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Abstract: We revisit the hyperon weak radiative decays in the framework of the non-relativistic constitu-
ent quark model. This study confirms the nonlocal feature of the hyperon weak radiative transition oper-
ators which are dominated by the pole terms, and an overall self-consistent description of the available
experimental data for the Cabibbo-favored hyperon weak radiative decays is achieved. It provides a nat-
ural  mechanism for  evading  the  Hara  theorem,  where  sizeable  parity-violating  contributions  can  come
from  the  intermediate  orbital  excitations.  Cancellations  between  pole  terms  also  explain  significant
SU(3) flavor symmetry breaking manifested by the experimental data. We also discuss several interest-
ing selection  rules  arising  from either  the  electromagnetic  or  the  weak  interaction  vertices.  These  fea-
tures suggest nontrivial relations among different hyperon decays.

DOI:

Ⅰ.  INTRODUCTION

J/ψ

J/ψ

Although the  ground-state  hyperons  were  discovered
more  than  60  years  ago  and  have  played  a  key  role  for
our  understanding of  the  weak interaction,  there  are  still
open questions concerning their weak decay mechanisms.
In particular, the hyperon weak radiative decays provide a
unique probe  for  studying  the  weak,  strong  and  electro-
magnetic (EM) interaction [1]. This process generally has
a very small branching ratio and is hard to measure. Re-
cently,  BESIII  has  collected  more  than  1  billion 
events which can provide a golden opportunity to invest-
igate the properties of the hyperons produced in  de-
cays. In  particular,  it  is  timely  to  revisit  the  detailed  dy-
namics of the hyperon weak radiative decays.

Σ+→ pγ Ξ−→ Σ−γ

One  of  the  long-standing  questions  associated  with
the hyperon weak radiative decays is the so-called “Hara
theorem” [2]. It was shown in Ref. [2] that the parity-vi-
olating amplitudes for  and  were zero
in the limit  of  unitary symmetry within the pole approx-
imation  [3].  However,  the  experimental  measurements
did not  support  this  prediction  and  the  asymmetry  para-

Σ+→ pγmeter was found large for , with a negative sign
[4].

Σ+→ pγ

1/2−

There is  an  abundant  literature  on  the  theoretical  ef-
forts in understanding the physics behind the Hara theor-
em and on the experimental  observations.  A unified the-
ory  was  proposed  by  Zenczykowski et  al. [5-12]  who
combined  the  SU(6)  symmetry  with  the  vector  meson
dominance  for  the  study  of  the  hyperon  weak  radiative
decays. It was shown in Refs. [11, 12] that large negative
values for the asymmetry parameter in  were due
to  the  SU(3)  flavor  symmetry  breaking  effects.  In  Ref.
[13] Close and Rubinstein proposed a “modern pole mod-
el” and illustrated the importance of long-distance contri-
butions arising from intermediate pole terms. By estimat-
ing  the  relative  SU(6)  spin-flavor  coupling  coefficients
they showed the intermediate  states could have size-
able contributions to the parity-violating amplitude. Vari-
ous calculations based on the pole dominance scenario in
the  quark  model  can  be  found  in  the  literature  [14-20].
The SU(3)  flavor  symmetry  and  pole  model  are  com-
bined  to  investigate  the  weak  electromagnetic  decays  of
hyperons  in  Ref.  [21]. Besides  the  quark  model  ap-
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1/2−

Σ+→ pγ

f

Σ+→ pγ

proaches, chiral perturbation theory (ChPT) has also been
applied to the hyperon decays and the intermediate 
states were found to play an essential role in the hyperon
radiative decays [22-25]. In Ref. [26] the radiative decay
of  was calculated by an extended QCD sum rule
approach. Unitarity  and  MIT  bag  model  are  also  em-
ployed for the study of hyperon radiative weak decays in
the  literature  [27, 28].  It  is  worthy  mentioning  that  in
Refs. [18, 29] the Hara theorem was shown to result from
the  old-fashioned  SU(3)  model  which  cannot  avoid  the
flavor-changing  neutral  current.  In  the  framework of  the
Glashow-Iliopoulos-Maiani  mechanism,  the  “penguin ”
transition  process  can  evade  the  flavor-changing  neutral
current  and  lead  to  nonvanishing  asymmetry  parameter
for  [30].  However,  such  a  mechanism  seemed
not  to  be  sufficient  to  explain  the  large  value  for  the
asymmetry parameter.

Λc

The  recognition  of  the  importance  of  the  pole  term
contributions in the hyperon radiative decays [13] seems
to be crucial for a coherent interpretation of the puzzling
experimental  data.  Similar  phenomena  have  also  been
found in their hadronic weak decays [31, 32]. A recent in-
vestigation of the Cabbibo-favored  hadronic weak de-
cays also showed that the pole terms play a dominant role
in  the  transition  amplitudes  [33].  There  are  interesting
consequences  arising  from  the  pole  models.  Firstly,  it
suggests  that  the  hadronic  or  radiative  weak  decays  are
driven by nonlocal interactions where the strong or radi-

1/2−

ative  interaction  and  the  weak  interaction  are  connected
by  the  intermediate  propagators.  Secondly,  these  pole
terms can  have  interferences  which  leads  to  large  SU(3)
flavor symmetry breaking effects. This is understandable
since  a  relatively  small  SU(3)  flavor  symmetry  breaking
in each pole term can get amplified if a destructive inter-
ference  is  involved  [31, 32].  Third,  the  inclusion  of  the

 states can  contribute  to  large  parity-violating  ef-
fects and thus evade the Hara theorem [13, 15, 25]. These
general points will be addressed in this analysis based on
the systematic study of the hyperon radiative decays.

In this work we will revisit the hyperon weak radiat-
ive decays in the frame work of the non-relativistic con-
stituent  quark  model  (NRCQM)  and  provide  a  coherent
description of  the  Cabbibo-allowed  weak  radiative  de-
cays. To proceed, the details of the framework are presen-
ted  in  Sec.  II.  Results  and  discussions  are  given  in  Sec.
III, and a brief summary is given in Sec. IV. Conventions
and analytical amplitudes are provided in Appendix.

Ⅱ.  FRAMEWORK

su→ ud

An  obvious  feature  of  radiative  decays  is  that  the
charge  is  conserved.  This  suggests  that  the  Cabbibo-al-
lowed  weak  transition  processes  occur  at  leading  order
either via a single-quark transition through a penguin dia-
gram as shown in Fig. 1(a), or via a two-quark transition
process  through  an  internal  conversion  of  as

Fig. 1.    Typical weak radiative transitions are categorized: (a) is the typical single-quark transition diagram. (b)-(f) are the two-quark
transition diagrams among which (c)-(f) are called pole terms. Note that every diagram actually stands for a group of diagrams, consid-
ering that the photon can be emitted by any quark.
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Ξ−→ Σ−γ

shown in Figs. 1(b)-(f). The penguin transition is strongly
suppressed mainly  because  it  involves  loops;  this  ex-
plains  the  small  partial  width  of .  In  contrast,
the internal  conversion  processes  are  tree-level  trans-
itions. These are our focus in this work.

