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Abstract: We provide a comprehensive survey of possible applications of the matrix method for black hole quasinor-

mal modes. The proposed algorithm can generally be applied to various background metrics, and in particular, it ac-

commodates both analytic and numerical forms of the tortoise coordinates, as well as black hole spacetimes. We give

a detailed account of different types of black hole metrics, master equations, and the corresponding boundary condi-

tions. Besides, we argue that the method can readily be applied to cases where the master equation is a system of

coupled equations. By adjusting the number of interpolation points, the present method provides a desirable degree of

precision, in reasonable balance with its efficiency. The method is flexible and can easily be adopted to various dis-

tinct physical scenarios.
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1 Introduction

The black hole is one of the most exotic and in-
triguing subjects in all of theoretical physics. On the ex-
perimental side, black hole merger is a magnificent astro-
physical phenomenon, it releases an enormous amount of
energy in the form of gravitational radiation, larger even
than that carried by the light from all stars in the entire
visible Universe combined. The gravitational waves tra-
verse the Universe, carrying with them the information
about the merger. The first detection of gravitational
waves in 2016 was heralded as a remarkable break-
through in fundamental physics [1, 2]. The observation
was announced by LIGO and Virgo collaborations, and it
matches the predictions of gravitational waves that eman-
ated from the inward spiral and merger of a pair of black
holes [3-5]. Subsequently, further measurements con-
firmed the gravitational waves from compact-object bin-
aries, including black holes and neutron stars [6-8]. These
observations inaugurate a revolutionary era of astronomy,
as astrophysicists and cosmologists are now able to make
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precise observations based on gravitational waves, in ad-
dition to electromagnetic radiation. Indeed, while black
hole candidates have been identified through electromag-
netic signals from nearby matter [9-12], gravitational
wave measurements provide a direct test of general re-
lativity, as well as unique access to the properties of
spacetime, in the strong field regime. The final fate of a
black hole binary consists of three distinct stages: inspir-
al, merger, and ringdown [13]. In the first stage of the in-
spiral, the orbit of the black hole binary shrinks gradually
due to the emission of gravitational radiation. The inspir-
al dynamics can be calculated by using the post-Newtoni-
an approximation, which results from a systematic expan-
sion of the full Einstein equations. As the two black holes
further evolve and spiral inward, they eventually reach
the merger stage, which relates to the strong field, the dy-
namical regime of general relativity. During the merger
stage, the two black holes coalesce into a single, highly
distorted remnant black hole, which is surrounded by the
combined event horizon. The process is no longer quasi-
adiabatic and incredibly sophisticated, where most analyt-
ic or semi-analytic methods break down, and numerical
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relativity is usually employed to calculate the dynamical
properties of the system. Gravitational wave emission
reaches a peak during the second stage. The remnant
black hole eventually settles down into a more dormant
state, where distortions from the spherical shape rapidly
decrease while emitting gravitational waves. This last
stage is known as “ringdown”, in analogy with the way
the ringing of a bell is suppressed in time after it is struck.
The form of the gravitational wave is characterized by ex-
ponentially damped sinusoids. Various techniques in the
black hole perturbation theory can be used to tackle the
problem. The topic of the present paper are the black hole
quasinormal modes, which are closely related to the last
stage of the black hole merger process.

In general, a quasinormal mode is defined as an ei-
genmode of a dissipative system. In the context of gener-
al relativity, small perturbations of a black hole metric
may lead to quasinormal modes [14-17]. Their import-
ance is due to the fact that they are closely associated
with the final fate of the black hole merger. Besides,
quasinormal modes attracted much attention in recent
years mainly due to the development of the holographic
principle in the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence, which is widely recognized
as a tool for exploring strongly coupled systems [18]. In
other words, by studying the black hole perturbations in
the bulk, one may extract important physical quantities,
such as transport coefficients, e.g. viscosity, conductivity,
and diffusion constants, of the dual'system on the bound-
ary.

The study of black hole quasinormal modes encom-
passes various types of perturbations, which include those
of the scalar field, spinor field, vector field, or the metric
itself. Revealed by temporal evolution of small perturba-
tions, the dynamic process of a stable black hole metric
also involves three stages. These include the initial out-
burst, triggered by the source of the perturbation, the
quasi-normal oscillations, and late-time asymptotic tail.
Usually, the amplitude of the oscillations decays expo-
nentially with time. Otherwise, if small oscillations in-
crease, this indicates that the black hole metric is not
stable. The frequency of a quasinormal mode is usually
complex, and is known as quasinormal frequency. The
real part of the quasinormal frequency defines the fre-
quency of oscillations. The imaginary part, on the other
hand, is negative for a stable metric, and it plays the role
of suppressing the amplitude of oscillations.

