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Abstract: Weakly bound states often occur in nuclear physics. To precisely understand their properties, the coupling
to the continuum should be worked out explicitly. As the first step, we use a simple nuclear model in the continuum
and on a lattice to investigate the influence of a third particle on a loosely bound state of a particle and a heavy core.
Our approach is consistent with the Lüscher formalism.
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1    Introduction

A = 7

Along the nuclear chart, there are a number of weakly
bound  states,  as  in  the  case  of  halo  nuclei  or  isotopes
close  to  the  drip  lines.  These  states  are  characterized  by
binding energies in the keV range rather than in the range
of  a  few MeV, typical  for  nuclear  binding.  Such loosely
(or  weakly)  bound states  are  thus  located  close  to  decay
thresholds  and  the  corresponding  continuum  of  states.
Under these circumstances, the coupling of such a bound
state to the continuum can no longer be neglected; for re-
views  see,  e.g.,  [1-3].  For  conventional  nuclear  models,
such  as  the  shell  model  or  the  no-core-shell  model,  the
coupling to the continuum based on, e.g., Berggren's rep-
resentation  [4, 5], which  treats  bound,  resonant  con-
tinuum  states  on  the  same  footing,  is  well  established,
see, e.g., [6-8]. In addition, ab initio calculations for sys-
tems such as 4He+n+n and  isotopes, which include
continuum effects, have been performed [9-11].

L3×Lt
L (Lt)

Nuclear  lattice  effective  field  theory  (NLEFT)  is  a
novel  method  for  performing ab  initio calculations  in
nuclear structure and reaction physics [12, 13]. The basic
idea is to discretize space-time on a finite volume ,
where  is  the  spatial  (temporal)  size.  Nucleons  are
placed on the lattice sites, and their interactions are given

α−α

in terms  of  properly  modified  chiral  potentials,  consist-
ing  of  pion  exchanges  and  short-distance  operators.
Strong isospin-breaking effects and the long-ranged Cou-
lomb potential  are also included,  leading to a  number of
intriguing results,  such as the ab initio calculation of the
Hoyle  state  in 12C  [14] or  the  first  microscopic  calcula-
tion of low-energy  scattering [15]. What is missing
in  this  framework  is  the  coupling  to  the  continuum.
Clearly, on the lattice, we have only real-valued energies,
so  a  direct  application  of  the  Berggren  approach  is  not
possible.  However,  as  shown  by  Lüscher  in  his  seminal
work,  the  complex-valued  scattering  phase  shift  can  be
mapped onto  the  volume-dependence  of  the  lattice  en-
ergy levels [16, 17]. We seek a similar  formalism to ex-
plicitly describe the continuum coupling.

A N
AN→ AN

AN

ANN

AN

In this work, we use a simple model of a heavy core
 coupled to one or two nucleons , as described in Sect.

II.  In Sect.  III,  we consider  scattering and ad-
just  the  interaction  such  that  a  very  weakly  bound
state emerges. Using the Hamiltonian formalism of Refs.
[18-24], we calculate the energy levels of this system in a
finite volume. The full  system is considered in Sect.
IV,  where  we  adjust  the  parameters  so  that  there  is  no
three-particle  bound  state,  thereby  allowing  us  to  study
the  influence  of  the  unbound  third  particle  on  the 
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scattering matrix. We conclude with a summary and out-
look in  Sect.  V.  The  Appendix  contains  a  short  discus-
sion of the normalization of the scattering equation used.

2    The model

ANN
A
N m A

AN→ AN

Consider  a  three-particle  model  (  system),  with
the  particle having a mass that is about 10 times that of
the  particle,  which  has  mass .  The  particle  thus
mimics  the  nuclear  core.  To  be  specific,  let  us  calculate

 scattering.  For  simplicity,  we  use  a  separable
potential of the form

VAN
H (p, p′) =

1√
2ωA(p)2ωN(p)

g f (p,Λ) f (p′,Λ)

× 1√
2ωA(p)2ωN(p)

, (1)

with the regulator function

f (p,Λ) =
Λ2

p2+Λ2 , (2)

ωi(q) =
√

m2
i +q2 g

mA = 10 m = Λ = 1
AN

B
g

where ,  and  is  the  coupling  constant.
The normalization is explained in the Appendix. In what
follows,  we  set  GeV,  and  GeV.  We
are  interested  in  the  case  in  which  the  system has  a
very  weakly  bound  state  with  binding  energy  in  the
keV range, so the coupling  is tuned accordingly.