2M̃2/(M2
i −M2

f ) ≃ M̃/(Mi−M f )
M̃ ≃ (Mi+M f )/2

The two-quark transition processes can be further cat-
egorized into two classes depending on whether interme-
diate  baryons  contribute  or  not,  namely,  short-distance
process and long-distance process. Figure 1(b) illustrates
the  short-distance  process  which  stands  for  a  group  of
diagrams  with  the  photon  radiated  from  any  charged
particle. Figures  1(c)-(f) are  identified  as  long-distance
processes  since  there  are  intermediate  resonances  (pole
terms)  contributing  in  the  transition  matrix  element.  For
the hyperon weak decays the long-distance pole terms be-
come leading contributions due to the closeness of the in-
termediate baryons to either the initial or final-state bary-
ons.  A  coarse  estimate  of  the  enhancement  factor  gives

, which arises from the in-
termediate  propagators  with  a  mass
scale set  by the initial  and final-state  hyperons.  We note
in  advance  that  in  most  cases  there  exist  cancellations
among the pole  terms of Figs.  1(c)-(f) [31, 32].  But  still
the dominance of the pole terms is evident. We thus only
consider  the  pole  contributions  in  this  work.  Instead  of
trying to  perfectly  describe the available  data,  we intend
to appraise the overall quality of the NRCQM approach.

A.    Non-relativistic form of the effective Hamiltonian

Concentrating  on  the  transition  amplitudes  from  the
pole terms,  the internal  conversion via  the weak interac-
tion and photon radiation  via  the  EM transition  are  con-
nected by the intermediate baryons. The weak interaction
operator can be described by [13, 31, 34]

HW =
GF√

2

∫
dx

1
2
{J−,µ(x), J+µ (x)}, (1)

where

J+,µ(x) =
(

ū c̄
)
·γµ(1−γ5) ·

(
cosθC sinθC
−sinθC cosθC

)
·
(

d
s

)
,

J−,µ(x) =
(

d̄ c̄
)
·
(

cosθC −sinθC
sinθC cosθC

)
·γµ(1−γ5) ·

(
u
c

)
.

(2)

HW  can be separated into two parts with either parity-
conserving (PC) or parity-violating (PV) behavior, i.e.,

HW ≡ HPC
W +HPV

W , (3)

where

HPC
W ≡

GF√
2

∫
dx

[
j(−)
µ (x) j(+)µ(x)+ j(−)

5µ (x) j(+)µ
5 (x)

]
, (4)

HPV
W ≡

GF√
2

∫
dx

[
j(−)
µ (x) j(+)µ

5 (x)+ j(−)
5µ (x) j(+)µ(x)

]
. (5)

HPC,PV
WIn the non-relativistic limit,  can be reduced to

[34]

HPC
W =

GF√
2

VudVus

∑
i, j

1
(2π)3 τ

(−)
i ν(+)

j

×
(
1−σi ·σ j

)
δ(p′i + p′j− pi− pj), (6)

and

HPV
W =

GF√
2

VudVus

∑
i, j

1
(2π)3 δ(p′i + p′j− pi− pj)τ

(−)
i ν(+)

j

× 1
2mq

{
−(σi−σ j) · [(p′i − p′j)+ (pi− pj)]

+i(σi×σ j) · [(pi− pj)− (p′i − p′j)]
}
, (7)

τ(−) ν(+)

τ(−)u = d ν(+)s = u
i, j

mq = mu = md = ms Vud Vus

where  and  are flavour changing operators which
operate  as  and , respectively.  The  sub-
script  are the quark labels. m is the constituent quark
mass.  In  this  work  we  take  the  SU(3)  flavor  symmetry
limit  with .  and  are the  Cab-
bibo-Kobayashi-Maskawa matrix elements.

The Hamiltonian for the EM interaction is written as:

HEM = e
∫

dxq̄(x)γµq(x)Aµ(x) , (8)

e q(x) q̄(x)
jth

HEM

where  is the charge of the quark;  and  are the
 quark  fields  before  and  after  emitting  the  photon.  In

the  non-relativistic  limit,  can  be  expanded  in  the
momentum space as:

HEM =
∑

j

e jū(pf
j )γ

µu(pi
j)ϵµδ(pf

j + k− pi
j)

=
1

(2π)
3
2

1

(2k0)
1
2

∑
j

e j

ϵ0−

ϵ · pi
j

2m j
+
ϵ · pf

j

2m j
+i
σ j · (k× ϵ)

2m j




×δ(pf
j + k− pi

j),
(9)

m j e j jth

pi
j pf

j
jth

k (ϵ0,ϵ)

where  and  are the mass and charge of the  quark,
respectively;  and  denote the  three-vector  mo-
mentum  carried  by  the  quark before  and  after  emit-
ting the photon;  is the photon momentum and  its
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HEM

polarization. For real emitted photon, only the transverse
polarizations can contribute.  can be reduced to:

HEM =−
1

(2π)
3
2

1

(2k0)
1
2

∑
j

e j

ϵ · pi
j

m j
+ i
σ j · (k× ϵ)

2m j


×δ3(pf

j + k− pi
j). (10)

jth

The first term contributes to the electric-dipole trans-
ition which  would  raise  or  decrease  orbital  angular  mo-
mentum by one  unit,  and  the  second term contributes  to
the magnetic-dipole  transition  which  could  raise  or  de-
crease the spin of the  quark by one unit [13, 31, 34].

B.    The decay width and asymmetry parameter

k0 = k k = (0, 0, k)

(Ei, Pi) (E f , P f )
Pi = 0 k = −P f

With the  operators  defined  in  the  previous  Subsec-
tion  we  can  calculate  the  pole  terms  in  the  NRCQM
framework. We  take  the  direction  of  the  photon  mo-
mentum as the z-axis, i.e.,  and  are the
energy and three momentum of photon, respectively. The
energy  and  momentum  of  initial  and  final  baryon  are
noted  as  and ,  respectively.  In  the  rest
frame of the initial baryon, we have  and .

⊗

The nonlocal  operators  for  the  weak  and  EM  trans-
itions  will  distinguish  processes  between Figs.  1(c) and
(e) (or between Figs. 1(d) and (f)). With the baryon wave-
functions  constructed  on  the  basis  of  SU(6) O(3) sym-
metry  and  by  separately  calculating  the  weak  internal
conversion  and  EM  transition  couplings, Figs.  1(c) and
(e) together will be evaluated explicitly with the quark la-
bels  tagged  to  the  interacting  quarks,  and  similarly  for
Figs.  1(d) and (f).  Note  that  in  the  literature,  e.g.,  [18],
Fig.  1(c) and (d) (or Figs.  1(e) and (f))  are  sometimes
treated as  two different  transition processes according to
whether  or  not  the EM transition operator  is  involved in
the weak internal conversion process. If the symmetry is
properly accounted for both wavefunctions and operators,
in principle there is no need to distinguish between Figs.
1(c) and (d), or between (e) and (f). For convenience, we
label the amplitudes of Figs. 1(c)-(d) and Fig. 1(e)-(f) by
the subscript A and B, respectively.

