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Abstract: In this paper, we have investigated the mathematical components of the Dirac equation in curved space-
time and how it can be applied to the analysis of neutrino oscillations. More specifically, we have developed a meth-
od for calculating the phase shift in flavor neutrino oscillations by utilizing a Taylor series expansion of the action,
taking into account Am* orders. In addition, we have used this method to assess how the phase difference in neut-

rino mass eigenstates changes due to the gravitational field described by the Johannsen spacetime.
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I. INTRODUCTION

The field of neutrino physics observes a phenomenon
called neutrino oscillation, where neutrinos change from
one flavor to another while moving through space. This
oscillation happens because of the interaction between the
three recognized neutrino flavors: electron neutrino v,,
muon neutrino v,, and tau neutrino v.. Pontecorvo [1]
first proposed the concept of neutrino oscillation. It sug-
gests that neutrinos possess a mass that was previously
thought to be nonexistent. The mathematical description
of neutrino oscillation involves the use of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [2], which con-
nects the flavor states of neutrinos to their mass eigen-
states. This matrix includes four parameters: three mix-
ing angles and one phase. The mixing angles determine
the likelihood of a neutrino transitioning from one flavor
to another, while the phase influences the relative probab-
ilities of oscillation between different flavors. Neutrino
oscillation has significant implications in astrophysics,
particle physics, and cosmology, as it aids in our under-
standing of neutrino properties and their role in the uni-
verse [3, 4], including their contribution to dark matter. It
is a captivating phenomenon that has opened up new av-
enues of research in particle physics and astrophysics [5].
The discovery of neutrino oscillation has challenged our
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existing knowledge of neutrinos and provided valuable
insights into the nature of the universe The significant
breakthrough of neutrino oscillation has received recogni-
tion through various awards, notably the 2015 Nobel
Prize in Physics. This prestigious honor was bestowed
upon Takaaki Kajita and Arthur B. McDonald for their
remarkable contributions to the Super-Kamiokande [6]
and SNO experiments.

Sudbury Neutrino Observatory (SNO) [7], The Super-
Kamiokande [8], and MINOS experiments [9, 10] played
a vital role in enabling the discovery of neutrino oscilla-
tion. These experiments observed the phenomenon of dif-
ferent types of neutrinos disappearing and reappearing as
they passed through the Earth's atmosphere or matter.

The investigation aims to understand the phenomen-
on of neutrino lensing caused by gravitational sources,
which reveals an intriguing connection between the prob-
abilities of neutrino oscillations and their individual
masses. This connection is illustrated through an analysis
of the impact of weak lensing induced by a Schwarz-
schild mass [11]. The study explores the implications of
gravitationally modified neutrino oscillations in realistic
scenarios involving two or three flavors, such as the in-
fluence of a supernova's gravitational field on the travel
of emitted neutrinos, which could have observable ef-
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fects on the neutrino signal [12]. Furthermore, the study
examines the propagation of neutrinos in a strong gravita-
tional field regime, incorporating electromagnetic interac-
tions using the WKB approximation [13]. It also investig-
ates the behavior of neutrino oscillations in the Schwarz-
schild spacetime, taking into account spin precession in
the presence of a magnetic field [14, 15]. Notably, the
study analyzes both the radial and nonradial propagation
of neutrinos in the Schwarzschild spacetime [16]. Finally,
the investigation explores the effects of universe expan-
sion and torsion on neutrino oscillations [17]. The mass
hierarchy of neutrinos refers to how the three types of
neutrinos are arranged in terms of their relative sizes.
Neutrinos consist of electron, muon, and tau neutrinos,
each with their own antineutrinos. Despite being light
compared to other particles, neutrinos do have small but
nonzero masses according to current knowledge in neut-
rino physics. The mass hierarchy of neutrinos can be clas-
sified as normal or inverted. In the normal hierarchy, the
masses are ordered as m; <myp <mj, with m; being the
lightest, m, the second lightest, and m; the heaviest neut-
rino [18]. Conversely, in the inverted hierarchy, the
masses are arranged as ms; <m; <my. Determining the
neutrino mass hierarchy is an important topic in neutrino
physics as it affects various astrophysical and cosmolo-
gical phenomena. Current evidence for the neutrino mass
hierarchy comes from the observation of neutrino oscilla-
tions. Neutrino oscillation refers to the ability of neutri-
nos to change their type as they travel in space due to
quantum mechanical mixing between the three types of
neutrinos. The probabilities of oscillation are influenced
by the differences in the squared masses of the three neut-
rino types and the mixing angles between them. Experi-
ments like Super-Kamiokande and Daya Bay have
provided valuable information about the neutrino mass
differences and mixing angles. Based on this data, it is
highly probable that the neutrino mass hierarchy is nor-
mal [19]. However, future experiments such as the Deep
Underground Neutrino Experiment (DUNE) will provide
more accurate measurements, allowing for a definitive
determination of the mass hierarchy.