From the mathematical point of view, the analysis of
a quasinormal mode is related to a non-Hermitian eigen-
value problem for a system of coupled linear differential
equations with associated boundary conditions. Apart of a
few cases where analytic solutions for asymptotic quas-
inormal mode spectra can be obtained [19-21], one often
resorts to semi-analytic techniques [22]. The Po&shl-

Theller potential approximation [23] replaces the effect-
ive potential in the master equation by a Poshl-Theller
one, where the analytic eigenvalue is known. The WKB
method [24, 25] is a semi-analytic approach proposed by
Schutz et al, where the technique is applied specifically to
the one-dimensional time-independent Schrodinger-like
equation for the quasi-eigenvalue problem. The 6th order
formalism of the method was subsequently derived by
Konoplya [26]. In practice, the application of the WKB
method is rather straightforward, since it only requires the
information about the background metric and the form of
the effective potential. However, the uncertainty of the
obtained result is somewhat undetermined beforehand,
which is in part related to the specific shape of the effect-
ive potential. It is worth mentioning that, in the eikonal
limit, the quasinormal modes of spherical black holes in
asymptotically flat spacetime were found to be associ-
ated ‘with the parameters of the circular null geodesic
[27]. However, Konoplya and Stuchlik [28] showed ana-
lytically that the relationship is not valid for some partic-
ular cases, which has been further explored in [29-31]. In
addition to the semi-analytic method, various numerical
methods have also been proposed. The first type of nu-
merical methods aims at evaluating the time-dependent
wave equation directly for a given set of initial condi-
tions. This is achieved by replacing the derivative with
the finite difference [32-37]. Naturally, the resulting
waveform contains the information about all three stages
of temporal evolution of small perturbations. At the end
of the calculation, one may further evaluate the quasinor-
mal frequency by using Fourier analysis. A major disad-
vantage of the approach is that one cannot obtain the
complete spectrum of quasinormal modes, due to the fact
that usually only a few long-lived modes can be clearly
identified. The second class of numerical schemes in-
volves Fourier decomposition of the perturbed Einstein
equations, while adopting appropriate boundary condi-
tions. The latter assume that the resultant wave function
corresponds to incoming waves on the horizon and outgo-
ing at infinity. A series expansion of the wave function is
usually carried out, and the method is typically iterative,
namely, higher order results are derived from and im-
proved using the lower order ones. Consequently, the pre-
cision of the method is controlled by the order of the ex-
pansion. These methods include the continued fraction
method [38, 39], the Horowitz and Hubeny's (HH) meth-
od for the AdS black hole [40], and the asymptotic itera-
tion method [41-44]. However, for the continued fraction
method it is not so straightforward to derive the desired
iterative relation for specific background metrics, and the
HH method only applies to the asymptotically AdS
spacetime. Recently, we proposed a matrix method [45-
47] , where the spatial coordinate is discretized so that the
differential equation, as well as its boundary conditions,
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are transformed into a homogeneous matrix equation. A
vital feature of the method is that the eigenfunction is ex-
panded in the vicinity of all grid points, and, therefore,
the precision of the algorithm can be potentially im-
proved. The method has been employed to study the
quasinormal modes of the Schwarzschild black holes in
asymptotically flat, (anti-)de Sitter (AdS/dS) spacetimes,
as well as the Kerr and Kerr-Sen black hole metrics [46,
47]. In this survey, we further explore possible applica-
tions of the method to more general scenarios. We
provide a detailed account of the procedure of how the al-
gorithm is implemented. We argue that the implementa-
tion of the proposed method does not rely on the analytic
form of the tortoise coordinate. Moreover, the method
can be readily applied even to the case of the numerical
black hole metric. Our discussion addresses black hole
metrics of different asymptotic behavior, in particular
where an analytic form of the tortoise coordinate is not
available. Advantages, as well as improvements of the al-
ternative approaches, are also addressed.

The paper is organized as follows. In the following
section, we discuss the core algorithm of the matrix meth-
od. In Section III, we explore the applications of the
method in various scenarios, including for different back-
ground metrics and the corresponding boundary condi-
tions. In particular, we investigate the method of separa-
tion of variables for the master equation in asymptotic-
ally flat, dS, and AdS spacetimes, while considering dif-
ferent cases such as static, rotational, and extreme black
holes. Moreover, the case where the master equation is a
system of coupled ordinary differential equations is ad-
dressed. In addition, we provide a comprehensive discus-
sion on the code implementation using Mathematica. Fur-
ther discussions and concluding remarks are given in the
last section of the paper.