Proceeding  to  the  calculation  of  the  full  transition
amplitudes, we separate the parity-conserving and parity-
violating parts as follows:

M =M(ϵ,S z
f ,S

z
i ) =MPC +MPV , (11)

S z
f S z

i

ϵ = ∓(1,±i,0)/
√

2

where  and  are the third component of spin of final
baryon and initial baryon, respectively, and are omitted to
lighten the writting. Also omitted is the photon polariza-
tion . Thanks to the symmetries and her-
miticity of  the  Hamiltonian,  the  amplitudes  correspond-
ing to the two possible polarizations are related, and it is

ϵ = −(1, i,0)/
√

2
MPC

MPV

sufficient  to  do  the  calculation  with  the  polarization
,  abbreviated  as  ”+ “.  The  parity-con-

serving  amplitude  and  parity-violating  amplitude
 are then given by the pole terms via the process A

or B, i.e.,

MPC =MPC,A+MPC,B, (12)

MPV =MPV,A+MPV,B, (13)

where

MPC,A ≡
∑
Bm

⟨
B f (P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣Bm(Pi,S z
i )
⟩

× i
̸ppBm

−mBm

⟨
Bm(Pi,S z

i )
∣∣∣HPC

W

∣∣∣Bi(Pi,S z
i )
⟩
, (14)

MPV,A ≡
∑
B′m

⟨
B f (P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣B′m(Pi,S z
i )
⟩

× i
̸ppB′m −mB′m

⟨
B′m(Pi,S z

i )
∣∣∣HPV

W

∣∣∣Bi(Pi,S z
i )
⟩
, (15)

MPC,B ≡
∑
Bm

⟨
B f (P f ,S z

f )
∣∣∣∣HPC

W

∣∣∣∣Bm(P f ,S z
f )
⟩

× i
̸ppBm

−mBm

⟨
Bm(P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣Bi(Pi,S z
i )
⟩
, (16)

MPV,B ≡
∑
B′m

⟨
B f (P f ,S z

f )
∣∣∣∣HPV

W

∣∣∣∣B′m(P f ,S z
f )
⟩

× i
̸ppB′m −mB′m

⟨
B′m(P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣Bi(Pi,S z
i )
⟩
. (17)

Bm
B′m 1/2+ 1/2−

⟨Bm|HPC/PV
W |B′m⟩

⟨Bm|HEM |B′m⟩

where  a  complete  set  of  intermediate  baryon  states 
( )  with  quantum  numbers  ( ) has  been  in-
cluded in process A and B, respectively. 
and  are the weak and EM transition matrix
elements, respectively. The weak matrix elements are cal-
culated  in  a  similar  way  as  in  Refs.  [32, 33]. In  the  fol-
lowing we provide some details about the calculations of
the EM transition matrix elements.

HEM

Taking advantage that we use baryon wave functions
that  are  fully  symmetric  with  respect  to  the  space,  spin
and flavor degrees of freedom (see Appendix),  can
be replaced as

H+EM =
∑

j

(H+EM) j→ 3(H+EM)1 = −
1

(2π)
3
2

1

(2k0)
1
2

3e1√
2m1

×
[
p+1 +σ

+
1 k

]
δ3(pf

1 + k− pi
1).

(18)

Niu Peng-Yu, Richard Jean-Marc, Wang Qian, et al. Chin. Phys. C 45, (2021)

-4

CPC
 A

cce
pte

d



where

p+ ≡ px + ipy, σ+ ≡
σx + iσy

2
. (19)

Λ→ γnTaking the decay of  of A-type as an example,
the EM transition amplitude can be obtained as

⟨
B f (P f ,S z

f )
∣∣∣∣H+EM

∣∣∣∣Bi(Pi,S z
i )
⟩

=

⟨
1
√

2
(ϕρnχ

ρ
1/2,S z

f
+ϕλnχ

λ
1/2,S z

f
)Φ00;00

00 (pf
1 , p

f
2 , p

f
3 )

∣∣∣∣∣∣H+EM

∣∣∣∣∣∣
× 1
√

2
(ϕρnχ

ρ
1/2,S z

i
+ϕλnχ

λ
1/2,S z

i
)Φ00;00

00 (pi
1, p

i
2, p

i
3)
⟩

=C⟨Φ00;00
00 ({pf

j })|p
+
1 |Φ

00;00
00 ({pi

j})⟩

+D⟨Φ00;00
00 ({pf

j })|k|Φ
00;00
00 ({pi

j})⟩. (20)

Φ(p1, p2, p3) = Ψ(P, pρ, pλ)Here  is  the  wave  function
written in terms of individual momenta and spelled out in
the Appendix as a function of the Jacobi coordinates, and
its  indices denote both the internal  and global  radial  and
orbital excitations. Accordingly, the two last brackets are
the matrix elements of these spatial wave functions in the
momentum  space,  and  the  coefficients C and D are  the
factors extracted in the spin-isospin space. The first term
will raise the orbital angular momentum projection of the
interacting  quark  by  one  unit  and  the  second  one  will
raise its spin projection by one unit. A general definition
of the convolution integral reads

⟨· · ·O(p) · · · ⟩ = In f
ρℓ

f
ρ ;n f

λℓ
f
λ ;L f M f ;ni

ρℓ
i
ρ;n

i
λℓ

i
λ;Li Mi (O(p))

=

∫
d(3) pf d(3) piδ3(pf

1 + k− pi
1)δ3(pf

2 − pi
2)δ3(pf

3 − pi
3)

×Φ∗ n f
ρℓ

f
ρ ;n f

λℓ
f
λ

L f M f (pf
1 , p

f
2 , p

f
3 )O(p)Φ

ni
ρℓ

i
ρ;n

i
λℓ

i
λ

Li Mi (pi
1, p

i
2, p

i
3),

(21)

O(p) p+1where  is  a  function of  quark momenta,  such as 
and k. For the transitions between two ground states, it is
easy to verify that

I(p+1 ) = 0, I(k) = ke−
k2

6α2 . (22)

H+EM

S z
i = −1/2 S z

f = 1/2

This  indicates  that  only  the  term  proportional  to D,
namely, the magnetic-dipole part of  in Eq. (20), can
contribute  to  the  transitions  between  the  two  ground
states. With fixed spin projections in the initial and final
states,  i.e.,  and ,  coefficient D can be
calculated in the spin-flavor space

D =− 3

(2π)
3
2

1

(2k0)
1
2

⟨
1
√

2

(
ϕ
ρ
nχ

ρ
1/2,1/2+ϕ

λ
nχ

λ
1/2,1/2

)∣∣∣∣∣∣ e1σ
+
1√

2m1

∣∣∣∣∣∣
× 1
√

2

(
ϕ
ρ
nχ

ρ
1/2,−1/2+ϕ

λ
nχ

λ
1/2,−1/2

)⟩
=

e

6
√

2π3/2
√

k0mq
.

(23)

Finally, we have

⟨
n
(
P f ,

1
2

)∣∣∣∣∣∣H+EM

∣∣∣∣∣∣n
(
Pi,−

1
2

)⟩
=

ek

6
√

2π3/2
√

k0mq
e−

k2

6α2 . (24)

1/2− 1/2+
Analogously, the radiative transitions between the in-

termediate  baryon and final  baryon can be cal-
culated.  In  such  processes  the  contributions  will  come
from  the  term  proportional  to C in Eq.  (20).  The  wave-
functions and detailed expressions of the transition amp-
litudes are provided in the Appendix.

With the explicit amplitudes for the PC and PV trans-
itions, the partial decay width for the hyperon weak radi-
ative decays can be obtained as follows:

Γ = 8π2 |k|k0E f

Mi

1
2S i+1

∑
S z

f ,S
z
i

2
(
|M+,S

z
f ,S

z
i

PC |2+ |M+,S
z
f ,S

z
i

PV |2
)
,

(25)

MPV (+,S z
f ,S

z
i ) MPV (+,S z

f ,S
z
i )

ϵ+ S i Mi

where  and  are the PC and
PV amplitudes,  respectively,  with  the  photon  polariza-
tion ,  and  and  are the spin and mass of the ini-
tial baryon, respectively.