The quantum field theory of neutrinos coupled to
gravity serves as the theoretical framework for studying
neutrino oscillation in curved spacetime [14]. In this
framework, the probabilities of oscillation depend on
various factors such as neutrino energy, mass-squared
differences, and the curvature of spacetime. The metric
tensor describes the curvature of spacetime, which is in-
fluenced by the gravitational field as well as the distribu-
tion of matter and energy. Numerous studies have ex-
plored the effects of curved spacetime on neutrino oscil-
lation probabilities, considering aspects like the gravita-
tional redshift and the curvature-induced potential. These
investigations have demonstrated that the gravitational
field can modify oscillation probabilities, leading to po-

tentially observable consequences. Examining neutrino
oscillation in curved spacetime is an active area of re-
search with significant implications for astrophysics and
cosmology [17, 20]. The development of theoretical mod-
els that describe the quantum field theory of neutrinos
coupled to gravity and the investigation of curved space-
time's impact on oscillation probabilities have been pur-
sued in several studies (see, for example, [21]).

The rotation of spacetime under weak gravity condi-
tions has been extensively investigated in relation to neut-
rino oscillations, particularly when neutrinos travel along
the equatorial plane. By using the asymptotic form of the
Kerr metric, it has been demonstrated that the rotation of
the gravitational source significantly changes the phase of
neutrinos. Specifically, when neutrinos are generated near
a black hole with angular momentum and detected on the
same side without the influence of gravitational lensing,
the probabilities of oscillation differ greatly compared to
those observed in the Schwarzschild spacetime [18]. An-
other study explores the effects of gravitational lensing
on neutrino oscillations within the framework of the y-
spacetime, employing a quantum-mechanical approach to
relativistic neutrinos [22]. This investigation examines
both radial and non-radial propagation, taking into con-
sideration the phase of neutrino oscillations within this
specific spacetime. Additionally, the presence of massive
objects in the universe can impact the probabilities of
neutrino oscillation, which has implications for predict-
ing the cosmic neutrino background.

II. DIRAC EQUATION IN THE CURVED
SPACETIME

It is crucial to first understand the fundamental meth-
ods used for solving the Dirac equation in curved space-
time before delving into the properties of neutrinos in the
presence of gravity. The Dirac equation, which governs
the behavior of a massive spinor field on a torsion-free
pseudo-Riemannian manifold, can be easily extended as
[23, 24]

iy Dy p(x) = me y(x) (h

Using the relation D, = (8, +T,), which is the covari-

ant derivative for a spinor field, the equation mentioned
above can be expressed as [25, 26]

iy (8,+T,) —mc|y(x)=0. )

where I', represents the spin connection and y* is associ-
ated with the covariant Dirac matrices, which are linked
to space-time through the following relations [27, 28]
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ey =2¢". 3)

In this context, the anti-commutation operation is de-
noted by curly brackets, and the spin connection I',, is de-
termined by the given condition [23]

dy,
Ox+

- rﬁy)’/l - rp’)/v + ’)/vru =0 (4)

We will now define the constant Dirac matrices y@
as follows

®)

YO = Dy

where ¢ is the orthogonal tetrad that fulfills the relation-
ship

g = ePeny, (6)
In the convention for the flat metric, where

Na = diag(—c?,1,1,1), the expression for the spin connec-
tion can be written using these constant Dirac matrices
[25]

{y("> , 7,(b) }
Iy=—— (7

guiely Vi€,
The action corresponding to the Dirac Equation (1) is

S= /d“x Vg Lp ®)

where g is defined as g = g"g,,, and we can express the
Lagrangian by introducing it as [29]

Lo= 5[5 Dy (DF) 9] -miy )

III. WKB APPROXIMATION FOR DIRAC
EQUATION

We are searching for an approximate solution to the
Dirac Equation (1) by employing the Wentzel-Kramers—
Brillouin (WKB) approximation method [30]. Several
different forms of the WKB approximation have been
found up to now. The investigation of the complex spinor
Y(x) revealed that it can be decomposed into two com-
ponents: an amplitude & = £(x) and a semi-classical phase
S=38(x) as [31]

Y(x) = e FSWE(x) . (10)

After conducting certain investigations, the wave
function expression in the presence of spin connection
has been formulated as [32, 33, 29]

[N}

; m\"
— o~ 7S T (7) . 11
Y(x) = e e E; o) &) (11)
and the Dirac matrix product in the spin connection term
is given as [34, 27]

,ya{,yb’,yr} — Znah,yr _ znac,yh _ Zifdahc')/S')’d (12)

where 7” represents the metric in a flat space, while e
denotes the totally antisymmetric tensor in the same flat
space. The spin connection can be expressed in terms of
the matrix that violates parity

Y
Iy=2 V=g A, (13)

where

V—§ U _abcd

ﬂ# = 1 €€ (14)

(ebv,(r - eb(r,v) e:e,tjr

One can infer that the additional phase factor in Equa-
tion (11) effectively acknowledges the interaction
between the metric and the spin orientation of the spinor.

By substituting Eq. (10) into Eq. (1) and equating
terms with equal powers of %, we obtain a series of re-
cursive equations for the amplitudes &, as

[)/VE?VS(X) + mc] &(x)=0, (15)

[¥78,S(x) + mc] &,(x) = [y"8,8(x) + mc] &,-1(x)
(16)

Multiplying [7"9,8(x)=m] from the left-hand side of
Eq.(15), The Hamilton-Jacobi equation for a massive

particle in a curved space- time can be written as [35, 36,
37]

8" 0,8(x)8,S(x) —m*c* =0 (17)

As long as the four-momentum of the particle is
known, we can link the expression to the classical action
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of a particle with mass m on a torsion-free pseudo-
Riemannian manifold, allowing us to associate the phase
S(x) with this action

dx”

- (18)

Pu = Mgy

If we recognize Eq. (15) and establish the identifica-
tion, it becomes equivalent to the mass-shell condition

Pu=0,S(x) (19)
and solution to Eq. (15) can be written as
S@) = [ pud (20)

The Lagrangian expression, which characterizes the
geodesic motion, can be stated as L= /g, %", and
geodesic equation can be expressed as

#+I %7 =0.

