Chinese Physics C  Vol. 49, No. 1 (2025)

Phase transition of modified thermodynamics of the Kerr-AdS black hole

Qin Liu'f

Xiaoning Wu

341 234§

Xiao Zhang

'School of Physical Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
*Guangxi Center for Mathematical Research, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
*Institute of Mathematics, Academy of Mathematics and Systems Science and Hua Loo-Keng Laboratory, Chinese Academy of Sciences,
Beijing 100190, People's Republic of China
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Abstract: We investigate the critical phenomena of Kerr-AdS black holes in the modified first law of thermody-

namics. The modified black hole thermodynamics exhibits the van der Waals-like phase structure. All the critical ex-

ponents are calculated, and the swallowtail diagram of free energy is plotted. Comparing with existing results, the
main difference is the correspondence between thermal quantities of the Kerr-AdS black holes and the van der Waals

system. In previous work[16], the correspondence was (Qp,J)— (V,P). In our work, the correspondence is
(J,Q) = (V, P). This difference results from rotating effect. The modified black hole thermodynamics is associated

with rotating observers. The free energy in such reference contains an extra rotating energy. This extra part induces a
Legendre transformation in (QH, J) cross-section, which yields the different correspondence.
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I. INTRODUCTION

Since Bekenstein and Hawking [1, 2] found that black
holes can be seen as thermodynamic objects with temper-
ature, it is widely accepted that black hole thermodynam-
ics has been an exciting and challenging field in theoret-
ical physics. As fascinating phenomena in black hole
thermodynamics, phase transitions and critical behaviors
have attracted the attention of many researchers. Based
on the analogy between black holes and thermodynamic
objects, Hawking and Page proved the existence of a
phase transition between the Schwarzschild-AdS black
hole and the thermal AdS space [3]. After their pioneer-
ing research, many works were carried out in this direc-
tion and rich phase structures were discovered [4—8]. The
later-established AdS/CFT correspondence has further
stimulated attention to the asymptotically anti-de Sitter
(AdS) black holes [9, 10]. In different AdS black hole
backgrounds, phase structures and critical phenomena
have been studied and promoted [11-19].

It is worth noting that the energy definition of Kerr-
AdS black holes is not unique. This is because the stand-
ard Komar energy expression diverges at infinity. Hen-
neaux and Teitelboim [20] first derived the energy m/=2,
which satisfies the first law of black hole thermodynam-
ics. The authors [21] proposed the energy m/=32 by ap-
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plying the Hamiltonian approach. Using the Iyer-Wald
formalism, Gao et al. [22] clarified the origins of the two
different energy definitions of Kerr-AdS black holes.
They found the energies associated with different observ-
ers at infinity, and there is a relative rotation between the
two kinds of observers. The associated thermodynamics
for the different energies are also obtained in [22]. For
non-rotating observers, the energy is m/Z?, and for rotat-
ing observers, the energy is m/Z%2. The energy m/Z?
corresponds to the standard thermodynamics of black
hole, and its related critical phenomena have been stud-
ied, including phase transition and critical exponents [16].
The other energy m/Z3? is related to the modified first
law of black hole thermodynamics [22]. Given that the
phase transition is associated with the degrees of free-
dom within the system, and there is only a relative rota-
tion between two observers, it is reasonably conjectured
that there should be similar phase structures in the modi-
fied thermodynamics. In the current work, we try to in-
vestigate whether the phase transition structure still ex-
ists under this modified first law of thermodynamics. Fur-
thermore, the observer dependence of the phase structure
will be discussed.

The paper is organized as follows. Section II briefly
reviews the basic knowledge of the Kerr-AdS black hole.
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Section III is mainly concerned with the modified first
law and thermodynamic quantities. The main results are
in section IV and V, the phase structure of the modified
first law has been exhibited. Discussions are given in the
last section.