The  parity  asymmetry  parameter  can  be  extracted  in
the  quark  model.  Generally,  the  amplitude  of  hyperon
weak  radiative  decay  at  hadron  level  has  the  following
form:

M =GF
e
√

4π
ϵµū(p′)(A+Bγ5)σµνqνu(p), (26)

ϵµ u(p)
ū(p′)

where  is  the  polarization  vector  of  the  photon; 
and  are  the  spinors  of  the  initial-state  hyperon and
final-state  nonstrange baryon,  respectively. A and B rep-
resent the PC (P-wave) and PV (S-wave) amplitudes, re-
spectively. The asymmetry parameter is defined as:

αγ ≡
2Re(A∗B)
|A|2+ |B|2 . (27)

αγ

By matching A and B to the quark model amplitudes,
the asymmetry parameter  can be expressed in terms of
the quark  model  amplitudes  for  the  PC  and  PV  trans-
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itions, i.e.,

αγ =
2Re(M∗PCMPV )
|MPC |2+ |MPV |2

. (28)

With  this  asymmetry  parameter,  the  angular  distribution
of  the  final-state  baryon  in  the  rest  frame  of  the  initial
hyperon can be written as:

dN
dΩ
=

N
4π

(
1+αγPh · p̂

)
, (29)

Ph

p̂
where  is the polarization vector of the decaying hyp-
eron and  is the direction of the three-vector momentum
of the final-state baryon.

Λ→ nγ Σ+→ pγ Σ0→ nγ Ξ0→ Λγ Ξ0→ Σ0γ

Σ0→ Λγ

The  following  processes  are  included  in  this  work:
, , ,  and . Al-

though  the  partial  width  of  is  saturated  by  the
EM interaction,  we  still  evaluate  the  weak  radiative  de-
cay contribution here as  a  comparison with the EM pro-
cess.

Ⅲ.  RESULTS AND DISCUSSIONS

Λ→ nγ Σ+→ pγ Σ0→ nγ Ξ0→ Λγ Ξ0→ Σ0γ

|∆I| = 1/2 |∆s| = 1

JP = 1/2+

1/2−

Λ

For  these  weak  radiative  decay  processes,  i.e.,
, , ,  and , they

are all Cabbibo-favored with  and  trans-
ition.  The  dominance  of  the  pole  terms  in  the  transition
amplitudes  suggests  that  all  the  intermediate  states  of

 with  the  proper  flavor  should  be  included  for
the PC amplitude,  while  all  the  states  of  should be
included  for  the  PV  one.  However,  taking  into  account
the propagator suppression effects when the intermediate
states become highly off-shell, we only consider the first
orbital excitation  states  for  the  PV  amplitude.  This  ap-
proximation will bring some uncertainties to the final res-
ults. Taking the  decays as an example, the upper limit
of  the  uncertainties  can  be  estimated  by  the  ratios

RPC = |(M2
Λ
−M2

p)/(M2
Λ
−M2

N∗(1440))|2 ≃ 0.20
RPV = |(MΛ(1405)2−M2

p)/
(M2
Λ(L=3)−M2

p)|2 ≃ 0.12
N∗(1440)

Λ(L = 3)
Λ

L = 3
MΛ(L=3) = 2

 for the PC part
in  the  branching  ratio,  and 

 for  the  PV  part  in  the  branching
ratio. Here,  is the first radial excitation state of
the  nucleon  and  denotes  the  second  negative
parity  orbital  excitation  state  of .  The  multiplets  with

 have not  yet  established in experiment and we ad-
opt  GeV for its mass as a conservative estim-
ate.  Theoretical  calculations in the literature suggest  that
their  masses  are  well  above  2  GeV  [37]  (see  also  Ref.
[38]  for  a  review  of  baryon  spectroscopy  in  the  quark
model and references therein).

JP = 1/2+ JP = 1/2−

1/2− Λ(1405)
[70,2 1]

[70,2 8] [70,4 8]

Ξ(1620)
Ξ(1690)

[70,2 8] [70,4 8]

The  intermediate  states  considered  in  this  work  are
listed in Tab. II. These states are either ground states with

 or  first  orbital  excitations  with .  For
the  intermediate  hyperons,  is  assigned  as
the  flavor  singlet  in  the  representation . For  mul-
tiplets  of  representations  and , the  corres-
ponding states  have  not  yet  been  determined  in  experi-
ment.  Although  the  quantum  numbers  of  and

 have not been measured in experiment, they ad-
opt  the  assignments  that  they  belong  to  representations

 and , respectively.

1/2+ 1/2−

1/2+

With the EM and weak coupling matrix elements for
the  and  states  calculated  in  the  NRCQM  we
can  obtain  the  analytical  amplitudes  for  each  pole  term
and  they  are  given  in  Appendix  7.  One  can  see  that  the
PC  amplitudes  are  given  by  the  intermediate  octet
baryons and the decays are  through a P wave,  while  the
parity-violating ones are through an S wave.

mq = mu = md = ms = 0.35

In  our  frame  work,  the  input  parameters  include  the
constituent  quark  masses  and  harmonic  oscillator
strengths.  In  the  present  calculations  we  take  the  SU(3)
flavor  symmetry  for  the  constituent  quark  masses,  i.e.

 GeV, as  the  leading  order  ap-
proximation. This simplifies the baryon wavefunctions at
this  moment.  Since  the  three-vector  momenta  carried  by
the  photon  is  rather  small  this  approximation  does  not
cause significant uncertainties to the numerical results. In

Table 1.    The intermediate states considered in our calculation. The baryons masses and decay widths (given in the brackets) are taken from PDG [35]
(in units of GeV). Only the central values of the masses and widths are listed.

PC [56,2 8]

p n Λ Ξ0

0.94 0.94 1.12 1.31

Σ+ Σ0

1.20 1.20

PV

[70,2 8]
N(1535) Λ(1670) Σ(1620) Ξ(1620)

1.53(0.15) 1.67(0.035) 1.62(0.05) 1.62(0.03)

[70,4 8]
N(1650) Λ(1800) Σ(1750) Ξ(1690)

1.655(0.135) 1.8(0.3) 1.75(0.15) 1.62(0.03)

[70,2 10]
∆(1620)

1.61(0.13)
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αρ αλ ρ
λ

mu = md = ms
αρ = αλ ≡ α

α3

α
Ξ

Ξ

α = 0.45
Λ Σ β = 0.38 Ξ

contrast,  the  numerical  results  are  more  sensitive  to  the
harmonic oscillator strengths, i.e.  and  for the  and

 degrees  of  freedom  in  the  Jacobi  coordinate.  In  the
equal  mass  limit  of  these  two  parameters
satisfy .  One  can  see  later  that  the  analytical
amplitudes will be proportional to . Thus, more uncer-
tainties can arise from the harmonic oscillator strength .
Considering that  contains two s quarks, the SU(3) fla-
vor  symmetry breaking effect  should not  be ignored,  we
take a different value for the oscillator strength for the 
decays. Thus, in the numerical studies, we adopt 
GeV for the  and  decays and  GeV for the 
decays.

The numerical results of amplitudes are given in Tab.
II. Some general features can be learned as follows.

Λ→ nγ Σ+→ pγ Σ0→ nγA.    , , and 

Σ+→ pγ Λ→ nγFor  the  processes  and ,  it  appears
that the processes of A and B-type have a destructive in-
terference in the the PC channels,  but become construct-
ive  in  the  PV channels.  This  results  in  that  the  value  of
the  PC  amplitudes  is  smaller  than  the  value  of  the  PV

ones  for  these  two  decays.  Furthermore,  this  leads  to  a
large value for the asymmetry parameter.