2 The matrix method

The primary feature of the matrix method [45-47] ,
which makes it distinct from the others, lies in the fact
that the series expansion of the wavefunction is carried
out in the vicinity of a series of points, where the latter
are not necessarily distributed evenly in the domain of the
wavefunction. This feature provides flexibility for achiev-
ing a reasonable degree of precision, without sacrificing
efficiency. Roughly speaking, in terms of the above grid
point expansion, one discretizes the master equation of
the perturbation field, and subsequently, rewrites it to-
gether with the boundary conditions in the form of a mat-
rix equation. The latter can then be handled readily by
various algorithms for solving a system of linear equa-
tions.

Let us start by discussing the general strategy of ap-
plying the method to the standard scenario for quasinor-

mal modes, where the master equation is of the
Schrodinger-type, given as follows:

d2
d—rZ(D(r) + [u)2 - V(r)] O(r) =0, (1)

where r, = f dr/ f(r) is the tortoise coordinate, w and V(r)
are the quasinormal frequency and effective potential, re-
spectively. Here, f (7) is determined by the metric, while
the black hole event horizon, 7, , and the cosmological
horizon, r. , are often determined by f(r,)=0 and
f(re)=0 , respectively. We proceed by noting that the
above form of the master equation can generally be ap-
plied to a wide variety of metrics. However, it is not ap-
plicable neither to the case of rotating black holes, nor to
that given in terms of Eddington—Finkelstein coordinates.
The specific form of the master equation in these cases
will be.discussed with the corresponding topics in the fol-
lowing sections. Usually, the asymptotic behavior of the
effective potential at the boundary is relatively simple,
and, therefore, in the present work, we will just assume
that the effective potential vanishes at the horizon and ap-
proaches a constant at infinity V(co) = V,, = const.

In order to solve a differential equation, one also has
to determine the associated boundary conditions. In the
case of quasinormal modes, the boundary conditions are
determined by the characteristics of the black hole at the
horizon and infinity. As the apparent horizon of a black
hole is a one-way membrane which prohibits the outgo-
ing light rays to travel across it, the boundary conditions
for the quasinormal modes are defined such that the solu-
tions should be ingoing at the horizon and purely outgo-
ing at infinity, namely

e¥"  r— oo (for asymptotically flat spacetime)
@~ {el“" - r. (for asymptotically dS spacetime) , (2)

ey, ry (for both spacetimes)

where @ is defined as @ = Vw? -V, so that @ = w for
Ve = 0. If the form of the effective potential is not suffi-
ciently simple, one usually has to resort to numerical
methods. Eqgs.(1) and (2) furnish an eigenvalue problem,
where the boundary conditions are defined at r, — +oo0 in
terms of the tortoise coordinate. We note that the above
discussion is valid for asymptotically flat and dS space-
times, while the boundary conditions for asymptotically
AdS spacetime, and the angular part of the master equa-
tion, will be addressed below.

Similarly to the other methods based on series expan-
sion, we first change the domain of the radial variable to
a finite range by introducing z = z(r). For convenience, we
choose the new domain to be z € [0,1], and the boundar-
ies correspond to the points z=0 and z=1, respectively.
However, since the wave function is also transformed, the
boundary conditions in Eq.(2) will also be affected. In
this regard, we rewrite the wave function in the form
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® = A(z)R(z), where A(z(r)) carries the asymptotic behavi-
or of the wave function at the boundary given in Eq.(2).
As a result, R(z) is expected to be well behaved and, in
particular, to be regular at the boundary. To be specific,
the master equation reads

H(w,2)R(z) =0, (3)
with
R(z=0)=CpandR(z=1)=C]. 4)

Here, H(w,r) is a linear operator, determined by Eq.(1),
which depends on w and z. C;y and C are constants, since
the asymptotic part of the wave function has been factor-
ized. It is convenient to further introduce

F(z) = R(2)z(1 - 2), Q)

where z(1 —z) can be replaced by other smooth functions
which are zero only at z=0 and z=1. We note that, for the
case of AdS spacetime, since R(r — o) — 0, the trans-
formation Eq.(5) can be replaced by F(z) = R(z)(1-2)
where z=r,/r.

Subsequently, the master equation can be rewritten
with F(z)

G(w,2)F(2) =0, (6)
with the boundary conditions in an even simpler form
F(z=0)=F(z=1)=0. (7

Here, the linear operator G(w,z) is derived from the form
of H(w,z) and Eq.(5). We note that, as a numerical trick,
Eq.(5) is not an absolutely necessary procedure. In prac-
tice, the resultant wave function'no longer possesses a
boundary condition involving an undetermined constant.
Furthermore, when C and C; turn out to be quite distinct
in their values, the factor z(1 —z) helps to suppress the
function values at the boundary points, as well as in their
vicinity. Intuitively, the only scenario when the proced-
ure does not work as intended is when the form of the
wave function becomes more fluctuating due to the factor
z(1—z)for some particular reason, and the subsequent
Taylor expansion becomes less efficient. But, as we do
not have a good estimate of the form of the wave func-
tion at this point, the introduction of Eq.(5) helps to main-
tain the resultant equation simple, at the least. The exist-
ing numerical results are in most cases found to be con-
sistent with the above speculations.