We  can  then  construct  the  Hamiltonian  in  the  finite
volume  and  find  its  eigenvalues  [19].  The  Hamiltonian
matrix is defined as follows:

H =H0+HI ,

(H0)i j =δi j (ωA(ki)+ωN(ki)) , (3)

(HI)i j =

√
C3(i)C3( j)

4π

(
2π
L

)3

VH(E,ki,k j), (4)

ki =
√

i2π/L C3(i)
i

(
√

C3(i)C3( j) )/(4π)(2π/L)3

L

where  and  represents  the  number  of
ways  to  sum  the  square  of  the  three  integers  to  equal .
Further,  the  factor  is  due  to
the quantization in a finite box of size  , as explained in
Refs. [18, 19].

ANNFor  the  full  system with  a  fixed  total  mo-
mentum,  we  have  two  free  momenta.  This  leads  to  a

BN
ANN

BN→ BN

Hamiltonian  matrix  with  a  huge  dimension  in  the  finite
volume. For simplification, we thus consider the  sys-
tem instead of the  system; this means that we use a
version of the dimer approximation, see, e.g., [25], remin-
iscent of  the  so-called  Faddeev  fixed  center  approxima-
tion,  see,  e.g.,  Refs.  [26, 27]. We thus consider the scat-
tering process .

B N AN

B→ AN B
AN
AN→ AN

B

The left  diagram in Fig.  1 shows the attractive inter-
action between  and  since the  system has a weak
attractive interaction. To prepare this diagram, we need to
obtain the coupling of the  process. Since  is a
loosely  bound  state  of ,  one  can  obtain  the  coupling
from  the  amplitude  of  around the  pole  posi-
tion of  as follows:

T AN
H

(
E ∼ mB,q =q0(E),q′ = q0(E)

)
=

1
2mA

1
2mN

4π
g̃2

2mB(E−mB)
, (5)

q0(E) E
T AN

H
VAN

H 1/(2mA) ·1/(2mN)
VH VL

4π

g̃
BN→ BN A

where  is  the  on-shell  momentum  with  energy ,
and  is  obtained  from  Eq.  (22)  with  the  potential

. The factor  originates from the dif-
ference between  and  (see the Appendix). The mo-
mentum  is  on-shell,  so  it  is  close  to  the  mass  of  the
particle, and the factor  is from the angular integration
since we only consider the s-wave. Further, the coupling

 has  dimension  energy.  Given  this,  the  potential  of
 from -exchange takes the form

VBN1
H (p, p′) =

2π√
2ωB(p)2ωN(p)

×
∫

dcosθ
g̃2

(E2
A)− ( p⃗− p⃗ ′)2−m2

A

× 1√
2ωB(p′)2ωN(p′)

, (6)

E2
A =

1
2

(
(ωB(p)−ωN(p′))2+

(
ωN(p)−ωB(p′)

)2
)
. (7)

B→ AN
NA→ B

p⃗ p⃗ ′

Since our potential should be independent of the total
energy, we take the average of the two processes 
and . Next, we need to extract the s-wave contri-
bution from this  diagram,  so  we perform the angular  in-
tegration between  and . Finally, the equation for the
potential takes the form

VBN1
H (p, p′) =

g̃2√
2ωB(p)2ωN(p)2ωB(p′)2ωN(p′)

π

pp′
ln

m2
B+m2

N −m2
A− (ωB(p)ωN(p′)+ωN(p)ωB(p′))+2pp′

m2
B+m2

N −m2
A− (ωB(p)ωN(p′)+ωN(p)ωB(p′))−2pp′

 . (8)

A
Note that this potential should be negative because in

Eq.  (6),  the  propagator  of  the  exchanged  particle  is
negative.

Now we consider the contribution from the right dia-
NN→ NN NN→ NN

gram in Fig. 1. This includes a triangle loop, and the main
interaction  is  the  interaction.  The 
interaction can be written as
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VNN
H (p, p′) =

1√
2ωN(p)2ωN(p)

gNN f (p,Λ) f (p′,Λ)

× 1√
2ωA(p)2ωN(p)

, (9)

AN
BN

gNN

where the regulator function is chosen to be the same as
that for the  interaction. In this model, we want to de-
scribe the situation in which the  system cannot form a
bound state. The coupling  is the only parameter that

allows this to be achieved.
Next, we  determine  the  potential  based  on  the  dia-

gram on the right side of Fig. 1:

VBN2
H (p, p′) =

2π√
2ωB(p)2ωN(p)

∫
dcosθVBN2

L ( p⃗, p⃗′)

× 1√
2ωB(p′)2ωN(p′)