Ho

@1

A. The dynamics of neutrino spin in external fields
within a curved spacetime.

The study of spin oscillations of massive Dirac neutri-
nos in the presence of background matter, electromagnet-
ic fields, and gravitational fields is a complex and ongo-
ing research area in theoretical physics. Neutrinos are
fundamental particles with extremely weak interactions
with matter, making their study challenging and in-
triguing. Let's delve deeper into some of the key aspects
of studying spin oscillations of massive Dirac neutrinos
in background matter, electromagnetic fields, and gravita-
tional fields:

e Matter Effects and Neutrino Oscillations: When
neutrinos propagate through a medium, such as the dense
matter found in the core of a star or during the early uni-
verse, their interactions with the medium can modify their
oscillation behavior. This is known as the matter effect or
the MSW effect, named after the physicists who first
studied it (Mikheyev, Smirnov, and Wolfenstein).

The matter effect arises due to the presence of
charged particles in the medium. Neutrinos can experi-
ence forward scattering interactions with these charged
particles, leading to an effective potential that depends on
the neutrino flavor. As a result, the flavor oscillation
probabilities of neutrinos can be significantly altered
compared to their behavior in a vacuum. The matter ef-

fect can induce resonances, where the oscillation probab-
ilities are maximally modified, leading to interesting phe-
nomena in neutrino oscillation experiments.

e Electromagnetic Fields and Spin Precession: Neut-
rinos, being electrically neutral particles, do not directly
interact with electromagnetic fields. However, they pos-
sess a magnetic dipole moment, which allows for an in-
direct interaction with magnetic fields. When neutrinos
propagate through regions with magnetic fields, such as
in astrophysical environments or laboratory experiments,
they can experience spin precession.

Spin precession refers to the rotation of the neutrino's
spin about the direction of the magnetic field. This pre-
cession can modify the flavor oscillation probabilities of
neutrinos and introduce new effects that depend on the re-
lative orientation between the neutrino's momentum,
magnetic field, and direction of propagation. The study of
spin precession in neutrinos requires a careful treatment
of'the neutrino's magnetic properties and their interac-
tions with magnetic fields.

e Gravitational Fields and General Relativity: Neutri-
nos, like all particles, are influenced by gravitational
fields according to the principles of general relativity. In
the presence of a gravitational field, the curvature of
spacetime affects the propagation of neutrinos. This can
lead to modifications in their oscillation behavior and in-
troduce additional complexities.

The gravitational interaction can cause the trajectory
of neutrinos to deviate and can induce effects such as
gravitational redshift and time dilation. These gravitation-
al effects can impact the neutrino oscillation probabilities
and potentially generate spin oscillations as well. The
study of neutrino oscillations in the context of general re-
lativity requires a combination of quantum field theory,
general relativity, and the development of suitable theor-
etical frameworks.

e Experimental Probes and Future Directions: Experi-
mental efforts play a crucial role in studying the spin os-
cillations of massive Dirac neutrinos in various physical
environments. Neutrino oscillation experiments, conduc-
ted at particle accelerators, underground laboratories, or
using astrophysical neutrino sources, provide valuable
data for testing theoretical predictions and exploring the
properties of neutrinos.

Future experiments, such as the Deep Underground
Neutrino Experiment (DUNE) and the Jiangmen Under-
ground Neutrino Observatory (JUNO), aim to study neut-
rino oscillations with higher precision and investigate
matter effects, electromagnetic field interactions, and the



Neutrino oscillations in the Non-Kerr black hole with quantum phenomenon

Chin. Phys. C 48, (2024)

impact of gravitational fields on neutrino behavior.

The authors of the publication in [37] have investig-
ated the neutrino spin oscillations within external fields in
curved spacetime. Their contributions have been highly
valuable to the field. The researchers conducted a study
on the evolution of neutrino spin in the presence of back-
ground matter and an external electromagnetic field with-
in a curved spacetime. The primary motivation behind
this study was to provide evidence supporting the valid-
ity of the quasiclassical equation governing neutrino spin
evolution. They successfully derived a covariant equa-
tion for this purpose, starting from the Dirac equation that
describes the interaction between a massive neutrino and
external fields in a curved spacetime as

u

V
7 (1) v =meu). @2)

iy D, - '%chr"” :

where F,, is the Faradey tensor defined as

FﬂV = ayAv - 6VA}1 ) (23)
and, A, is the 4-vector potential of the electromagnetic
field. In the Eq.(15), D, = (9, +T,) represents the covari-
ant derivative, where I, denotes the spin connection. The

o b
i
o (vu¥v=7¥).~ and

2
l y
% —ﬁEﬂmﬁyﬂyvy(,yﬁ refer to the coordinate-dependent

Dirac matrices. Here, E* =g /\/=g represents the
covariant antisymmetric tensor in the context of curved
spacetime, where g = det(g,,) and g, -denotes the metric
tensor. To conclude, the symbol u represents the magnet-
ic moment of a neutrino. The expression for V¥ = (V°,V),
which serves as the effective potential governing the in-
teraction of the neutrino with arbitrarily polarized and
moving matter, can be found in the reference [38].