As the next step, we descretize the master equation
Eq.(6) by introducing N interpolation points z; with
i=1,2,---,N , in the interval z € [0, 1]. Subsequently, the
wave function F(z) is also represented by descrete values
fi = F(z;) on the grid. As a result, one discretizes the dif-
ferential equation Eq.(6) and rewrites it in terms of f;. In
the present algorithm, various derivatives of the wave
function at z; are obtained by inverting a N XN matrix
[45], so that the information about the function values in
the entire interval is utilized. Besides, owing to the fact
that the above inverting process is formal, it is carried out

in practice before the real numerical calculations, and,
therefore, it does not have any negative impact on the ef-
ficiency of the method. The resulting matrix equation can
be formally written as

MF =0, ®)
where M represents the descretized version of the operat-

or G(w,z), and is a N x N matrix which is still a function
of the quasinormal frequency w, and

F=(fisforo S ) ©)
is a column vector composed of f;. The boundary condi-
tion Eq.(7) implies that

fi=fv=0. (10)
We make use of the above condition to replace the first
and last line of the matrix M. The reason behind this
choice is to select a line or column in the original equa-
tion which makes use of the least amount of information
about of grid points. Subsequently, Eq.(8) becomes

MF =0, (11)
where the element M, ; of the matrix M is defined by
_f 6kis, k=1lorN
M"”"{ My, k=23, N=1 " (12)

The matrix equation indicates that ¥ is the eigenvector of
M, which implies
det(M(w)) = IM((w)| = 0. (13)

Eq.(13) is a non-linear algebraic equation for the quas-
inormal frequency w, which can be solved by any stand-
ard nonlinear equation solver.

In Refs. [46, 47], the above algorithm is employed to
descretize the master equation, Eq.(6). Alternatively, one
may also employ other numerical approaches for numer-
ical differentiation, such as the differential quadrature
method [48-50], and the Runge-Kutta method, among
others. Regarding the finite difference formulas, if New-
ton's difference quotient is employed in Eq.(6), the result-
ing matrix M(w) will be “almost” diagonal, since only the
elements M;; with i=k,k+1 are non-vanishing. Sub-
sequently, the resulting wave function can be obtained via
an iterative method, similar to the continued fraction
method, or the HH method. However, as mentioned
above, a sparse matrix indicates that the corresponding
discretization scheme does not fully make use of the in-
formation about the entire interval z € [0, 1]. On the other
hand, in several different methods, such as the continued
fraction method and the HH method, the series expan-
sion of the wave function is only carried out in a single
radial position, for instance, the horizon. From a differ-
ent point of view, the resulting algebraic equation can in
fact also be rephrased in the form of a matrix equation,
Eq.(11). Owing to the fact that the iterative relation only
involves a few expansion coefficients, the corresponding
matrix is also rather sparse. Therefore, for a given N, the
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matrix method is related to a Taylor expansion of the or-
der N, which subsequently provides better precision.
Moreover, one may even seek out an optimized grid dis-
tribution, which provides a higher resolution for the re-
gion where the variation of the wavefunction is more dra-
matic, by inserting more grid points. In this regard, the
present algorithm can be viewed as an improvement over
many existing approaches.

The following section is devoted to a more detailed
discussion of various applications.

3 Application of the method in the -calcula-
tions of quasinormal frequency

While the general strategy for the evaluation of the
black hole quasinormal modes presented in the previous
section is concise and straightforward, many particular
aspects, such as those related to the boundary conditions
and specific characteristics of the master equations, might
bring up complications for particular problems. In the
present section, we discuss in detail several specific cases
for the applications of the matrix method. In particular,
our discussion addresses the boundary conditions for the
black hole metrics in asymptotically flat, dS, and AdS
spacetimes, as well as the associated ansatz for the meth-
od of separation of variables. The background metrics
concern static, rotational, and extreme black holes. The
algorithm presented in the following does not require the
existence of an analytic form of the tortoise coordinate.
We also comment on the case of a numerical black hole
metric, and that where the master equation is a system of
coupled ordinary differential equations.

