter

N1 N1

mχ

1.2mχ ≲ DN2 ≤ DN3

v2
rel (σvrel) ≈ aeff +beffv2

rel+O(v4
rel)

Relic density: Our DM is identified as the lightest Ma-
jorana fermion  where we denote  as X hereafter and
its mass is . In order to analyze it simpler, we impose
the  following  condition, ,  in  order  to
evade an effect of co-annihilation interactions for the rel-
ic  density  of  DM. 2) Under  the  condition,  the  dominant
contribution to  the relic  density  arises  from Y.  Then,  the
non-relativistic cross section is expanded by relative velo-
city ;  and found  as  fol-
lows:
 

(σvrel) ≈
m2
χ

48π(m2
S 2
+m2

χ)4
(m2

S 2
+2m2

S 2
m2
χ

+3m4
χ)b

4
ν

3∑
a,b=1

|Y∗aiY
T
1,b|2v2

rel, (29)

where we have neglected the masses of charged leptons.
The above cross section suggests that it is p-wave domin-
ant. The relic density is then given by
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1) The experimental bounds are summarized in Table 2.
2) More detailed computations are found in [24, 25].
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Ωh2 ≈ 1.07×109

GeV
x2

f

3
√

g∗MPbeff
, (30)

g∗ ≈ 100 MP ≈ 1.22×1019GeV x f ≈ 20

0.11 ≤Ωh2 ≤ 0.13

where , , . In our nu-
merical  analysis,  we  use  a  rather  relaxed  experimental
range  because we simplify our analysis
of the relic density. 

III.  NUMERICAL ANALYSIS

g−2

In  this  section,  we  demonstrate  numerical  analyses
based on  all  the  experimental  results  that  we  have  dis-
cussed.  Then,  we  show  the  results  of  the  LFVs,  lepton

, and DM. 

A.    Numerical results of the lepton sector

2σ−3σ 3σ−5σ
2σ

First,  we  perform  a χ square  analysis  adopting  data
from  NuFit6.0  [15], where  we  use  five  reliable  observ-
ables (three mixings, two mass square differences) for the
analysis.  The  yellow  points  represent  the  interval  of

, and the red ones , where no solutions are
obtained  within . Our  three  input  parameters  are  ran-
domly selected within the following range: 

{M̃2, |c̃ν|, |d̃ν|} ∈ [10−5,105], (31)

c̃ν, d̃νwhere we work on the fundamental region of τ, and 
are complex.

χ2

O(1500)

{ae,aµ,aτ}
{aν,bν,M1}

After the numerical analysis, we find that the IH case
is not favored in the model, where the minimal  can be
at  most .  Thus,  we  summarize  our  results  using
only  the  NH  case  in  the  next  subsection.  Note  that  the
parameters  are  chosen  to  fit  the  observed
charged-lepton  masses,  and  are  related  to  fix

{τ,cν,dν,M2}

the scale of the neutrino mass via κ, defined in Eq. (15).
Thus, the relative neutrino mass and three mixing angles
are  fitted  using  the  remaining  parameters 
corresponding  to  seven  real  parameters.  Three  of  these
real  parameters are related to complex phases;  therefore,
fitting the neutrino data is  nontriavial.  In fact,  we would
not be able to obtain any solutions in the IH case. To im-
prove  the  fitting  further,  such  as  for  IH,  we  need  to
change the assignment of the modular weight to increase
the number of free parameters. 

B.    Neutrino observables in NH case

|Re[τ]| = [0.0−0.2] Im[τ] = [1.26−1.28]
τ = i

τ = ω

In Fig.  1,  we show the allowed region of τ,  and find
that  the  allowed  region  is  concentrated  at  nearby

 and  where  the
value is close to the fixed point . We also find a few
points near the fixed point . 1)

d̃ν
c̃ν

|c̃ν| = [10−4−105] |d̃ν| = [10−5−104]
|d̃ν| ≪ |c̃ν| Arg[c̃ν] Arg[d̃ν]

In Fig. 2, we demonstrate the allowed regions for the
absolute values (left) and argument ones (right) of  and

 in NH. We show that the allowed region is at approx-
imately  and ,  where

 is preferred, and  and  can be any
value with little correlation.