N(1650)
[70,4 8] JP = 1/2− Σ+→ pγ

Λ→ nγ Σ0→ nγ
N∗

[70,4 8] [56,2 8]

N(1650) pγ

It  is  interesting  to  note  that  the  PV amplitude  of  the
 which  is  assigned  as  the  SU(6)  representation

 with  vanishes in , but contrib-
utes to the neutral channels of  and . This
is  understandable  via  the  EM  coupling  between  of

 and proton . In such an EM transition pro-
cess,  the  so-called  “Moorhouse  selection  rule ”  [36]
should  play  a  role  which  prevents  the  intermediate

 decays into .
ρ

[70,4 8]
[56,2 8]

ρ

[70,4 8]
[56,2 8]

λ [70,4 8]
[56,2 8]

N∗([70,4 8])→ pγ

To be  more  specific,  one  can  prove  that  the  mode
decays  or  excitations  between  states  of  and

 via the EM transition operator vanishes. Since the
spin and  orbital  angular  momentum  operators  are  sym-
metric to the quark indices of the first  two quarks, the 
mode spatial wavefunction of  cannot orbitally de-
cay into a symmetric spatial wavefunction of . The

 mode  decays  or  excitations  between  states  of 
and  are,  in  principle,  allowed.  However,  for  the
charged  channel  of  one  has

(10−10 GeV−1/2)Table 2.    The numerical results of amplitudes for every channel, in units of .

process PCA PVA PCB PVB Total(PC) Total(PV)

Λ→ nγ

n −6.68 N(1535) −4.72−0.99i Λ 3.97 Λ(1670) −1.54−0.047i

5.82 −14.91−1.48i

N(1650) 0.22+0.032i Σ0 8.53 Λ(1800) 0.072−0.017i

∆(1620) 0 Λ(1405) −4.27−0.28i

Σ(1620) −4.91−0.23i

Σ(1750) 0.24

Σ+→ pγ
p −19.06 N(1535) −9.65−2.39i Σ+ 24.16 Σ(1620) −5.75−0.27i

5.10
−15.40−2.66iN(1650) 0 Σ(1750) 0

∆(1620) 0

Σ0→ nγ

n 8.93 N(1535) 7.69+1.92i Λ −7.91 Λ(1670) 2.15+0.066i

6.69 1.33+1.37i

N(1650) −0.68−0.15i Σ0 5.67 Λ(1800) −0.20−0.046i

∆(1620) 0 Λ(1405) −5.58−0.36i

Σ(1620) −2.28−0.11i

Σ(1750) 0.22

Ξ0→ Λγ

Λ 5.79 Λ(1670) 4.73+0.26i Ξ0 −13.60 Ξ(1620) 6.33+0.22i

−7.81 −4.38−3.88i

Σ0 0 Λ(1800) −0.23−0.083i Ξ(1690) −0.46−0.014i

Λ(1405) −14.7−4.26i

Σ(1620) 0

Σ(1750) 0

Ξ0→ Σ0γ

Λ −8.15 Λ(1670) −10.75−0.59i Ξ0 0 Ξ(1620) 0

−8.15 −45.65−10.67i

Σ0 0 Λ(1800) 0.21+0.074i Ξ(1690) 0

Λ(1405) −35.11−10.15i

Σ(1620) 0

Σ(1750) 0
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⟨ϕλN∗+ |Σ3
i=1ei|ϕλp⟩ = 3⟨ϕλN∗+ |e3|ϕλp⟩ = 0 λ.  Thus,  the  mode  is

also forbidden.
[70,4 8]

[70,2 8]
N(1535) N(1650)

Σ+→ pγ

It should be noted that representations of  and
 in  the  first  orbital  excitations  can  mix  and  the

physical states  and  are actually mixing
states  of  these  two  configurations.  As  a  consequence,
both states can actually contribute in . This is an
interesting phenomenon  which  may  provide  an  alternat-
ive way to study the structure of these two resonances.

Σ+

[56,2 8] Σ∗+ [70,4 8]
λ

⟨ϕλ
Σ∗+
|Σ3

i=1ei|ϕλΣ+⟩ = 3⟨ϕλ
Σ∗+
|e3|ϕλΣ+⟩ = 0 λ

[70,4 8]
Σ+→ pγ

Similar relation also appears in the EM transitions of
the PV B-type process, i.e. the EM transitions between 
of  and  of .  Again, one can prove that
only the  mode of transitions is allowed. However, with

,  the  mode of  trans-
itions  will  also  be  forbidden.  Thus,  states  of  do
not contribute to the PV amplitude in .

[70,2 10]

ρ

[70,2 10] [56,2 8]

λ ρ

Σ+→ pγ
|∆I| = 1/2

∆(1620) [70,2 10]

Σ→ Nπ Λ→ Nπ

One  also  notices  that  the  states  of  do  not
contribute to the octet radiative weak decays. This is due
to requirement of the  mode orbital excitations between
the spatial wavefunctions of  and  in asso-
ciation with the spin-flavor operators in Eq. (7) which are
nonvanishing between  and  modes. As a consequence,
the two terms in Eq. (7) exactly cancel out. This vanish-
ing  transition  was  listed  in  Ref.  [15], but  was  not  dis-
cussed  much  there.  Note  that  the  transition  of 
does not violate the  rule. The vanishing contri-
bution  of  the  of  representation  can  be
regarded as kind of dynamical selection rule in the quark
model. In fact, this selection rule also plays a role in the
hadronic weak decays of  and .  A recent
study can be found in Ref. [33].

Ξ0→ Σ0γ ΛγB.     and 

Ξ0→ Σ0γ Λγ

Λ Σ

The  situation  in  and  is  different  from
that in  and  decays. Here, the contributions from the
PC processes are lager than the destructive PV ones.

Ξ0→ Σ0γ

Σ(∗)

⟨ϕρ
Σ0 |τ(−)

1 ν(+)
2 |ϕ

ρ
Ξ0⟩ = 0

λ

One  notices  that  the B-type  amplitudes  in 
vanish for both PC and PV transitions. Meanwhile, the in-
termediate  states  do  not  contribute  to  the A-type
transitions. These are due to the weak interaction operat-
ors.  Note  that  the  flavor  transition  element  vanishes:

.  In the PC B-type transition it  leaves
the  mode  to  contribute.  However,  one  finds  that  the

⟨χλ1
2
S z
|(1−σ1 ·σ2)|χλ1

2
S z
⟩ = 0

Σ0

spin  transition  element  with
the spins of the first two quarks in parallel. Therefore, the
intermediate  does not contribute to the PC amplitude.

Σ∗0

[70,2 8] [70,4 8]
⟨ϕρ
Σ0 |τ(−)

1 ν(+)
2 |ϕ

ρ
Ξ0⟩ = 0

ϕλ
Σ0 (χ

ρ
1
2
S z
ψ
ρ
11Lz

(ρ,λ)−χλ1
2
S z
ψλ11Lz

(ρ,λ)) [70,2 8]

ρ λ

Σ∗0

[70,2 8] Σ∗0 [70,4 8]
ρ

For the PV A-type transitions the intermediate  be-
longs  to  either  representation  or .  Again,
with  it leaves the wavefunction com-
ponent  of  to
be considered. From the PV operators in Eq. (7) one can
easily  prove  that  only  the  transitions  between  and 
mode  in  the  spin  and  spatial  spaces  can  survive.
However, the two terms in Eq. (7) have the same average
values  but  opposite  signs.  They  will  cancel  and  lead  to
vanishing  contributions  from  the  intermediate  of

. For the intermediate  of  one finds that
the corresponding spatial transitions between the  mode
will vanish.