The relationship between Eq. (15) and Eq. (1) be-
comes apparent when we observe that neglecting the im-
pact of background matter and electromagnetic fields res-
ults in considering only gravitational effects. Con-
sequently, Eq. (15) can be expressed equivalently to Eq.
(1) as

symbols Y =yH(x),

5:

[ihy” (6,, +Fy) —mc] Y(x)=0. (24)

The expression for the Dirac equation in a locally
Minkowskian frame has been derived by the authors in
the publication cited as [38]. Recognizing their work in
this area, we believe it is unnecessary to duplicate their
efforts. Instead, we can focus on obtaining the Dirac
equation that specifically characterizes the interaction
between a massive neutrino and external fields within a

curved spacetime, tailored to our unique case.

. h
ihy" 0, + 57“75 V-¢ A,

VH
gV

2 2 25)

n(l—ys)—mc} Y(x)=0,

In Reference [39], the covariant equation governing
the quasiclassical evolution of the neutrino spin, denoted
as S* inthe presence of general external fields, is de-
rived. This derivation relies on the Heisenberg equation
applied to the corresponding spin operator, taking into ac-
count the influence of the external fields. Subsequently,
the equation is subjected to an averaging process over the
neutrino wave packet. By employing Equation (25), we
obtain the Lorentz invariant expression for the evolution
equation of the neutrino spin S#, which accounts for the
general interactions with external fields as

as#

=2 (F"'S, —u'F*u,S ) + V2GK*"S , +G"S, (26)
-

where Gr =1.17-107GeV~? is the Fermi constant. Addi-

tionally, the expressions for the tensors K** and G* are

provided as

K = eV

gpv — (yywl +,y/lpv +yv/l;1) u . (27)

IV. NEUTRINOS

The production and detection of neutrinos occur in
various flavor eigenstates, which are represented by [v,).
These flavor eigenstates are combinations of mass eigen-
states, represented by |v;). Therefore, a flavor eigenstate
can be expressed in terms of mass eigenstates, as dis-
cussed in references [16, 40]

V)= Uiy,

(28)

for a set of three neutrino flavors a = {e,u, 7} and a set of
three generations i = {1,2,3}, the Maki-Nakagawa-Sakata-
Pontecorvo (MNSP) matrix U, also known as the neut-
rino flavor mixing unitary matrix, plays a role similar to
the Cabibbo-Kobayashi-Maskawa matrix in governing
quark mixing. In the case of three generations of neutri-
nos, the MNSP matrix is characterized by three mixing
angles 6;, a phase ¢ that describes CP-violation, and two
additional phases o, and «@,, which can only be non-zero
if neutrinos are Majorana particles. If neutrinos are Dirac
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particles, then o) = a, = 0.

In the process of propagation, the neutrino is moving
from source S to detector D, positioned at xs and xp, cor-
respondingly. The amplitude associated with the event of
detecting a neutrino of flavor a at position xs and ob-
serving it as a neutrino of flavor f at position xp is de-
scribed by

ﬂﬁa = |<V,B(xD)|Va(xS)>| = Z U;iUﬁiKVi(xD)lVi(xS))l (29)

To estimate the spinor v;, the WKB approximation in
Equation (11) incorporates both the action S;(x) for the i-
th mass eigenstate and the spin connection I',. Previous
studies [41, 42, 43] have explored three distinct cases that
give rise to neutrino oscillation: (a) occurring in a flat
spacetime, (b) taking place in a curved spacetime within a
non-rotating frame, and (c) happening in a curved space-
time within a rotating frame. In the cases (a) and (b), the
phase difference of the neutrinos relies solely on S(x) and
does not involve the spin connection, resulting in the fol-
lowing phase difference [44]

S(m;, xp —x5) = Si(xp) — Sixg) =/ pudx” (30)
Xs

The presence of the parity-violating matrix s in the
representation of the spin connection [14] in Eq. (13) re-
veals that in the case (¢), there is an additional contribu-
tion to the phase shift when there are differences in spin
orientation between the two mixing eigenstates v;. Mov-
ing forward, we will exclusively examine the massive
neutrinos with identical spin orientations, disregarding
any contributions stemming from different spin orienta-
tions. This decision is made as our research is primarily
centered around neutrino flavor oscillations that occur un-
der the influence of the action S(x). Consequently, we
will solely consider the same spin orientation for the
massive neutrinos, without taking into account any inter-
action between the neutrino spin and the metric that arises
from I[,.