δCP

⟨mee⟩
∑

Dν

|δCP| = [90−200]
δCP = [40−60] ⟨mee⟩ ≈ [1−4]∑

Dν ≤
∑

Dν

[58−60]

In Fig.  3,  we  display  the  allowed  region  for  deg
(left)  and  meV (right)  in  terms of  meV.  We
show  that  most  of  the  points  are  located  at

 deg and few points are at approximately
 deg,  and  meV. The vertical

magenta  dotted  line  is  the  upper  bound  of  the  results  of
Planck+DESI  [19] 72  meV,  and  the  range
of  our  model  is  meV, which  is  a  trivial  con-
sequence of two nonzero mass eigenvalues of active neut-
rinos.

⟨mee⟩In Fig. 4, we show the allowed region for  meV

 

ℓα→ ℓβγTable 2.    Summary of the experimental bounds of the LFV processes .

Process (α,β) Experimental bounds (90% CL) References

µ−→ e−γ (µ,e) BR(µ→ eγ) < 4.2×10−13 [20]

τ−→ e−γ (τ,e) BR(τ→ eγ) < 3.3×10−8 [21]

τ−→ µ−γ (τ,µ) BR(τ→ µγ) < 4.4×10−8 [21]

 

fαβTable 3.    Summary of the lepton universality and the corresponding bounds on .

Process Experiments Bound (90% CL)

Lepton/hadron universality ∑
q=b,s,d |V

exp
uq |2 = 0.9999±0.0006: |H†eµ |2 < 0.007

( mS 1
aνTeV

)2

µ/e universality Gexp
µ

Gexp
e
= 1.0010±0.0009 ||H†µτ |2 − |H†eτ |2 | < 0.024

( mS 1
aνTeV

)2

τ/µ universality Gexp
τ

Gexp
µ
= 0.9998±0.0013 ||H†eτ |2 − |H†eµ |2 | < 0.035

( mS 1
aνTeV

)2

τ/e universality Gexp
τ

Gexp
e
= 1.0034±0.0015 ||H†µτ |2 − |H†eµ |2 | < 0.04

( mS 1
aνTeV

)2

Neutrino mass model at a three-loop level from a non-holomorphic modular A4 symmetry Chin. Phys. C 50, 023108 (2026)

1) Note here that these points are not sufficiently close to the fixed points to investigate the mass matrices analytically by expanding modular forms in terms of devi-
ation from the fixed points. To achieve such analysis, the absolute distance from the fixed points should be within 0.05.
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α21 δCP

α21

[80−270]

(left) and  deg (right) in terms of  deg in NH. We
show that the allowed region of  is concentrated at ap-
proximately  deg with few points outside the re-
gion.

∆χ2

g−2

We show a benchmark point (BP) that has the minim-
um  in Table 4 and this BP will be employed to ana-
lyze the LFV, , and DM in the next subsection.
 

g−2C.    Numerical results of LFVs, lepton , and DM
based on the neutrino results

g−2

Before  our  numerical  analysis,  we  present  some
definitions. The neutrino-mass matrix does not depend on
all the masses inside the loop, but the chi square analysis
of  the  neutrino-oscillation  data  provides  the  value  of κ.
Their masses inside the loop determine the values of the
LFVs, muon , and relic density of DM. Thus, we re-
write Eq. (15) as follows: 

λ0 = −
(4π)6

(aνbν)2

Å
κM1

m2
τ

ã
. (32)

aν,bν M1 λ0When , and  are numerically fixed,  is numeric-
ally  determined.  Then,  we  impose  the  perturbative  limit
in our numerical analysis to be 

λ0 ≲
√

4π. (33)

In addition, we restrict ourselves to the following con-
ditions to forbid co-annihilation processes and obtain the
mass-independent  loop  function  of  the  neutrino-mass

 

Fig. 1.    (color online) Allowed region for real τ and imagin-
ary τ in NH.

 

d̃ν c̃νFig. 2.    (color online) Allowed regions for absolute values (left) and argument ones (right) of  and  in NH.

 

δCP ⟨mee⟩
∑

Dν∑
Dν ≤

Fig. 3.    (color online) Allowed regions for  deg (left) and  meV (right) in terms of  meV in NH. The vertical magenta
dotted line is the upper bound of the results of Planck+DESI [19], 72 meV. The cyan region in the left panel indicates the al-
lowed region based on the experimental results of Nufit 6.0.
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matrix: 

1.2mχ ≤ DN2 ≤ DN3 , (34)
 

ϵ3 ≤
1
5
, 0.9mS 1 ≤ mS 2 ≤ 1.1mS 1 , (35)

ϵ3
DN3

mS 1

where we have defined  to be .
Our input parameters are randomly selected from the

following range: 