IO. KERR-ADS BLACK HOLE THERMODYNAM-
ICS

The Kerr-AdS black hole solution of the Einstein
equations in the Boyer-Lindquist coordinates reads

A asin’@ .2 p?
2 _ 2
ds® = —;(dt— = dep) + 5
2 = qin? 24 2
p°,, ZEsin 0 r’+a 2
+—=d6° + adt— ———d¢)", )
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A= +a)(1+ %) —2mr. )

Here A = -3172 is the cosmological constant, m,a are
the mass parameter and angular momentum parameter.
The associated thermodynamic quantities are [16]:

_ 3ri + (@ + lz)r%r —Pa? _ n(ri +a?) Q= a=
Anlr,(rt+a?) E T Rya
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where r, represents the horizon radius satisfying

A(r,)=0, T, S and Qp are defined as the Hawking tem-
perature, the Bekenstein-Hawking entropy and the angu-
lar velocity respectively. The energy M and the angular
momentum J are M = % and J = %1 respectively.

In 2012, S. Gunagekaran, D._Kubizh'l'z,oek, and R.
B.Mann introduced the extended phase space for AdS
black hole [23], where the cosmological constant A can
be interpreted as a pressure term via the following rela-
tion

p=-2 @

~or

The first law of the black hole thermodynamics and
the Smarr formula are

6M = TSS + Q0] + VP, (5)

M
5 =TS +Qul~VP, (6)

4rnlr,(a® + ri)
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Followed Gunasekaran et al.'s perspective, many works
had been down to explore the thermodynamic properties
of AdS black holes on the extended phase space [24—27].

where the thermodynamic volume V is

III. MODIFIED BLACK HOLE THERMODYNAM-
ICS

It is known that there is ambiguity on energy notion
of the Kerr-AdS black holes [20, 21]. This ambiguity has
been a long standing issue. In the very recent article [22],
the authors proposed a natural criteria to justify the no-
tion of energy. In particular, they examined whether the
associated first law of the black hole thermodynamics ex-
ists. Within the Iyer-Wald formalism, two versions of the
first law and the Smarr formula were established for dif-
ferent energies. The difference originated from the choice
of the Killing vectors. The standard energy notion m/=?
3

is associated with the Killing vector 9 -

— = —+—aA
' o ar ot 3

The relevant thermodynamic quantities, the first law and
the standard results are presented in section II. The other

energy notion M = m/E%? is related to the Killing vector
1 0

Eor using the notation from [22], the corresponding

thermodynamic quantities are

A Q A T A \%
Qp = 1:, r=— V=—1.

=) = —
— — —

(M

The modified first law of black hole thermodynamics
is presented as

M =T6S +Qy6J + VP, (8)

Based on the concrete expressions of the Killing vec-

tors, there exists a relative rotation between two kinds of
observers. Unlike a naive observation, aT coincides with
the generator of the conformal boundary, corresponding
to non-rotating observers, whereas rotating observers are

related to -

IV. PHASE STRUCTURE ON (&, J) SECTION
Using eq.(7), the functions Qy,J and T canbe ex-
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The above equations can be viewed as equation of
state of the Kerr-AdS black hole.

In this section, we focus on the phase structure of the
modified black hole thermodynamics on the (Qy,J)
plane. Previous work [16] had considered similar prob-
lems for the standard black hole thermodynamics on'the
(J,Qy) section, without considering the extended phase
space.

According to the equation of state (9)-(11), the iso-
therms for various temperatures on €y —J plane are
presented in Fig. 1. Qualitatively, Fig. 1 is similar to the
liquid/gas PVT diagram [28]. Under the following corres-
pondence,

7= 0246791
— 7.=0.247291
| T=0247791
1 — T=0248291
i — T=0.248791
It T =0.249291
i —— T=0249791

02 04 06 08 10

J
Fig. 1. (color online) We draw isotherms of Kerr-AdS black
hole with /=1 in Qg -J plane. Qualitatively, the isotherms
near the critical temperature 7. have similar behavior of van
der Waals system. The black solid line is the critical isotherm.

Qu—PJ—Y, (12)
there is a van der Waals-like phase structure. By contrast,
the correspondence in the previous article [16] was
JoPQy—> V.