Ξ(∗)0

[56,2 8] [70,2 8]
Σ0

Ξ(∗)0

Σ0

Ξ0→ Σ0γ

For  the B-type  transitions  the  intermediate  can
be  in  either  (PC)  or  (PV). Their  trans-
itions into the final  vanish for the same reason arising
from the weak transition operators. Thus, we have the in-
teresting results that all the  pole terms in the B-type
processes  and  all  the  pole  terms  in  the A-type  ones
vanish in .

C.    Branching ratios and asymmetry parameters

Ξ0→ Σ0γ

α, β mq

∼

α3/mq β3/mq

αγ
α3/mq β3/mq

Proceeding to  the  calculations  of  experimental  ob-
servables,  the  calculated  branching  ratios  and  parity
asymmetry  parameters  are  listed  in  the  last  columns  of
Tab.  III and IV,  respectively,  in  comparison  with  other
models.  As  shown  in Tab.  III the  central  values  of  the
branching ratios are close to the experimental results ex-
cept for . By introducing 5% errors to the quark
model  parameters,  i.e.  and , we  estimate  the  un-
certainties of our model calculations. It shows that the un-
certainties  with  the  branching  ratios  are  around
40% 50% for each channel which means the amplitudes
are sensitive  to  the  quark  model  parameters.  This  is  un-
derstandable  since  the  amplitudes  are  proportional  to

 ( ).  In  contrast,  the  uncertainties  with  the
asymmetry parameter is relatively smaller.  As seen from
the expression of Eq. (28) of , the uncertainties arising
from the dependence of  or  are largely can-
celled out.

10−3Table 3.    The calculated branching ratios (in units of ) are compared with experimental data and other theoretical predictions. In Ref. [25] the res-
ults are given by decay width.

Bi→ B f γ PDG data [35] Broken SU(3) [11] ChPT [25] Pole model [17] Pole model [15] Our result

Σ+→ pγ (1.23±0.05) 0.72 ≈ 16 0.75±0.30 1.15 1.06±0.59

Λ→ nγ (1.75±0.15) 0.77 ≈ 1.45 0.16±0.06 0.62 1.83±0.96

Ξ0→ Λγ (1.17±0.07) 1.02 ≈ 1.17 0.72±0.42 3.0 0.96±0.32

Ξ0→ Σ0γ 3.33±0.1 4.42 ≈ 1.14 2.6±1.2 7.2 9.75±4.18

Σ0→ nγ − − ≈ 10−9 1.8×10−9 10−10 ≈ 10−10
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Note that there are only a limited number of paramet-
ers under the NRCQM framework. The overall quality of
our  model  calculations  turns  out  to  be  reasonable.  Our
results indicate that the lowest lying states play an essen-
tial role through the intermediate pole terms which is con-
sistent  with  the  result  of  ChPT  [25]  and  previous  quark
model calculations [15].

Σ+ Λ

Ξ0

In Tab.  IV one can  see  that  the  signs  of  the  asym-
metry parameters are quite different. Our model gives the
right  signs for  the  and  channel  and prefers  a  large
value. However, for the  channels the sign of the asym-
metry  parameter  is  opposite  with  the  experimental  data.

Σ0→ nγThe sign of the asymmetry parameter of  is posit-
ive which is opposite to the other model calculations [15,
17].

Σ0→ nγ

Σ0→ Λγ Σ0→ nγ

J/ψ

In Tab. V we also list the partial decay widths in com-
parison  with  the  PDG  values  [35]. Note  that  the  calcu-
lated  partial  decay width  of  is  comparable  with
the other channels although its branching ratio looks very
small. This is due to the large total width saturated by the
EM transition of . The partial width for 
has  not  been  measured  in  experiment.  The  measurement
of  this  quantity  may  be  pursued  at  BESIII  with  large
event samples collected in  decays.

Ⅳ.  SUMMARY

In this work we revisit the hyperon weak radiative de-
cays in the framework of the NRCQM. The dominance of
the  pole  terms  turns  out  to  be  crucial  for  achieving  an
overall self-consistent description of the available experi-
mental  data  for  hyperon  weak  radiative  decays.  This
study confirms the nonlocal feature of the hyperon weak
radiative  transition  operators  which  provides  a  natural
mechanism  for  evading  the  Hara  theorem,  i.e.  the  PV
contributions can come from the intermediate orbital  ex-
citations in  the  NRCQM.  We  also  discuss  several  inter-
esting  selection  rules  arising  from  either  the  EM  or  the
weak interaction vertices. Moreover, there exist cancella-
tions between pole terms that can significantly violate the
SU(3) flavor  symmetry  in  the  observables.  These  fea-
tures suggest  nontrivial  relations  among  different  hyper-
on decays. It  is interesting to note that the dominance of

the  pole  terms  is  somehow  counterintuitive  taking  into
account the  short-ranged  property  of  the  weak  interac-
tions. Therefore, a coherent study of the hyperon weak ra-
diative decays and confirmation of the dominance of pole
terms are crucial for a better understanding of the under-
lying dynamics. Future studies of possible dynamical ef-
fects  are  strongly  recommended.  A  better  description  of
the  transition  operators  will  make  the  hyperons  good
probes  for  long-ranged  weak-decay  dynamics  in  nuclear
few-body systems.
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Particle Physics  (MIAPP)  of  the  DFG  cluster  of  excel-
lence “Origin and Structure of the Universe” during the
Workshop “Deciphering Strong-Interaction Phenomeno-
logy through Precision Hadron-Spectroscopy.”

APPENDIX A: CONVENTION

The following conventions are adopted for  the quark and anti-quark field:

Table 4.    The numerical results of the asymmetry parameter are compared with experimental data and other theoretical predictions.

Bi→ B f γ PDG [35] Broken SU(3) [11] ChPT [25] Pole model (I) [17] Pole model (II) [15] Our result

Σ+→ pγ −0.76±0.08 −0.67 −0.49 −0.92 −0.80 −0.58±0.060

Λ→ nγ − −0.93 −0.19 0.91 −0.49 −0.67±0.060

Ξ0→ Λγ (−0.70±0.07) −0.97 0.46 0.07 −0.78 0.72±0.11

Ξ0→ Σ0γ (−0.69±0.06) −0.92 0.15 −0.75 −0.96 0.33±0.036

Σ0→ nγ − − − −0.65 −0.98 0.37±0.035

 

10−18Table 5.    The calculated partial decay widths (in units of  GeV) are compared with the experimental data from PDG [35].

Bi→ B f γ Σ+→ pγ Λ→ nγ Ξ0→ Λγ Ξ0→ Σ0γ Σ0→ nγ

PDG data [35] 10.10±0.41 4.40±0.38 2.66±0.18 7.56±0.33 −

Our result 8.73±4.88 4.59±2.42 2.20±0.73 22.13±9.50 1.59±0.55
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q(x) =
∫

d p
(2π)3/2

(
m
p0

)1/2 ∑
s

us(p)bs(p)eip·x

+ vs(p)d†s (p)e−ip·x, (A1)

q̄(x) =
∫

d p
(2π)3/2

(
m
p0

)1/2 ∑
s

ūs(p)b†s(p)e−ip·x

+ v̄s(p)ds(p)eip·x. (A2)

The  commutation  and  anticommutation  relations  of

the creation and annihilation operators are given by:

{bs(p),b†s′ (p′)} = {ds(p),d†s′ (p′)} = δss′δ
3(p− p′). (A3)

u†s(p)us′ (p) =
v†s(p)vs′ (p) = (p0/m)δss′

The  normalization  of  spinor  is 
.  It  should  be  emphasized  that  the

convention  of  quark  field  and  spinor  must  match  each
other in order to keep the nonrelativistic Hamiltonian in-
dependent of any convention.