{aν,bν} ∈ [0,
√

4π], M1/GeV ∈ [10−5,105], (36)

aν,bνwhere  are real and the other required parameters are
employed by the BP in the previous section.

|bν×Y | ∼ 4π

O(100) ≲Max[|bν×Y |]

NR

Our numerical  analysis  showed  that  Yukawa  coup-
ling  exceeds the perturbative limit  to obtain
the  observed  relic  density  of  DM  while  satisfying  the
constraints of  LFVs  and  lepton  universalities.  The  cor-
rect  relic  density  requires  for  the
NH  case,  applying  allowed  parameters  that  can  fit  the
neutrino  data.  This  implies  that  co-annihilations  do  not
help to  reduce the  Yukawa couplings  to  the  perturbative
limit. We may move to one of the next minimum models
by changing the modular weight of  to –2 instead of 0
to obtain one more mass parameter. This provides a wider
region of  allowed  parameters,  where  the  other  assign-
ments  are  the  same  as  our  model.  However,  we  would
still  encounter  difficulty  in  realizing  the  correct  relic
density  while  keeping  the  perturbative  limit  for  the
Yukawa  couplings.  This  is  because  the  DM annihilation
cross section, Eq. (29), is p-wave dominant and we need a
relatively larger coupling constant than that of the s-wave
case. In  addition,  neutrino  data  and  LFV  constraints  re-
quire  heavy  DM  and  new  scalars  that  also  suppress  the
DM annihilation  cross  section.  Thus,  obtaining  the  cor-
rect  relic  density  in  our  minimal  setting  is  difficult,  and
some extension is necessary.

g−2
g−2

−∆ae −∆aµ 10−20 10−15

µ→ eγ

If we do not satisfy the observed relic density and we
perform  our  numerical  analysis  under  the  perturbative
limit,  we  obtain  the  tendencies  for  electron ,  muon

,  and  LFVs,  as  shown in Fig.  5. These  figures  sug-
gests that  and  are at most  and , re-
spectively.  However,  LFVs,  especially  the 
branching ratio,  would  be  testable  in  the  near  future  be-
cause its maximum value is close to the experimental lim-
it. 

D.    Minimal extension to accommodate relic
density of DM

We briefly  illustrate  one  of  the  simplest  solutions  to
explain  the  observed  relic  density  without  breaking  our
predictions  for  the  neutrino sector,  making use  of  a  new

 

⟨mee⟩ δCP δCPFig. 4.    (color online) Allowed region for  meV (left) and  deg (right) in terms of  deg in NH.

 √
∆χ2

Table 4.    Numerical benchmark point (BP) of our input para-
meters and observables in NH. Here, this BP takes  as
the minimum.

NH

τ 0.137+1.26i

M̃2 5.34×10−4

c̃ν −2.85×103 −1.69×103i

d̃ν −26.3+64.5i

[ae,aµ,aτ] [7.21×10−6,−0.00139,0.0206]

∆m2
atm 2.51×10−3eV2

∆m2
sol 7.56×10−5eV2

sinθ12 0.553

sinθ23 0.683

sinθ13 0.147

[δℓCP, α21] [−170◦, 257◦]∑
mi 58.8 meV

⟨mee⟩ 2.94 meV

κ 3.49×10−14√
∆χ2 2.24

Neutrino mass model at a three-loop level from a non-holomorphic modular A4 symmetry Chin. Phys. C 50, 023108 (2026)

023108-7



S 0interaction.  We  introduce  a  singlet  scalar  boson  that
leads to new interactions 

Lnew = yS S 0NC
R NR+λmixS 0H†H+ · · · , (37)

A4

S ±1,2
S 0

Lnew

where its  modular  weight  is  assigned to  zero  for  simpli-
city, assuming it is a singlet under the  symmetry, and
we omit terms with . We then have a Higgs portal to
the SM by mixing between  and h induced by the last
term of .  Note that the addition of these interactions
do  not  modify  the  neutrino  mass,  and  the  predictions  in
our analysis will not change.