, (10)

where

VBN2
L ( p⃗, p⃗′) =

∫
d4q g̃2 1

q2
0− q⃗2−m2

A

1
(ωB(p)−q0)2− ( p⃗− q⃗)2−m2

N)
1

(ωB(p′)−q0)2− ( p⃗′− q⃗)2−m2
N

T L
NN

=

∫
d3q⃗ g̃2 1

2ωA(q)
1

(ωB(p)−ωA(q))2−(p⃗− q⃗)2−m2
N

1
(ωB(p′)−ωA(q))2− ( p⃗′− q⃗)2−m2

N)
T NN

L , (11)

T NN
L NN→ NN
T NN

L

T NN
L ∼ VNN

L
NN

VL

VNN
L

where  is the amplitude of . In the calcula-
tion  of ,  we  make  some  further  assumptions.  First,
we assume , which should be acceptable since
we are not  interested in the detailed structure of  the 
scattering amplitude.  Moreover,  we  require  this  interac-
tion  in  a  boosted  frame.  Although the  form of  is  not
Lorentz invariant,  we  can  rewrite  the  potential  in  a  spe-
cial  form and  define  all  the  inputs  to  the  center-of-mass
(CM) system. This means that we write  as

T NN
L ∼ VNN

L = gNN f (k∗,Λ) f (k′∗,Λ), (12)

k∗2 = E2
NN/4−m2

N , (13)

E2
NN =

(√
(q⃗− p⃗)2+m2

N +

√
p⃗2+m2

N

)2
−q2, (14)

k
′∗2 = E

′2
NN/4−m2

N , (15)

E
′2
NN =

(√
(q⃗− p⃗ ′ )2+m2

N +

√
p⃗ ′2+m2

N

)2
−q2. (16)

VBN2
HWe  then  obtain  as  defined  in  Eqs.   (10-16)  as

follows:

VBN2
H (p, p′) =

4π2√
2ωB(p)2ωN(p)2ωB(p′)2ωN(p′)

×
∫

q2dq
g̃2gNN

2ωA(q)
H(p,q)H(p′,q), (17)

where

H(p,q) =
∫

dcosθ
1

m2
B+m2

A−m2
N −2ωB(p)ωA(q)+2pqcosθ

4Λ2(√
q2+ p2−2pqcosθ+m2

N +

√
p2+m2

N

)2
−q2−4m2

N +4Λ2

, (18)

which can easily be evaluated numerically.

2→ 23    Results for  scattering

g

g

First,  we  need  to  fix  the  coupling  constant .  In  the
left  panel  of Fig.  2,  we  show  the  binding  energy  of  the
two-particle system as a function of  the coupling .  The
latter is chosen in a suitable range such that the binding is

g = −30.65
g = −31.0

|EB| = 11.15

weak, and indeed, at ,  there is no more bound
state.  In  what  follows,  we  choose ,  for  which
one finds a loosely bound state at  keV. In the
right  panel  of Fig.  2,  the  corresponding  scattering  phase
shift in the close-to-threshold region is shown; it exhibits
the  typical  features  of  a  weakly  bound state  close  to  the
threshold.

The corresponding energy levels in the finite volume
are shown in Fig. 3. The bound state level is clearly vis-

BN→ BNFig. 1.    Effective diagrams for the  process.
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L
ible: its bending downwards for smaller lattice sizes is an
expected  finite  volume  effect.  For  sufficiently  large ,
these finite volume effects are visibly absent.

L = 10

It  is  also  instructive  to  compare  our  formalism  with
the Lüscher equation [16, 17]. For that,  we select 17 en-
ergy levels at  fm, and then, we use the following
Lüscher  equation  to  calculate  the  phase  shifts  from  the
corresponding energy levels:

δ(qE) = tan−1

 qE L
√
π

2Z(1; (
qE L
2π

)2)

+nπ, (19)

qE

E
where  is the on-shell momentum corresponding to the
energy :

qE =
E
2

√(
1−

(mN +mA

E

)2
)(

1−
(mN −mA

E

)2
)
, (20)

Z(1;q2)and  is the well known Zeta-function. After regu-
larization, it can be calculated as follows:

Z(1;q2) =
∑
n⃗∈Z3

1
n⃗2−q2

=− 1
q2 −8.91363292+16.53231596q2

+
∑
n⃗∈Z3

q4

n⃗4 (n⃗2−q2) . (21)

We  find  that  the  phase  shifts  calculated  in  this  way
are  all  on  the  phase  shift  curve  calculated  directly  from
the  scattering  function,  see Fig.  2.  This  shows  that  our
calculation is consistent with the Lüscher equation.