APPENDIX B: THE BARYON WAVE FUNCTION WITHIN THE NON-RELATIVISTIC CONSTITUENT
QUARK MODEL

We adopt the nonrelativistic quark model wave func-
tions  for  the  baryons  [37]  in  the  calculation.  The  total
wave function of hadron consists of four parts: a) the col-
or  wave  function  which  is  trivial  and  neglected  here;  b)
the spin wave function; c) the flavor wave function and d)
the spatial wave function.

The spin wave functions for a three-quark system are
written as:

χs
3/2 = ↑↑↑,

χs
−1/2 =

1
√

3
(↑↓↓ + ↓↑↓ + ↓↓↑) ,

χs
1/2 =

1
√

3
(↑↑↓ + ↑↓↑ + ↓↑↑) ,

χs
−3/2 = ↓↓↓, (B1)

χ
ρ
1/2 =

1
√

2
(↑↓↑ − ↓↑↑) ,

χλ1/2 =−
1
√

6
(↑↓↑ + ↓↑↑ −2 ↑↑↓) ,

χ
ρ
−1/2 =

1
√

2
(↑↓↓ − ↓↑↓) ,

χλ−1/2 =
1
√

6
(↑↓↓ + ↓↑↓ −2 ↓↓↑) , (B2)

ρ λwhere the superscripts, s, a,  and , are used to label the
symmetry  types  of  the  corresponding  wavefunctions,
namely  overall  symmetric  and  antisymmetric  states,  and
mixed  symmetry  states  that  are  either  antisymmetric  or
symmetric under the exchange of the first two quarks, re-
spectively.

The  flavor  wave  functions  for  the  octet  baryons  are
written as [34]:

ϕλp =
1
√

6
(2uud−duu−udu), ϕ

ρ
p =

1
√

2
(udu−duu),

ϕλn =
1
√

6
(dud+udd−2ddu), ϕ

ρ
n =

1
√

2
(udd−dud),

ϕλΛ =
1
2

(sud+usd− sdu−dsu),

ϕ
ρ
Λ
=

1

2
√

3
(usd+ sdu− sud−dsu−2dus+2uds),

ϕλΣ+ =
1
√

6
(suu+usu−2uus), ϕ

ρ
Σ+
=

1
√

2
(suu−usu),

ϕλΣ0 =
1

2
√

3
(sdu+ sud+usd+dsu−2uds−2dus),

ϕ
ρ
Σ0 =

1
2

(sud+ sdu−usd−dsu),

ϕλΞ0 =
1
√

6
(2ssu− sus−uss), ϕ

ρ
Ξ0 =

1
√

2
(sus−uss). (B3)

A  basis  of  spatial  wave  functions  in  the  momentum
space is given by [34]:

Ψ
nρℓρ;nλℓλ
LM (P, pρ, pλ) =δ3(Pcm− P)

∑
m

⟨lρ,m; lλ,M−m|LM⟩

×ψnρlρm(pρ)ψnλlλM−m(pλ), (B4)

P pρ pλwhere ,  and  are the usual Jacobi coordinates, and

ψn,l,m(p) =(i)l(−1)n
[

2n!
(n+ l+1/2)!

]1/2

× 1
αl+3/2 e−

p2

2α2 Ll+1/2
n (p2/α2)Ylm(p). (B5)

nρ nλ L
Lνn(x)

α Ylm(p)

 and  count  the  radial  excitations  and  is  the  total
angular  momentum.  The  is  generalized  Laguerre
polynomials  and  is  the  oscillator  parameter.  is
solid spherical harmonics.

The baryons are three-quark systems, and in the limit
of SU(3)  flavor  symmetry  their  total  wave  functions  be-
come  totally  symmetric.  With  the  color  wave  function
total antisymmetric, the rest of part of a total wave func-
tion  should  then  be  symmetric.  The  total  wave  function
(except for the color part) of an octet baryon B is written as:
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|56,2 8,0,0, sz⟩ =
1
√

2
(ϕρBχ

ρ
sz
+ϕλBχ

λ
sz

)Ψ00;00
00 (pρ, pλ), (B6)

[70,2 8] N(1535), Λ(1670), Σ(1620)
Ξ(1620)

The total  wave function of  the first  orbital  excitation
states  of  (  and

) is written as:

|70,2 8,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
1
2

S z|
1
2

Jz⟩
1
2

× [
(ϕρBχ

λ
S z
+ϕλBχ

ρ
S z

)Ψ1Lz;00
1Lz

(pρ, pλ)

+ (ϕρBχ
ρ
S z
−ϕλBχλS z

)Ψ0,0;1,Lz

1Lz
(pρ, pλ)

]
. (B7)

[70,4 8] N(1650),Λ(1800),Σ(1750) Ξ(1690)
The total  wave function of  the first  orbital  excitation

states of  (  and )
is as follows:

|70,4 8,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
3
2

S z|
1
2

Jz⟩
1
√

2

[
ϕ
ρ
Bχ

s
S z
Ψ

1Lz;00
1Lz

×(pρ, pλ)+ϕλBχ
s
S z
Ψ

00;1Lz

1Lz
(pρ, pλ)

]
.

(B8)

[70,2 10] ∆(1620)

The total  wave function of  the first  orbital  excitation
states of  ( ) is as follows:

|70,2 10,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
1
2

S z|
1
2

Jz⟩
1
√

2

[
ϕs

Bχ
ρ
S z
Ψ

1Lz;00
1Lz

×(pρ, pλ)+ϕs
Bχ

λ
S z
Ψ

00;1Lz

1Lz
(pρ, pλ)

]
.

(B9)

[70, 21] Λ(1405)

The total  wave function of  the first  orbital  excitation
state of  ( ) is

|70,2 1,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
3
2

S z|
1
2

Jz⟩
1
√

2

[
ϕa
Λχ

λ
S z
Ψ

1Lz;00
1Lz

×(pρ, pλ)−ϕa
Λχ

λ
S z
Ψ

00;1Lz

1Lz
(pρ, pλ)

]
,

(B10)

where

ϕa
Λ =

1
√

6
(uds+dsu+ sud−dus−usd− sdu). (B11)

APPENDIX C: AMPLITUDES

H+EM

MPC/PV,A/B(B) ϵ S f
z = +1/2

S i
z = −1/2

S F(B)

The transition amplitudes with the EM operator 
are given in this section. Note that only the nonzero amp-
litudes  are  listed.  The nonzero  amplitudes  are  labeled  as

,  where  the  spin  indexes ,  and
 are omitted. B in the parentheses is the name of

intermediate  baryon.  In  the  following part,  stands
for the propagator of the intermediate baryon and is writ-
ten as:

S F(B) =
i(̸ pB+MB)

p2
B−M2

B+ iΓBMB
≈ 2iMB

p2
B−M2

B+ iΓBMB
, (C1)

MB (ΓB) pBwhere  is the mass (width) of the baryon and 

its four momentum.