As the temperature decreases until 7, an inflection
point is formed. So, the temperature 7, and the angular
velocity Qy at the critical point satisfy [28]

(aQH> o (a@,,)
a ) ar ),

Combining with the equation of state (9)-(11), the
critical point is

=0.

(13)
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A. Law of equal area and order parameter

In this subsection, we study firstly the coexistence
condition between two states, from which the law of
equal area will be obtained. For two stable states & and b,
it is well-known that coexistence condition is the equal
free energy [28], i.e. G(a) = G(b). Compared with the
PTV system, the free energy for the black hole system
should be

dG = —-SdT + JdQy. (17)

Fixing the temperature, one can get the free energy by
integrating above equation along the isothermal curve.
The difference of free energy between two states should
be fah JdQH(this integral is along the isothermal curve
Whicp connects the two states). From Fig. 2(a), since a
and b are coexistent states, it means

QH;) R
JdQy =0,
Qra

which implies the areas of region A and region B in Fig.

G@a)-Gb) = (18)
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(b)

(color online) (a) The brown solid line represents a isotherm with temperature 7 = 0.248291 and /=1, a and b are coexistence

states. Because of equal free energy requirement of coexistence states G(a) = G(b), area(4) = area(B). (b) The red dashed line is the co-
existence curve of phase transition above 7.. The black solid line represents the critical isotherm with 7= 1.

2(a) are equal, this is just the Maxwell equal area law.
In order to investigate the critical behavior near the
critical point, we need to define the order Jparz}meter. Ana-
) —

518 defined

as the order parameter. The coexistence curve is the red
dashed line in Fig. 2(b).

a

logous to the van der Waals system, 77 =

B. Ciritical exponents
For van der Waals system, near the critical point, one
can get the critical exponents [28]. For the correspond-
ence (12), the analogous critical exponents can be ob-
tained as following.

e Degree of critical isotherm:

Qu = Que = AslJ = J P sign(J - J.), T=7. (19
e Degree of coexistence curve:
n=-Ag(T-T.Y, T>T. (20)
e Degree of heat capacity(J = J.):
A {~F=T))" T<T.
¢, = @=to) = T< @1
AA+T-T0)} T>T..
e Degree of isothermal compressibility:
17 8] A {—(T-TH}" T<T.
= (25 - )
JNoQy /¢ AT -T))" T>T.

In the following of this subseciton, we calculate expli-
citly the critical exponents for the modified black hole
thermodynamics.

1. Degree of critical isotherm

At critical point, the first and second derivatives of
Qy with respect to J satisfy

aQy 3Oy
(%), =0, (220, <0 e3)
The third derivative can be calculated as
o) 16384(nP)"/>
(Lo, - 1T (24)
aF "l 9./8742+123

hence ¢ = 3 by the definition of J in eq.(19).

2. Degree of coexistence curve

In Fig. 2(b), we plot the curve of the coexisting states
using Maxwell's equal-area law. Along this curve, all the
thermodynamical quantities only depend on the temperat-
ure. To get the value of the degree of coexistence curve,
B, we need to obtain the relations between 5 and 7' near
the critical point. For this purpose, we expand Qy in
terms of J and 7' to the third order as

~ N ~ A~ A 1 ~ PO
Q= Qpe = (07 Qu) (T —T,) + 5(6%QH),IC(T -1y
+(070,9m)7) J(T =TT - J.)

1 o PN 1 ~
+ 6(6-;QH>J|C<T -T) + g(aiszH)flcu— Jo)?
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+ 5 (@@ 007) T~ TP (- 1)
+ %(mwifsz),u@ —~THJ -1 (25)
For simplicity, let us introduce
w=0y-Qu., 1=T-T., j=J-1, (26)
then eq.(25) becomes

w = C102+C2022 + C|12j+C3053 +C()3j3 +C2|i2j+6122j2' (27)

According to the equation of state (9)-(11), one can
calculate all coefficients in eq.(27),