4    Results for the full system

BN→ BN
A

A
B AN

BN→ BN

gNN

gNN

Before showing the  results,  a  few remarks  are  in  or-
der.  We note that the atractive potential  of  by

-exchange has a sizeable magnitude at the threshold be-
cause  the  propagator  of  the -particle  is  very  close  to
zero since  is a loosely bound state of . Similarly, the
repulsive  potential  of  generated by  the  tri-
angle-loop  also  has  a  large  value  close  to  the  threshold,
since  at  that  time,  both  nucleons  can  be  close  to  their
mass shell.  We therefore consider various choices to ad-
just  the  coupling ,  cf.  Eq.  (9).  One  is  for  these  two
contributions  to  cancel  exactly  at  the  threshold  (case  1),
and another is for the total potential to be repulsive (case
2). In Fig. 4, we show the potential for various choices of
the coupling .

gNN = 48.34
BN→ BN

BN

Case  1: With ,  there  is  a  repulsive
 interaction, but at the threshold, the potential is

zero. Above the threshold, the potential increases rapidly
and then drops with almost the same slope as that of the
potential from  the  loop.  From  this  potential,  the  corres-
ponding finite volume spectrum can then be computed, as
shown in the left panel of Fig. 5. It is surprising that there
is still an energy level below the threshold of the  sys-
tem since there is pure repulsive potential. This is due to

AN g AN→ AN

g = −31.0
Fig. 2.    (left panel) Binding energy of the  system as a function of the coupling constant . (right panel) Phase shift for 

scattering for . The black points are calculated from the corresponding energy levels depicted in Fig. 3 using the Lüscher
equation.

 

 

AN

L3

L = 10

Fig. 3.    Energy levels for the weakly bound  system in a
finite  volume .  The  meaning  of  the  black  squares  at

 fm is explained in text; see also Fig. 2.
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B N

BN→ BN

AN
◦

the  strange  structure  of  the  potential  at  the  threshold:  at
the threshold, the potential is exactly zero, and therefore,
the first  term of the full  Hamiltonian matrix in the finite
volume is  simply the sum of  the  masses  of  and .  In
contrast,  in the finite volume, the momentum is discrete.
Therefore, the off-diagonal term in the Hamiltonian mat-
rix  provides  an  attractive  potential  whether  the  original
potential  is  attractive  or  repulsive.  Combing  these  two
factors,  the  first  energy level  is  lower  than the  threshold
in  the  finite  volume,  especially  for  a  small  lattice  size.
The corresponding phase shift for  is shown in
the right panel of Fig. 5. It is almost the same as that for

 scattering, but we note that in the region very close to
the threshold, the phase increases to about 10 , as shown
in the inset of the right panel in Fig. 5. The steep fall-off
of the phase can be traced back to the fast decrease in the
potential,  as  shown  by  the  green  dotted  curve  in Fig.  4.
We  also  compare  our  method  to  the  Lüscher  equation.
The  black  points  in  the  phase  shift  figure  are  calculated

L = 10from the energy levels at  fm, which are shown as
black points in the left panel of Fig. 5. With small fluctu-
ations,  all  of  the points  are consistent  with the curves of
the  phase  shift,  which  are  calculated  directly  from  the
scattering  function.  These  fluctuations  are  discussed  in
the next case.

gNN = 96.68

1◦

exp(−Lm)
m

A+N→ A+N

Case 2: With , there  is  a  repulsive  inter-
action, and even at the threshold, it has a large value, al-
though it still increases slightly with energy; see the blue
dash-dotted line in Fig. 4. There is no bound state below
the threshold in the finite volume spectrum, as shown in
the left panel of Fig. 6. In this case, the phase shift exhib-
its similar behaviour to that in case 1 in the threshold re-
gion,  but  the  magnitude  is  much  smaller:  the  largest
phase  shift  here  is  around . This  corresponds  to  a  po-
tential barrier, so that the phase barely increases and very
quickly starts to fall as fast as in case 1, as shown by the
blue dash-dotted curve in Fig. 4. Analogous to case 1, we
also check for consistency with the Lüscher equation.  In
the left  panel in Fig. 6,  the first  four points are far away
from the curve of the phase shift, which means that there
is  some  inconsistency  at  low  energy  levels.  In  fact,  our
method differs  systematically  from the Lüscher  equation
in  the  difference  between the  summation and interaction
of  a  regular  function,  as  shown  in  the  appendix  of  Ref.
[19].  This  difference  is  large  when  the  regular  function
has a sharp structure, and it  is proportional to ,
where  is the scale corresponding to the variation in the
potential close to the threshold. In our case, the potential
contributes significantly  to  the  regular  function  and  var-
ies quickly  around  the  threshold.  Therefore,  the  differ-
ence between summation and integration is very large in
this case. However, in the  case, the poten-
tial  is  much  flatter,  leading  to  perfect  consistency
between our method and the Lüscher equation, as shown
in the left panel of Fig. 2. In other words, the fine struc-
ture  at  the  threshold  is  absent  in  the  finite  volume when

 

AN

BN

gNN

BN A

Fig. 4.    (color online) Potentials in the  (black solid line)
and the  systems. In the latter case,  two choices for the
coupling  are considered, as discussed in the text (blue
dash-dotted  and  green  dotted  lines).  The  red  dashed  line
shows the attractive  potential from -exchange.