We first address the issue of different boundary con-
ditions owing to different asymptotical properties of
spacetime. Usually, spacetimes can be classified accord-
ing to their asymptotical behavior at infinity, such as
asymptotically flat, dS, and AdS spacetimes. It is known
that the effective potential V(r) vanishes at infinity in the
case of asymptotically flat spacetime. On the other hand,
it diverges at infinity for asymptotically dS and AdS
spacetimes. However, for the dS case, there exists a cos-
mological horizon 7. between the observer and infinity,
which is also a Cauchy one-way membrane. An observer
staying between 7, and 7. will not receive any signals
from the inside of event horizon, nor from the outside of
cosmological horizon. Therefore, the physically valid do-
main is m <r<r. for the dS spacetime, while it is
r < r < oo for the asymptotically flat and AdS spacetimes.

For extreme black holes, the associated tortoise co-
ordinate has a different feature near the black hole hori-
zon than for non-extreme black holes. This is because, for
an extreme black hole, one requires f’(r,) = 0, which im-
plies a Taylor expansion of f () around the horizon that

does not contain the linear term. Subsequently, as shown
below, the leading contribution in the tortoise coordinate
becomes different.

For rotating black holes, an additional equation is im-
plied, whose physical content is associated with the angu-
lar momentum quantum number. In this case, one usually
gets a system of two coupled master equations with ei-
genvalues w and A, corresponding to the radial and angu-
lar parts of the wave functions. The latter restores to a
simple case when the parameter of the black hole related
to angular asymmetry vanishes. In particular, if the black
hole metric reduces to a static spherical one, one finds
A={4(£+1), namely, the angular momentum quantum
number. The ‘angular part of the master equation be-
comes decoupled, and the angular wavefunction reduces
to spherical harmonics. On the other hand, if the angular
part of the master equation is coupled to the radial part,
its_boundary condition is the usual periodic boundary
condition.

In addition, one frequently encounters two difficult
scenarios in realistic numerical studies. The first involves
the difficulty in obtaining an analytic expression for the
tortoise coordinate r.(r) , and as a result it is not straight-
forward to obtain the boundary condition in an analytic
form. The second difficulty is apparently even more
severe, and it concerns the numerical black hole metric.
Fortunately, as we show below, the matrix method is
quite versatile in handling these subtle situations. In fact,
it is relatively intuitive to understand the reason. The crit-
ical procedure of the matrix method is the discretization
of continuous functions into discrete values on a grid.
Naturally, as a result, the implementation of the method
does not rely on analytic expressions of the tortoise co-
ordinate, as shown in the following subsection.
Moreover, the method neither relies on the analytic form
of the black hole metric itself. It is rather straightforward
to slightly alter the procedure to adopt it to the numerical
black hole metric. This is not the case with the other ap-
proaches, such as the HH method, where the numerical
difficulty is enhanced by the requirement of precision
values for the high order derivatives of the metric. Last
but not least, for the difficulties with the numerical tor-
toise coordinate, one does not require an explicit form of
r« but its asymptotical behavior, and, therefore, one can
merely expand the form of 7« near the boundary and ex-
tract the desired boundary conditions.

3.1 Boundary conditions

In the following, we write down the explicit forms of
the boundary conditions for five specific cases of asymp-
totic spacetime and its boundaries:

Case 1. For the non-extreme black hole, near the hori-

zon, if f(r)=ﬁ(r—rh)+%(r—rh)2+0(r—rh) (where
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fi = fO(ry) and O represents terms of order higher than
(r—rm)?), we have

dr 1 b
= == ||7——-=%+0Jd
: f(r) f[fl(r—rh) 2f”12+ g

~

=%—2%(r—rh)+o, (14)
which implies that the boundary condition at the horizon
is given by

D~e U~ B, =(r—rm)h. (15)
Case 2. For the extreme black hole, near the horizon,
if f(r)= %(r—rh)2+ %(r—rh)3 + ;—Z(r—rh)4+()(r—rh), where
O are terms of order higher than (r — r,)*, we find
B dr
Iy = %

_ f[ 2 2 +4f~32—3fzf4 .
hr=m)y 3f70-m) 183
o2 2fWmb-nl, Af2-3pf
hlr=rm) 33 185

O|dr

(r—r)+0,
(16)

and the boundary condition at horizon is given by
O ~ eV ~Bp=(r—r) WoeRrm (17)
Case 3. In the asymptotically flat spacetime, for
r— oo, if f(r)=1+Ar*+0, where a <0 and O repres-
ents higher order terms less significant than ¢, we have

dr o
= m:f(l—Ar +O)dr

r—00

A
:r——r1+(y+0.
a

(18)

s

Thus, the boundary condition at infinity is given by
® ~ e ~ By =@ ), (19)
and the second term could be significant when o > —1.
Case 4. In the asymptotically de Sitter spacetime, ac-
cording to Case 1 and Case 2, one obtains similar results
by replacing r, with r.. Therefore, following Eq.(15),
near the non-extreme cosmological horizon, the bound-
ary condition is
@~ ~By=(re—1)0. (20)
On the other hand, for the extreme cosmological horizon,
we have
D~ e ~By=(re—r) % efiin, @1)
where f; = fO(r,).
3.2 Separation of variables

By making use of the asymptotic behavior obtained
above, we can write down the appropriate forms for the
wave functions by the method of separation of variables.