χχ→ S 0→ fSM fSM χχ→ S 0S 0

mχ ≈ mS 0/2 mS 0

S 0

χχ→ S 0→ fSM fSM

As a  result  we have  additional  DM annihilation  pro-
cesses such as  and . In par-
ticular,  the s-channel cross  section  is  useful  for  explain-
ing the  relic  density  because  the  annihilation  cross  sec-
tion  is  enhanced nearby at ,  where  is  the
mass  of .  The  annihilation  cross  section  of  the

 process is approximately given by 

(σvrel) ≃
y2

S y2
f sin2α

2π
m2
χ

(4m2
χ−m2

S 0
)2
, (38)

y f

sinα S 0

Ωh2 ∼ 0.1 pb/(σvrel)

where  is  the  SM Yukawa  coupling  for  fermion f and
 indicates the Higgs-  mixing. The relic density of

DM is estimated as , and we obtain 

Ωh2 ∼ 0.12
( mχ

1 TeV

)2 0.0081
y2

S sin2α

Ç
1− m2

S

4m2
χ

å−2

, (39)

Ωh2 ∼ 0.12 mχ = 1 yS = 1
sinα ∼ 0.1

where we consider the top quark as f for simplicity. Thus,
we  can  realize  with  TeV, ,  and

, even if we do not have resonant enhancement.
With  the  resonant  effect,  we  can  fit  the  relic  density  for
the  small  Higgs-mixing case  without  conflicting  con-
straints of direct detection searches [26]. 

IV.  CONCLUSIONS AND DISCUSSIONS

We  investigated  a  three-loop  induced  neutrino  mass
model  in  a  non-holomorphic  modular  flavor  symmetry.

τ, c̃ν, d̃ν ae, aµ, aτ, M̃2, κ

g−2

We  observed  that  some  predictions  in  a  framework  that
masses inside the loop do not depend on the structure of
the neutrino mass matrix.  Because our model  has a  rank
two  Yukawa  matrix  in  the  neutrino  sector,  the  lightest
neutrino-mass  eigenvalue  vanishes.  Here,  we  realized  a
model  with  minimum  free  parameters,  three  complexes

 and five reals , due to the appro-
priate  charge  assignments  under  the  modular  symmetry.
Then,  we  performed chi-square  analyses  considering  the
neutrino-oscillation  data.  In  particular,  we  observed
rather  narrow  arrowed  regions  for  the  NH  case,  and  we
could not fit the data in the IH case. By adopting the best-
fit value for NH, we further analyzed the lepton-flavor vi-
olation, muon , lepton-flavor universalities, and DM.
We have neglected all the complicated processes such as
co-annihilation  interactions  by  controlling  the  related
masses.  The  numerical  analyses  showed  that  explaining
the observed relic density within the perturbative limit is
difficult. However, resolving this is easy by introducing a
singlet boson  without  changing  predictions  in  the  neut-
rino sector. 

APPENDIX A: LOOP FUNCTION

DNi ≪ mS 1,2

m2
S 1
= m2

S 2
±δm2

S ϵS ≡
δmS

mS 2

≪ 1

The loop  function  at  the  third  level  is  generally  ob-
tained  only  via  numerical  methods.  However,  if  some
conditions  are  imposed,  one  can  analytically  integrate  it
out.  Here,  we  show  the  integration  under  the  case  of

,  to  which  we  apply  our  model,  where

 with .
ϵi(≡ DNi/

mS 1 ) ϵS

One can expand the  integration in  terms of 
and  as follows: 

F ≈ a0+a1ϵ
2
i +b1ϵ

2
S +O(ϵ4

i )+O(ϵ4
S ), (A1)

 

a0 ≈
∫

[dx]3

∫
[dx′]3

∫
[dx′′]3

 1
y′′(y+ z)
(1− z)z

+
z′′(y′+ z′)
(1− z′)z′

 ,
(A2)

 

 

g−2 g−2Fig. 5.    (color online) Allowed region for electron  (left), muon  (center), and LFVs (right), where these points do not satisfy
the observed relic density.
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a1 ≈ −
∫

[dx]3

∫
[dx′]3

∫
[dx′′]3

 x′′Å
y′′(y+ z)
(1− z)z

+
z′′(y′+ z′)
(1− z′)z′

ã2

 , (A3)

 

b1 ≈
∫

[dx]3

∫
[dx′]3

∫
[dx′′]3

ï
(−1+ z)z(−1+ z′)z′(−yy′′z′+ yy′′z′2− y′zz′′+ y′z2z′′)

(−yy′′z′− y′′zz′+ yy′′z′2+ y′′zz′2− y′zz′′+ y′z2z′′− zz′z′′+ z2z′z′′)2

ò
, (A4)

a0 ≈ 0.062 a1 ≈ −2.92 b1 ≈ −0.0281
∫

[dx]3 ≡
∫ 1

0 dx
∫ 1−x

0 dy|z=1−x−ywhere , , , and .
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