Σ+→ pγ● 

MPC,A(p) =
[
3α3GFVudVus

2π3/2

]
S F(p)

− ek

4
√

2π3/2
√

k0mq

e−
k2

6α2 , (C2)

MPV,A(N(1535)) =

−3iα4GFVudVus

2
√

2π3/2mq

S F(N(1535))

 ie
(
2α2− k2

)
24π3/2α

√
k0mq

e−
k2

6α2 . (C3)

MPC,B(Σ+) = e−
k2

6α2

− ek

4
√

2π3/2
√

k0mq

S F(Σ+)
[
3α3GFVudVus

2π3/2

]
, (C4)

MPV,B(Σ(1620)) = e−
k2

6α2

− ie
(
2α2− k2

)
24π3/2α

√
k0mq

S F(Σ(1620))

3iα4GFVudVus

2
√

2π3/2mq

 . (C5)
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Λ→ nγ● 

MPC,A(n) =

−
√

3
2α

3GFVudVus

2π3/2

S F(n)

 ek

6
√

2π3/2
√

k0mq

e−
k2

6α2 , (C6)

MPV,A(N(1535)) =
 i
√

3α4GFVudVus

4π3/2mq

S F(N(1535))

− ie
(
6α2− k2

)
72π3/2α

√
k0mq

e−
k2

6α2 , (C7)

MPV,A(N(1650)) =
 i
√

3α4GFVudVus

2π3/2mq

S F(N(1650))

 iek2

72π3/2α
√

k0mq

e−
k2

6α2 . (C8)

MPC,B(Λ) = e−
k2

6α2

 ek

12
√

2π3/2
√

k0mq

S F(Λ)

−
√

3
2α

3GFVudVus

2π3/2

 , (C9)

MPC,B(Σ0) = e−
k2

6α2

− ek

4
√

6π3/2
√

k0mq

S F(Σ0)
[
3α3GFVudVus

2
√

2π3/2

]
, (C10)

MPV,B(Λ(1670)) = e−
k2

6α2

 ie
(
6α2− k2

)
144π3/2α

√
k0mq

S F(Λ(1670))
− i
√

3α4GFVudVus

4π3/2mq

 , (C11)

MPV,B(Λ(1800)) = e−
k2

6α2

− iek2

144π3/2α
√

k0mq

S F(Λ(1800))
− i
√

3α4GFVudVus

2π3/2mq

 , (C12)

MPV,B(Λ(1450)) = e−
k2

6α2

− ie
(
2α2− k2

)
48π3/2α

√
k0mq

S F(Λ(1450))
 i
√

3α4GFVudVus

2π3/2mq

 , (C13)

MPV,B(Σ(1620)) = e−
k2

6α2

− ie
(
6α2− k2

)
48
√

3π3/2α
√

k0mq

S F(Σ(1620))
[
3iα4GFVudVus

4π3/2mq

]
, (C14)

MPV,B(Σ(1750)) = e−
k2

6α2

 iek2

48
√

3π3/2α
√

k0mq

S F(Σ(1750))
[
3iα4GFVudVus

2π3/2mq

]
. (C15)

Ξ0→ Λγ● 

MPC,A(Λ) =
2
√

3α3β3GFVudVus

π3/2 (α2+β2)3/2

S F(Λ)

 ek

12
√

2π3/2
√

k0mq

e−
k2

6α2 , (C16)

MPV,A(Λ(1670)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1670))

− ie
(
6α2− k2

)
144π3/2α

√
k0mq

e−
k2

6α2 , (C17)

MPV,A(Λ(1800)) =

−2i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1800))

 iek2

144π3/2α
√

k0mq

e−
k2

6α2 , (C18)
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MPV,A(Λ(1450)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1450))

 ie
(
2α2− k2

)
48π3/2α

√
k0mq

e−
k2

6α2 . (C19)

MPC,B(Ξ0) = e
− k2

6β2

 ek

6
√

2π3/2
√

k0mq

S F(Ξ0)
2
√

3α3β3GFVudVus

π3/2 (α2+β2)3/2

 , (C20)

MPV,B(Ξ(1620)) = e
− k2

6β2

 ie
(
6β2− k2

)
72π3/2β

√
k0mq

S F(Ξ(1620))

 i
√

6α3β4GFVudVus

π3/2 (α2+β2)3/2 mq

 , (C21)

MPV,B(Ξ(1690)) = e
− k2

6β2

− iek2

72π3/2β
√

k0mq

S F(Ξ(1690))

2i
√

6α3β4GFVudVus

π3/2 (α2+β2)3/2 mq

 . (C22)

Ξ0→ Σ0γ● 

MPC,A(Λ) =
2
√

3α3β3GFVudVus

π3/2 (α2+β2)3/2

S F(Λ)

− ek

4
√

6π3/2
√

k0mq

e−
k2

6α2 , (C23)

MPV,A(Λ(1670)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1670))

 ie
(
6α2− k2

)
48
√

3π3/2α
√

k0mq

e−
k2

6α2 , (C24)

MPV,A(Λ(1800)) =

−2i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1800))

− iek2

48
√

3π3/2α
√

k0mq

e−
k2

6α2 , (C25)

MPV,A(Λ(1450)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1450))

 ie
(
2α2− k2

)
16
√

3π3/2α
√

k0mq

e−
k2

6α2 . (C26)

Σ0→ nγ● 

MPC,A(n) =
[
3α3GFVudVus

2
√

2π3/2

]
S F(n)

 ek

6
√

2π3/2
√

k0mq

e−
k2

6α2 , (C27)

MPV,A(N(1535)) =
[
−3iα4GFVudVus

4π3/2mq

]
S F(N(1535))

− ie
(
6α2− k2

)
72π3/2α

√
k0mq

e−
k2

6α2 , (C28)

MPV,A(N(1650)) =
[
−3iα4GFVudVus

2π3/2mq

]
S F(N(1650))

 iek2

72π3/2α
√

k0mq

e−
k2

6α2 . (C29)
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MPC,B(Λ) = e−
k2

6α2

− ek

4
√

6π3/2
√

k0mq

S F(Λ)

−
√

3
2α

3GFVudVus

2π3/2

 , (C30)

MPC,B(Σ0) = e−
k2

6α2

− ek

12
√

2π3/2
√

k0mq

S F(Σ0)
[
3α3GFVudVus

2
√

2π3/2

]
, (C31)

MPV,B(Λ(1670)) = e−
k2

6α2

− ie
(
6α2− k2

)
48
√

3π3/2α
√

k0mq

S F(Λ(1670))
− i
√

3α4GFVudVus

4π3/2mq

 , (C32)

MPV,B(Λ(1800)) = e−
k2

6α2

 iek2

48
√

3π3/2α
√

k0mq

S F(Λ(1800))
− i
√

3α4GFVudVus

2π3/2mq

 , (C33)

MPV,B(Λ(1450)) = e−
k2

6α2

− ie
(
2α2− k2

)
16
√

3π3/2α
√

k0mq

S F(Λ(1450))
 i
√

3α4GFVudVus

2π3/2mq

 , (C34)

MPV,B(Σ(1620)) = e−
k2

6α2

− ie
(
6α2− k2

)
144π3/2α

√
k0mq

S F(Σ(1620))
[
3iα4GFVudVus

4π3/2mq

]
, (C35)

MPV,B(Σ(1750)) = e−
k2

6α2

 iek2

144π3/2α
√

k0mq

S F(Σ(1750))
[
3iα4GFVudVus

2π3/2mq

]
. (C36)
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