The expression for the amplitude of the neutrino fla-
vor transition can be formulated as follows:

Apo =Y _ Uz Uge S0 31)

The difference in phase between two mass eigen-
states can be written in the following form [35]

(32)

q)ij = S(m,-,xD —)CS) -S (mj’xD - Xs)

The probability of a transition in neutrino flavor, from

the initially produced a flavor to the detection points, can
be calculated as [37]

Poo = ||’ = > UslUpUniUsie™ . (33)
i,j

It is important to note that the action assumes the
form when m is small

()" o
S(misxD_xS):ZTS (xp —x5) (34)
n=0 :

where

"8 (m;, xp — xs)

" (e — xe) =
S (xp = xs) 2

(35)

As a result, using the Taylor series one can express
the phase difference as

2 (1) Ami‘] (2)
q)fj:AmijS (XD—XS)+TS (xp—Xxs)+... (36)
where
Ami=mi-m?,  Ami=(m}+ml)Am}  (37)

V. TWO-FLAVOUR NEUTRINO OSCILLATIONS

The finding in Eq. (33) is applicable to all numbers of
neutrino generations and neutrino energies. However, the
likelihood of converting to a specific neutrino flavor is di-
minished in certain scenarios, including solar neutrino
mixing. In these situations, the MNSP matrix [46, 47]
simplifies to a member of the SO(2) group and can be
represented by a single mixing angle, denoted as ®

cos® sin®
—sin® cos®

In the case of two flavors of neutrino oscillations,
there is a sing\-le difference in mass, denoted as
Am},=mi-m3, and another difference Amf, =
(mi+m3) Am3,. By simplifying equation (33), the final
form of the probability of neutrino oscillation can be ex-
pressed as [48, 49]

(3%)

sin @sin’ @, ,  B#a

1 —sin’@sin’®,, B=a

Ppa 39
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where the phase shift ®;, up to second order can be de-
termined using the equation (36) as

2 o) Ami, )
O =Amy, SV (rp—rs)+ TS (rp—rs) (40)

As a consequence, the probability expression takes
the form as

sin* @ sin’ [S(l) (rp—rs) A,

1
+§S(2>(rD—rS)Am‘112] N ﬂ?ﬁg
Ppo = (41)

1 —sin’ @ sin? [S(” (rp— VS)Am%z

1
+§S(2>(rD—rS)Am‘112] s ﬁ:(l

and here, we can take the expressions for SU (rp —rg) and
S? (rp—rs), which are represented by (53) and (54), cor-
respondingly and the given expression (41) is a general
formula used to calculate the probability of a neutrino un-
dergoing flavor transition as it propagates from its source
to a receiver.

VI. JOHANNSEN SPACETIME

We are currently concentrating on evaluating the Jo-
hannsen spacetime, which is a more general version of
the Kerr spacetime and can be defined using the follow-
ing metric [50]

£(A-d?Ay(nsin°0) , £, %

ds’ = - d d6*~
s B T asmA Y T A0
2a [(r* +a*) A1 (r)A,(r)— A] £sin® 6
_2a [(r a ) 1(NAs(r) } sin did+
B2
(7 +a?)’ A%r) - a®Asin® 0] Esin’6
+ d¢2 b
B2
(42)
where
B = A{(NA3(0)(r* +a*) — Ay (r)A4(0)a* sin® 6
E=3+f(r+g@), A=r-2Mr+d*,
T =r"+da’cos’f (43)

To be clear, generally speaking, it is not possible to
locate the stationary points of the function's effective po-
tential within the given background spacetime (42). Nev-
ertheless, if we make a specific selection of the profile
functions, it may become feasible

k

Al(r)=1+§:alk (g)k , Az(r)=1+§:a'3k <¥) ,
k=3 k=2

oo M k oo M k
As(r)=1+;a5k(r) : f(r)=r2;ek(r) :
As(0) =Al0)=As)=1,  g®)=0,

(44)

The equatorial plane at 6, = /2 is where the station-
ary points of the function effective potential can be
found. It is crucial to highlight that the Johannsen space-
time is distinguished by a set of parameters, namely @y,
a3, @s;, and g, which vary based on the mass and spin
of the black hole. It is important to emphasize that the
key features of this parametrization are: (a) the metric re-
tains its smoothness at all points both inside and outside
the event horizon, and (b) it has been convincingly
demonstrated that it can accurately reproduce certain
black hole solutions in alternative theories of gravity by
appropriately choosing the deformation parameters [51].
In addition, the spacetime is derived by enforcing the
separability of the Hamilton-Jacobi equations, despite
lacking a theoretical basis for doing so. It is worth noting
that alternative theories of gravity exist where non-Kerr
black hole solutions do not meet this condition. However,
maintaining separability may aid in certain calculations.
This spacetime model finds application in conducting
phenomenological calculations in the field of black hole
astrophysics [52, 53].

The equation for massive neutrinos, known as the
Hamilton-Jacobi equation, can be expressed as [54]

V08 _ 40 0 88

Car 8 o ox (45)

Using the metric geometry (42), Hamilton-Jacobi

equation (45) take the form as
. as,)2 160, 08, ¢¢(as¢)2
g(c’)t Y28 e T G ) T
(46)

rr aSV>2 6’6(889>2
*8 (W 8\

The given form of the Hamilton-Jacobi function is as
follows [50]

oS
072 _
dr

1
S= Emzr—Et+L¢+S,+SG 47)

After performing certain algebraic calculations, the
HJ equation can be separated in the form of
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! (P +@A(PE - aAy (L)

oS,
or

B>

)2
2

—aA4(0)E sin 6) +m?a*cos’ 8,

(43)

o [r2 +f(r)] _As(r)A<
(5 (s

The same constant K which is well-known as the
Carter constant can be assigned to both sides of the equa-
tion

(45
00

(68,
or

It is possible to achieve motion on a plane with a
fixed angle 6 = 6, by selecting the indicated angle

>2 =k (A;(:;L

)2 3 [(r2+a2)A1 (r)E—aAz(r)L] A [K—m2 (r2+f(r))}
- As(r)A?