/ /1
ClOI—\/zﬂ', Cro = 6(29\/5_41)71'3/2 F,

64 s 9(11\5—15)772
C11:§<\/§—1>7TP, C30=f,
16384(nP)"2
CB3=——"—"  —/—m=>
9/87V2+123
2P
Gy =544 ——  pP
5331 V2 +7539
2048
cn="——(4-3V2) 7P (28)
3
The equilibrium condition A, =0, implies
W(jar 1) = w(jp,1), which in turn yields
Wy = Wa = (i = jo) [enT+en? +ciat(ju+ jis)
+co3(jo+ jajv +J3)] =0. (29)

By employing the Maxwell's equal area law, we know
the area of the shaded region in Fig. 3 is equal to the area
of the rectangle cdba in Fig. 3. So we have

Jp R 1
/ QdJ = (Jb—Ja)E(QbJrQa) (30)
J,

a

(The left side of eq.(30) is the area of the shaded re-
gion in Fig. 3 and the right side is the area of the rect-

1
angle cdba in Fig. 3. The factor g(Qb+Qa) comes from
the equilibrium condition Q, = Q,.) By using eq. (26), the
eq. (30) becomes

| —— T=0.248291
\
0.4520 |
oasis
d
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<«C /
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o
d
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J
Fig. 3. = (color online) According to the equal area law

area(4) = area(B), the shaded area should equal to the area of
the rectangle cdba.

Jp R B
/ QdJ =
J,

a

Jb
/ Q-0)d(J - J»} + QU =J) =T, =T
J,

a

[ s
= / (Q_Qc)dj:| +Qe(jp = Ja)
L ja

Jb
= /de} +Q:(jp = Ja)

Ja

_ 1A A
= U= J)5 (@ +0,)
1 A A A A A
= (]b _ja)i([Qb - Qc] + [Qa - Qc]) + (.]b _ja)Qc
1 A
= (U _ja)i(wb +Wa) + (b = Ja) e
€1y}

Above result implies

Jb 1
/ wdj = (jp _ja)i(wb +wy).

Ja

(32)

Submitting eq.(27) into eq.(32), one can obtain

Jb
/ (C]0i+CQQEZ+C]1ij+C30f3+Co3j3+C2]E2j+Clzfj2)dj
Ja
_ - . . 2, . 1 -2 %) 3, .
= 1010 = Ja) + €20t (o = Ja) + 51110, = Ja) + €301 (o = Ja)
1 R e P N S S
+4603(]b J)+ 20211 Uy —Ja)+ 36’121(]1, Ja)

.. _ L 1 _
= (Jio = ja)[Crol + Caol + icllt(]b +ja) + Cof
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1 AP
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dividing both sides of eq.(33) by (j, — j.) yields

_ 5 1 _ . . _
CloH'Czolz'*‘50111017"'](;)"'03013
1 . . 2 ) 1 2. .
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|
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Eliminating similar terms on both sides of eq.(34)
gives

1 . oo 1 _ ., ...
—co3(p + J) U+ 2) + 5ot + jado + 2

4 3
1 3 a0 Lo
= 5%3(]137"']2)4‘ Eclzt(Jzz,"'J(z,)- (35)
Then we can get
1 3. 0. .o a Lo o
20U+ oo+ oo+ Jo)+ 360005 +ado+ J2)
1 S U
= 5003(]2 + ]3) + Eclzt(]zz, + ]2), (36)
which implies
1 3 .0 o, a1 S
0= yeosUa = Jado = Jado+ )+ €12ty = 2o + J2)
1 . . . N 1 ) AN
= 7603Us + Ja) (b = Ja)” + g C12t(jo = Ja)™- (37)
Simplify the above equation, and we find
R | S B
(o= Ja) [*C03(]a +Jp) + *Clzl] =0. (38)

4 6

Denote j_=j,— j,=Jy—Jusji = jb+ ja, from eq.(38),
one can solve j, as

2(,’12;
3003 ’

Je= (39)

substituting eq.(39) into eq.(29) yields

_ (4 }
—4C1]l+ (% —4C2]> IZ
Cos . (40)

Co3

j-=

Near the critical point, the temperature dependence of
the order parameter is

I =Ja

S Ay(T -T.)"2.