For the non-extreme black hole in asymptotically flat
spacetime, we have
O(r) = U= (r— 1) Th FAR(), (22)
where the term 77 is introduced to cancel out the effect of
the factor (r—ry) 7 at infinity, while it gives a rather
smooth contribution at the horizon. Thus, it can be read-
ily verified that the resultant expression, Eq.(22), indeed
possesses the desired asymptotic forms at r — r, and
r — oo found in Eqs.(15) and (18). Likewise, for the ex-
treme black hole, we have

d(r) = ei@(’_ﬁrmy)(r - rh)%f e r_% e_%R(r). (23)

As discussed above, for the black hole in asymptotic-
ally de Sitter spacetime, it is required that at the event ho-
rizon fj#0 and f; =0 for the non-extreme and extreme
cases, respectively. Similarly, at the cosmological hori-
zon, we have f; #0 and f; =0, respectively for the non-
extreme and extreme scenarios. Therefore, the boundary
conditions in de Sitter spacetime are satisfied by assum-
ing the following form for the wave functions

B,BiR(r), when fi#0and fi#0

_ | BuByR(r), when fi#0and fi=0
o) = ByBiR(r), when fi=0and fi#0 ° 24

By,ByR(r), when fi=0and fi=0

For the asymptotically anti-de Sitter spacetime, the
Horowitz-Hubeny method usually employs the ingoing
Eddington-Finkelstein coordinates (v,r) , with v=r,+1t.
In what follows, we will also use this convention. The
corresponding master equation reads

o) [df(r) ] do(r)

f) +|—— 2iw|——-U@)P(r)=0, (25)

A dr dr

where U(r) = V(r)/f(r), and since the potential is diver-
gent at infinity, the boundary condition requires @ to be
constant at the event horizon, while it must vanish at in-
finity.

For the rotating black hole, one has to deal with the
angular part of the master equation, which possesses the
following form, similar to the radial part of the master
equation:

(1- uz)d% [(1 - uz)dld/—f:‘)] —Wu,w, DY) =0. (26)

The boundary conditions are at u = 1, where one defines
Wﬁ =W(u=+l,w,1). The asymptotic solutions at the
boundary are given by

Ym>~{'1‘”tf

14y

u—1 27)
u——1
As it is required that the angular part of the wave func-
tion Y(u) always remains finite, it can be assumed to have

the following form
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Y) = 1 —ull 511+ 51S (). (28)

In the above expressions for the wave function with sep-
aration of variables, Eqs.(22)-(28), we have implied that
the functions R(r) and S(u) are finite and well behaved in
the entire domain of » and u. That is to say, r, < r < oo for
the asymptotically flat and anti-de Sitter spacetimes,
m < r<r. for the asymptotically de Sitter spacetime, and
—1<u<1 for the angular part of the master equation.
This is because the asymptotic form of the wave function
at the boundary has already been factorized and, there-
fore, effectively extracted from the Lh.s. of Eqs.(22)-(28).

Last but not least, we carry out another coordinate
transformation to conveniently convert the domain of r
and u into [0,1]. For the asymptotically flat and anti-de
Sitter black hole spacetimes, the new coordinate is chosen

rh . .

as x=1-— or z=ry/r, where ry, is the event horizon, so
that at the gvent horizon x=0 and z=1, while x=1 and z=0
represent infinity. For the asymptotically de Sitter black

hole spacetime, due to the existence of the cosmological

. r—rp
horizon 7, we choose y = , so that y=0 represents
Fe—Th

the event horizon while y=1 corresponds to the cosmolo-

gical horizon. For the angular coordinate, we introduce

y= # , so that one has v=0 and v =1 for u=—1 and
u=1, respectively.

By following the above procedure, the transformed
master equation and its boundary conditions are given in
Eq.(3) and Eq.(4). Subsequently, one may proceed with
the calculations of the quasinormal frequency of the mat-
rix equation as discussed in Section 2.