2
—aA4(0)E sin 0) —m?a*cos’ 0,

(49)

k= (A:i(r?oez,L —aA4(6p)E sin 6’0) 2 +m?a*cos’f,  (50)
If that's the case, the action is interpreted as
S=—Et+L¢+/\/I?dr 51)
where
R(r) = (P +a)A(PE —aAz(r)L]2 —A[K=m? (P +f(r)]

As(r)
(52)

As mentioned in Equation (34), if we consider the ac-
tion up to the second order in m* and expand it from rs
(source distance) to rp (detector distance) as

0 (" (P + £(r) VAs(r)
S (rp—rs) = >
s 2V((F2+a)A\(r)E —aA>(r)L)* — AI(<53)

and

D (r2+f(r))2A§/2(r)

s® (rp—rs)=
s 4 [((P+a?)A () E-aAs(r)L)Y —AK]

dr

3/2

(54)

The Johannsen spacetime reduces to the Kerr space-
time when parameterizations in Eq. (44) are not taken in-
to account. The expression for S becomes the same as

the one obtained by the authors of [36], where the first-
order result for neutrino oscillations in a Kerr metric is
derived. Now, in the upcoming section, we will explore
the process of determining the probability for the two-fla-
vor case of neutrino oscillations.

A. Radial propagation

The reason why purely radial motion is not possible
in the Kerr spacetime is due to the influence of the black
hole's rotation, which introduces a phenomenon known as
frame-dragging. Frame-dragging is a consequence of the
spacetime curvature caused by the rotating black hole. In
general relativity, the presence of mass or energy curves
the surrounding spacetime, affecting the motion of ob-
jects within it. In the case of a rotating black hole de-
scribed by the Kerr spacetime, the rotation creates a
twisting or dragging effect on the nearby spacetime.
When a test particle moves radially, aiming directly to-
ward or away from the black hole, it is still subject to the
curvature of spacetime caused by the rotating black hole.
This curvature, combined with the rotation, causes the
test particle to experience an additional angular mo-
mentum component. As a result, the particle's trajectory
deviates from a purely radial path, leading to a combina-
tion of radial and angular motion. Think of it as if the ro-
tating black hole "drags" the nearby spacetime around
with it, causing objects to be influenced by the rotation
even if they are initially moving radially. This effect pre-
vents purely radial motion in the Kerr spacetime and res-
ults in a spiraling or helical trajectory for the test particle.
Therefore, in the Kerr spacetime, a test particle cannot
move along purely radial trajectories. Due to the
curvature of spacetime caused by the rotating black hole,
the particle will experience a combination of radial and
angular motion, even if it initially moves radially.

The Johannsen spacetime, on the other hand, is a
modification of the Kerr spacetime that introduces addi-
tional parameters to account for potential deviations from
the standard Kerr geometry. The specific effects of these
deviations on the motion of test particles would depend
on the particular form of the Johannsen metric and the
values of the parameters. Therefore, it is possible that in
certain cases or parameter regimes, the Johannsen space-
time may allow for different types of motion, including
potentially radial motion. The specific effects of these de-
viations on the motion of test particles would depend on
the particular form of the Johannsen metric and the val-
ues of the parameters. Without knowing the specific form
of the Johannsen metric and the parameter values, it is
challenging to provide a definitive answer regarding the
existence or nature of purely radial motion in the Jo-
hannsen spacetime. The additional parameters introduced
in the Johannsen metric could potentially alter the gravit-
ational field in such a way that purely radial motion be-
comes possible. However, it is also possible that the addi-
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tional forces or curvature effects introduced by the devi-
ations from the Kerr geometry would still prevent purely
radial motion.

The specific form of the Johannsen metric, which in-
corporates these additional parameters, determines the ex-
act nature of the deviations from the Kerr spacetime and
how they affect the motion of test particles. Depending
on the values of these parameters, it is conceivable that
the additional forces or curvature effects introduced in the
Johannsen spacetime could allow for purely radial mo-
tion in certain cases. For example, if the additional para-
meters in the Johannsen metric introduce modifications to
the gravitational field that counteract or weaken the
frame-dragging effect caused by the black hole's rotation,
it could potentially allow for purely radial motion. This
could occur if the additional parameters change the geo-
metry of spacetime in such a way that the angular mo-
mentum component induced by the rotation becomes neg-
ligible or is canceled out. The characterization of @} will
be influenced by the geodesic parameters, including en-
ergy and angular momentum. Next, we consider the scen-
ario of radial propagation with L =K =0, wherein we
find

S= —Et+/RT*(r)dr (55)
where
R.(r) = #+ az)zAf(r)E2 +m?A <r2 + f(r)) (56)

As(r)

By expanding the action to its second order in m?, we
obtain

W (p _L/m (7 +£(r) VAs()
S (rp rS)_ZE AP D) dr (57)
and
r 2 432
@ oy 1 /’) A(r2+f(r)) AL (r)
ST rp—rs)= 1B L) +a) dr  (58)

rs

1 1

2E a®-M?-r}
a- \[(152.M2_a2

at—rp- \Jasy M2 +r5+13

S(*l)(”D—rs)=

As a consequence of Equation (41), the probability
expression for radial propagation assumes the following
form

sin® @sin’ [Sf}’ (rp—rs) Am?,

1
+ 589) (rp— rS)Am‘{Z] , B#a
Ppa = (59)