BN L3 gNN = 48.34 BN→ BN

L = 10
L = 10

Fig. 5.    (left) Energy levels for the  system in a finite volume  for . (right) Phase shift for . The inset shows
the phase shift very close to the threshold. The black points in the left panel are the data at  fm. The black points in the right
panel are calculated from the corresponding data in the left panel with  fm by using the Lüscher equation, as shown in Eq. (19).
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L = 17

an insufficiently  large  volume  is  used.  This  can  be  re-
solved by increasing the lattice  size,  as  shown in Fig.  6.
The red circles corrsepsond to a larger volume of 
fm and are consistent with the phase curve. Therefore, in
principle, our method is consistent with the Lücher equa-
tion.

Based on  these  observations,  we  speculate  that  re-
fined calculations will make it possible to find a compact
formula  for  the  influence  of  the  continuum on  a  weakly
bound state on the lattice.

5    Summary and outlook

In  this  letter,  we  have  made  the  first  step  towards
evaluating  the  influence  of  the  continuum  on  weakly

B

ANN

B+N→ A+N +N

bound states. We have shown that there is a visible inter-
play  between  the  weakly  bound  state  in  the  two-
particle  system  and  the  third  particle,  which  leaves  its
traces in the lattice energy spectrum. To draw more defin-
ite conclusions, the model will require substantial refine-
ment.  As  the  first  step,  the  full  three-body  system
should  be  investigated.  Since  the  threholds  of  BN  and
ANN are  very  close,  we  expect  that  the  inelastic  effects
due to the breakup reaction  will affect
the  spectrum.  Then,  the  interaction potentials  need to  be
refined  so  that  they  more  closely  resemble  the  nuclear
case. Higher partial waves also need to be included. Work
along these lines is underway.
 

We thank Dean Lee for a useful communication.

Appendix A: Normalization of the scattering equation

AN→ AN

Here, we briefly discuss the normalization of our scattering T-mat-
rix. This normalization is similar to the formalism used in Ref. [28].
Consider  the s-wave  of  the  process ,  with  the  scattering
function given by

TH(E, |⃗k|, |⃗k′ |) =VH(|⃗k|, |⃗k′ |)+
∫

q2dqVH(|⃗k|,q)

× 1
E−ωA(q)−ωN (q)+ iϵ

TH(E,q, |⃗k′ |) , (A1)

ωi(q) =
√

m2
i +q2

k,k′
where . Correspondingly,  the  Bethe-Salpter  func-
tion, where  are four-momenta, takes the form

TL(P,k,k′) =VL(P,k,k′)+
∫

d4qVL(P,k,q)
1

q2 −m2
A + iϵ

× 1
(P−q)2 −m2

N + iϵ
TL(P,q,k′). (A2)

Actually, Eq. (A1) can be recognized as the three-dimensional
reduction of Eq. (A2) by using

∫
d4q

1
q2 −m2

A + iϵ
1

(P−q)2 −m2
N + iϵ

∼
∫

q2dq
1

E−ωA(q)−ωN (q)+ iϵ
1

2ωA(q)2ωN (q)
. (A3)

VH VLTherefore, we obtain the relationship between  and :

VH(E, |⃗k|, |⃗k′ |) = 2π
√

2ωA(k)2ωN (k)

∫
dcosθVL(P,k,k′)× 1

√
2ωA(k′)2ωN (k′)

. (A4)

(2π)n VL

Note  that  we  have  been  cavalier  with  some  factors  such  as
since  these  are  absorbed  into  the  coupling  in . This  equa-

tion is also the simple form of Eqs. (23,24) in Ref. [28].

BN L3 gNN = 96.68 BN→ BNFig. 6.    (color online) (left) Energy levels for the  system in a finite volume  for . (right) Phase shift for .
The inset shows the phase shift very close to the threshold. The black points and red circles in the left panel are the data at L = 10 fm
and 17 fm, respectively. The black points and red circles in the right panel are calculated from the corresponding data in the left pan-
el with L = 10 fm and 17 fm, respectively, using the Lüscher equation, as shown in Eq. (19).
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