3.3 Master equation for a system of coupled equations

In the above discussion, we have assumed that the
master equation can be expressed in terms of a system of
decoupled equations, as we have treated the radial and
angular parts of the master equation separately. In prac-
tice, such simplification might not always be possible. As
an example, in the study of the quasinormal modes of a
massive vector field, the resultant system of equations
might be coupled. However, a system of coupled ordin-
ary differential equations does not particularly pose a dif-
ficulty for the matrix method. This is because, in this
case, one only needs to write the system of coupled equa-
tions in terms of a matrix equation of larger size. In other
words, if a system of n equations cannot be decoupled,
the complication formally manifests in the fact that one
has to handle a matrix equation of the size nN xnN,
where N is the number of interpolation points introduced
above. As an example, in the case of n=2, we have

M.Fa = BpFo,
MpFp = BFa,

where 8 is also a N x N matrix. In this case, one may re-

(29)

write the above equations in terms of a double-sized mat-
rix equation, namely,

— Ma _Bb 7:44 _
Mnﬂ=( "8, M, )( 7 )_0, (30)

which can be readily solved as before. The only disad-
vantage is that the matrix on the Lh.s. of Eq.(30) might be
a sparse matrix, which subsequently implies a loss of
computational efficiency.

Alternatively, one can either rewrite Eq.(30) as

(MBS My~ B,) Fy = 0 31)
or as
(M8, Mo = B,) Fa = 0. (32)

Here, the expressions involve the evaluation of B;! or
8,", when the relevant inverse exists. To solve Eq.(31) or
Eq.(32) , it is necessary to find the roots of a nonlinear
equation in w, associated with the NxN matrices. The
second approach may potentially improve the efficiency.

3.4 Code implementation

The code implementation has been carried out in
Mathematica. It takes advantage of the efficiency of ex-
isting packages for matrix manipulation, as well as for
solving nonlinear equations. The source codes for the
Schwarzschild black holes in asymptotically flat, (anti-)
de Sitter (AdS/dS) spacetimes, as well as for the Kerr and
Kerr-Sen black hole metrics, have been released publicly
[46, 47]. In this subsection, we discuss few technical as-
pects of the codes implemented in Mathematica.

Firstly, Mathematica is not always very efficient in
handling decimals, especially when decimals are further
processed as arguments of internal functions, such as tri-
gonometric or exponential functions. Therefore, in view
of optimizing the computational time, one should avoid
coding in decimals. As an example, one may use the fol-
lowing Macro to transform decimal output of a function
“TU” into a fraction:

YOULI[TU_] :=Rationalize[Chop[Expand
[N[TU, precs]], 107P], 107P"],  (33)

where “precs” is the desired precision of the function
“TU”. If one assigns precs=100, the function output will
be given in terms of a fraction truncated to a hundred sig-
nificant digits.

In Mathematica, there are usually two methods of
finding the roots of Eq.(13), which is essentially an algeb-
raic equation. They are FindRoot and NSolve. The former
is used to search for a root of a function starting from an
initial point provided by the user, while the latter at-
tempts to enumerate all existing roots of the function. For
the first case, one has to find an appropriate initial guess
for the quasinormal frequency, which can be achieved by
the following approaches. (1) One can make use of the
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result of another less accurate method, such as Pdshl-
Theller potential approximation, as input for the Find-
Root command. (2) When the black hole metric in ques-
tion restores to a more straightforward case, for which the
quasinormal frequency is already known, by continu-
ously varying its parameters, one may obtain the desired
result by gradually changing the parameters of the metric
to the relevant values. We note that the above approaches
may not work as intended for the case where the quas-
inormal frequency possesses a bifurcation in the paramet-
er space. However, this problem exists in general for a
variety of methods where the eigenvalue problem is ex-
pressed in terms of nonlinear equations. (3) One may also
make use of the NSolve package to calculate the quas-
inormal frequencies. In principle, one may find quasinor-
mal frequencies related to different quantum numbers by
a single root-finding process. However, the challenge is
how to pick out real physical roots in the numerical res-
ults. One should proceed with care, and compare the nu-
merical values with those obtained from known cases of
black hole metrics. Moreover, the following rule of
thumb may provide some general guidance. For ‘some
cases, in particular those where the resultant algebraic
equation, Eq.(13), is merely an N-th order polynomial,
one can exhaust all roots via the NSolve command.
Among these roots, some are not physical, and they ap-
pear because of a certain symmetry of the equations asso-
ciated with a particular choice of interpolation points.
These unphysical roots can be detected by varying the
number of interpolation points, 'since the roots corres-
ponding to the physical quasinormal frequency will al-
ways be present and approach a limit.as’N — co. Nonethe-
less, to properly remove all unphysical roots is not a
simple task. The situation becomes even more complic-
ated when Eq.(13) is highly nonlinear. In this regard, the
above mentioned Macro can be employed to alleviate the
situation.