1 —sin? @ sin? [Sil) (rp—rs)Amy,

1
+ ES@(rD—rS)Am‘l‘z] , B=a

Consequently, from these equations, it becomes evid-
ent that in the case of radial propagation with L=K =0,
the contribution of ¢ to the phase of oscillations is not
discernible. This implies that the phase of oscillations re-
mains independent of ¢. However, it's important to note
that the specific implications of the Johannsen metric on
test particle dynamics and the conditions under which
purely radial motion might be allowed would depend on
the precise form of the metric and the values of the addi-
tional parameters. The exploration of these effects and
conditions would require detailed analysis and numerical
simulations specific to the Johannsen metric [52]. Numer-
ical simulations are used to study the behavior of the Jo-
hannsen metric and its effect on various physical phe-
nomena. By simulating the motion of test particles, elec-
tromagnetic fields, or other relevant quantities in the Jo-
hannsen spacetime, they can compare the results with ob-
servations or theoretical predictions [53]. These simula-
tions can help constrain the values of the additional para-
meters that best match the observed data or desired phys-
ical behavior.

Subsequently, conducting a comparative analysis of
the outcomes obtained from the Schwarzschild, Kerr, and
Johannsen spacetimes would be of great interest. The Jo-
hannsen metric is determined by the mass (M) and spin
(a) of the black hole, along with four independent func-
tions that account for potential deviations from the Kerr
solution. When oy, = a3, = @5, = ¢ = 0, the metric simpli-
fies to the Kerr solution [50]. For the sake of simplicity in
this study, we will specifically examine two scenarios:
one where only s, is non-zero, and another where only
€ 1is set to zero. Consequently, we can derive the expres-
sions for S (rp —rg) and SP (rp —rs) as follows:

. {a-Mz- Vas M*+rh-(a® rp—&-M)+ &M -rp- \/as;M? —a*-cot™
}—L¥ {a'Mz- \/a'gz-M2+r§~(a2'rs—eg~M3)
2E a®-M?*-r§ ; '

a- Vas, - M?* — a2

+ E3'M5'rs' \/(Y52M2—612'00t_1(

at—rg- \Jas  M2+71:+72

(60)

)J
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and

S(*z)(’”D—Vs)

'p

r%)v/(a’sz‘M2+l%) (63'M3+r2)2 {8+12(a2+3MrD—€3M2))
. 2 -

T 4B 8(63-M3+r2))2

3-(a2+r%,)'

B M3'(a52'I’D+263'(M—2rD))_2'63'M5'(2([52'(2M+I’D)+€3'M)

3-a%- (a2+rf))

N 286 M (as;M +3rp) — 1las,es M°rp 16M10g( Vas; M? ‘H’%)‘H’D)

3-a*- (a2+r%))

1
3 (a® +1p) (052M2+r%)|/2 +a9- m'(052~M2+r12))1/2
S M -log(rp) - (36a* - Bas,d® M*(4as; + 3€) + 24ak,&sM*)
a®- \as; - (as,asM? +1p) 12
&M - (8d’as; M*(4as; +36) - 36a* — 24ak,6sM*) -log ( sz -\ asaM? + 13+ as; - M)
’ at @(052M2+r12))1/2
12M (a* — as;M?) (a®rp = 2a*&M? = EMCrp)  166M° (3a*as, — 4a* e M? + 9as,es M*)
- (@saM?+13) 12 - asrp(assM?® +13) i
3eIM° (8as,M? —5a?) ~ 6as,e M® . 16as,es M° }
atr?, (a52M2 + r%)) 1z a*r}, (a52M2 + r%))1 7 atr3, (052M2 + r%,) 12
1 s/ (asa-M>+73) (e M 5 2 12 (a®+3Mrs —esM?))
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a® \as; (@saM? +13) 12
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As a result, the probability expression for radial
propagation in Johannsen spacetime takes on the follow-

ing form

Pjohannxen _

Ba

sin? ©sin” [S (1 — r5) Am3,

1
+ 589 (rp— rS)Am?Z} , B*a

(62)
1—sin’ @sin’ [SY (rp - rs) Am?,

1
+ ESiz)(rD—rs)Am‘fz} , B=a

1/2 +

16([52€§M9 }
/2 |
aﬁrg (a52M2+r§) /

(61)

When as, = ¢ =0, the metric (42) is simplified and
reduces to the Kerr solution. Consequently, the expres-
sions for S+ (rp, —r¢) and S*® (rp —rg) also reduce in a

manner similar to that observed in Kerr spacetime [36,
18, 29]

1
SV (rp—rs)= =" [rD —-rs—a (arctan ™ _ arctan ri)} .
2E a a
(63)

and
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1
SP(rp—rs)= <" {Z(rp —rg)—3a (arctan p —arctan r—s)
8E3 a a

N a(rp—4M)  a*(rg —4M)

at+r} at+r?
2+ 2 4M 4M
—2M1n(a2 r§>+ az ¢ 2}
as+rs (a2+1})"  (a>+13)
(64)