Apart from the above two methods, the matrix meth-
od can also be adapted to an iterative scheme. This third
method is meaningful especially for situations where
neither FindRoot nor NSolve is found to be efficient. In
general, the iterative relation can be written as follows.

Wi+l = y(wk, |M(O))|) ’ (34)

where the quasinormal frequency of the (k+1)-th intera-
tion, w1, 1S determined by the k-th result. The operator
Y is a functional of the determinant satisfying
w =Y (w,IM]) , where w is the root of Eq.(13). By choos-
ing an appropriate form of Y, one obtains the result for
quasinormal frequency by repeatedly using Eq.(25). The
primary challenge of this approach is to find a proper iter-
ation relation for Y(x,y) which efficiently leads to a con-
vergent result.

In our code implementation in Refs.[46, 47], we have
evenly divided the domain [0,1] of z. In practice, it might

be more favorable to utilize a nonuniform distribution
which introduces more interpolation points in the region
where the effective potential changes more radically. As a
matter of fact, this is an issue that one encounters in oth-
er numerical schemes, such as the differential quadrature
method and the Runge-Kutta method.

3.5 Additional considerations

There are a few more issues or topics which have not
been explored in the existing studies but are worth men-
tioning.

Apart for the asymptotically AdS spacetime, our ana-
lysis has been mostly carried out in the radial coordinate
r. However, sometimes it can be more convenient to ex-
press the formalism in the ingoing Eddington — Finkel-
stein coordinates. In this case, the corresponding bound-
ary condition has also to be modified

el @+ 5 00 or F > 1e
O~ : (35)
q)o r—rp

where & = yw? - V., for r - oo in the asymptotically flat
spacetime, and @ = w for r — r, in the asymptotically dS
spacetime. We note that, in a similar fashion, the master
equation can also be derived in the outgoing Eddington-
Finkelstein coordinates.

In practice, instead of carrying out the transformation
Eq.(5) and rewriting the boundary condition as Eq.(7), the
original boundary condition Eq.(4) might be directly em-
ployed in the calculations. As mentioned before, the
primary motivation of introducing Eq.(5) is when C, and
C; are very distinct in their magnitudes. It is understood
that such a procedure is useful for the radial coordinate r,
as discussed in the present work.

In reality, the black hole is not a static object. The
topic of quasinormal modes for dynamic black holes is
not only intriguing but also significant in practice. For a
dynamical black hole, the event horizon, apparent hori-
zon and infinite redshift surface are distinct concepts,
and, therefore, the boundary conditions for quasinormal
modes should be tackled with special care.

In certain modified gravity theories, the Lorentz in-
variance is broken. Owing to the tachyon, the concepts of
the event horizon and apparent horizon have to be modi-
fied in these theories. Recent studies have proven the ex-
istence of the universal horizon [51, 52], which is defined
as the boundary that even superluminal particles cannot
escape to future infinity. As a part of the effort to find
evidence of Lorentz invariance breaking, it is, therefore,
interesting to investigate the quasinormal modes for the
universal horizon in the framework of the matrix method.

The notion of quasinormal modes is not restricted to
black holes. Quasinormal modes of compact stars have
since long aroused considerable attention. The primary
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difference between the two phenomena, from the math-
ematical point of view, is the existence of the outgoing
wave at the boundary of the star surface. This implies a
more subtle condition for properly connecting the inside
and outside wave functions at the boundary. Nonetheless,
the matrix method can also be adapted to handle such
problems appropriately.

Last but not least, we note that a quasinormal mode
by itself is an eigenvalue of a secular equation. The mat-
rix method is merely a discretized version of the eigen-
value problem in question. One of the alternatives to the
eigenvalue problem is the shooting method, which solves
the boundary value problem by reducing it to the initial
value problem. In this context, one might also implement
a specific version of the shooting method for the column
vector, which is nothing else but a discretized eigenfunc-
tion.

4 Concluding remarks

In this paper, a comprehensive survey of the applica-
tions of the matrix method for black hole quasinormal
modes was presented. It was shown that the proposed al-
gorithm is independent of any particular analytical form
of the tortoise coordinate. In fact, the method can even be
employed to a numerical black hole metric. Moreover, it
is argued that the present approach can readily be applied
to the case where the master equation involves a system
of coupled equations. Our discussion covered various
types of black hole metrics, master equations, and the
corresponding boundary conditions. The proposed meth-
od is reasonably accurate, efficient, as well as flexible for
distinct physical scenarios. We look forward to carrying
out further studies of several open questions addressed in
this survey.
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