As a result, the probability expression for radial
propagation in Kerr spacetime takes on the following
form

sin’ @sin’ [Sil) (rp—rs) Am%2

1
+ 582 (rp - rs)Amb] . Bra
Pas” = (65)

1 —sin® @sin? [Sil) (rp—rs)Amy,

1
+38(p=ro)Amly| . B=a

If we set asy, €, and a to zero, the metric given by
equation (42) is simplified and we obtain the Schwarz-
schild solution. Consequently, the expressions for
SV (rp—rs) and 8P (rp—rs) also simplify, resulting in
the recovery of the same result as in Schwarzschild
spacetime [16, 11]

1
Sil)(”D—”s) =— (rp—rs).

5E (66)

and

1
Siz)("n—rs) = 4B

= (67)

p
“|lrp—rs —2M -In —
I's

As a result, the probability expression for radial
propagation in Schwarzschild spacetime takes on the fol-
lowing form

sin? @ sin? [S(*” (rp—rs)Ami,

1
+§Si2)(rD—r5)Am?2] N ﬁia
Pg(zlrhwrzd — (68)

1 —sin? ®sin? [S(*” (rp— rS)Am%2

1
+ 582~ rs)Amb) . p=a

VII. PROPER DICTANCE

The neutrino propagates across its proper distance,
while dr is simply a coordinate. The proper distance can
be expressed as [14]

dL, = (M (69)

- gVH> dx’dx*
800

In the context of Johannsen spacetime, there exists

2
dL, = \/—g,,drz + <g,¢ —g¢¢> d¢?
8n

The following expression is obtained by multiplying

(70)

dr’
P gt2¢ ‘bz
L,= / g+ —- —dr 71)
p . \/ 8 (gn 8o 2 (
With . the use of four-velocity normalization,

8uwX*x”=—1, and considering the aforementioned expres-
sions, j- and ¢ can be expressed as

As
m
\/ [(2+a®)A(r)E - aAy(r)L] LA [K—m?(r? + f(r))] ,
L AP +a) - A sin’6)’
C Esin’0 [ +a?)’ A(r) - a?Asin 4]

” VAD
g VRN=— ¢

¢
(72)

It is apparent that performing an analytical calcula-
tion of Eq. (71) is more complex.

VIII. FINDINGS AND PROSPECTS FOR
THE FUTURE

In this work, we delved into the mathematical aspects
of the Dirac equation within a curved space-time and in-
vestigated its application in analyzing neutrino oscilla-
tions. To achieve this objective we have used the WKB
approximation. In particular, we devised a technique for
determining the phase shift in flavor neutrino oscillations
by employing a Taylor series expansion of the action,
considering contributions up to fourth order in Am*. In
section 4, we examined the intricate dynamics of trans-
ition probabilities within our framework, revealing their
intricate nature despite fluctuations in mass representa-
tion. Furthermore, this method has been employed to
evaluate the variation in the phase difference of neutrino
mass eigenstates caused by the gravitational field ex-
plained by the Johannsen spacetime.

We know that the phenomenon of neutrino oscilla-
tion, which is a quantum phenomenon, takes place in both
flat and curved spacetime metrics. It is anticipated that
the presence of massive objects like stars and black holes,
with their gravitational fields, can impact the way neutri-
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nos propagate and alter their oscillation patterns. Re-
search into neutrino oscillation in curved spacetime is
currently being actively pursued, and its findings hold
significant implications for the fields of astrophysics and
cosmology. Furthermore, it is widely acknowledged that
the application of gravitational lensing methods offers
compelling proof of the presence of Dark Matter. Accord-
ing to the principles of general relativity, the trajectory of
the light can be bent when encountering massive objects
or gravitational fields. This deflection is closely linked to
the mass of the object and can be likened to the focusing
effect of a lens. In our upcoming research, we will invest-
igate the gravitational lensing effect on neutrino oscilla-
tions to provide evidence of the existence of dark matter.
We would like to emphasize the significant progress
made by the authors of the publication in [38] in investig-
ating the intricacies of neutrino spin oscillations within a
curved spacetime, particularly in the presence of back-
ground matter and an external electromagnetic field. The
authors have successfully derived the Dirac equation that
governs neutrino oscillations under these external field
conditions. They have also conducted numerical solu-
tions to explore the behavior of these oscillations. The

utilization of numerical simulations and the analysis of
experimental data are crucial in comprehending the beha-
vior of neutrinos in realistic scenarios. Neutrino oscilla-
tion experiments, such as those conducted at particle ac-
celerators or involving atmospheric and solar neutrinos,
provide invaluable data for testing theoretical predictions
and gaining insights into the spin oscillations of massive
Dirac neutrinos in diverse physical environments. Their
work would require a significant investment of time and
extensive numerical calculations due to the complex
nature of studying spin oscillations of massive Dirac
neutrinos in the presence of background matter, electro-
magnetic fields; and gravitational fields. Looking ahead
to our future papers, our objective is to explore and un-
cover the potential for spin precession in the presence of
background matter and an external electromagnetic field
within-a curved spacetime. The derivation of the neutrino
spin evolution equation provided in this context relies on
the general spin evolution equation in the Heisenberg rep-
resentation. Adopting this approach enables us to care-
fully analyze the contributions of various external fields
mentioned earlier to the evolution of neutrino spin.
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