(41)

1
Thus we read B8 = 3

3.\ Critical exponent of heat capacity

By definition (21), the critical exponent of heat capa-
city can be obtained as follows. Recall that the energy M
is given by

M= o 42)
2r+ (1 - l7>
the heat capacity C; can be calculated as
om 3
=(—=),le===#0. 43
C, (GT)J| 8P¢ (43)

Due to the heat capacity neither diverges nor van-
ishes, it follows that o and « are both zero, i.e.,
a=a =0.

4. Degree of isothermal compressibility

The isothermal comprssibility «7 is defined as
! (ﬂ)
J (9QH T’

which diverges at the critical point. Introducing @,7 and j
as

(44)

Kt =

. QHA—QHC, = TTTC’ i J—JC’ 45)
Qpe T, Je
then
Qu=0n0+Qy., T=Ti+T., J=Jj+J., (46)
and
w=0pd, =11 j=1J.]. (47)
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Eq.(27) can be rewritten as
D= Crol+ ol +Cnlj+ ol +Cos ) +Oilj+Cial) . (48)

Using eq.(44), we have

-1 1 0Qy,
- = . 49
Jkr ( aJ ) ( aJ )T “49)
afzH T

Combining eqs.(41), (46), (47) and (48) yields
() (#007) b () (50)
JKT aoJ 7 (97 aJ 7 JC 67 7 6] ;’

(50)

namely

a ; I
ko (52, = e+ 3eos P + o) = Ci+0(D),
aj’!

(1)

where C; is a real constant and eq.(41) is used in the last
step. By the definition of y and y’ in eq.(22), we get
y=y =1L

C. Free energy and Widom scaling

1. Free energy

According to the  differential  expression
dG = —SdT + JdCyy,, at constant angular velocity Q, we
can make use of the Egs.(3), (10) and (11) to plot G- T
diagram.

From Fig. 4, the swallowtail structure is analogous to
the van der Waals system. This further confirms the sim-
ilarity between the modified thermodynamics and the
PVT system.

2. Widom scaling law

A well-known fact is that in the vicinity of the critic-
al point, the free energy can be expressed as a homogen-
ous function, with corresponding homogenous indices p
and ¢ [28]. Based on the previous discussions, we see that
the critical exponents satisfy the following expected rela-
tions:

a+2B8+y=2, a+p(y+1)=2, (52)

Y6+ =Q2-a)6-1), y=B6-D. (53)

The free energy has the following scaling symmetry

0| — Gy=04 _
— Gy=0425
Gye= 0.45509

001 — (=048

e I ,,7—QH<QHC

/ ’ éH = éHc

/ I 7éH>dHC

+

Fig. 4. (color onling) This diagram describes the qualitative
behavior of the free energy as a function of temperature for
various angular velocity with /= 1. The angular velocity de-
creases from bottom to top. The green solid line corresponds
to Qp > Qpe, the yellow solid line to Qy = Qy., and the re-
maining red solid lines display Qy < Qp.. For Qp < Qp., the
existence of swallowtail structure implies there is a first-order
phase transition in the system.

1 3
==, g="-. 54
p q=7 (54)

gs(A"e, A7 j) = Agy(e, ), 5

In terms of p and ¢ [28], the critical exponets read

w=2P"1 (55)
q
1_
p=—1, (56)
p
2g—-1
y= (57)
p
s=-1_. (58)
I-¢q

The above scaling relations could be regarded as the
consistency check for the critical exponents we got in this
section.

V. PHASE STRUCTURE ON (P, ) SECTION

In standard black hole thermodynamics, the phase
structure on (P,V) section has been investigated [17-19,
23, 30]. In this section, we study the phase structures on
(P, V) section in the modified black hole thermodynam-
ics. In Fig. 5, we plot the P— V diagram corresponding to
the Kerr-AdS black hole.
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—— 7=0.0386997

7=0.0391997
—— 7=10.0396997
—— 7=0.0401997
—— 7=0.0406997
— T.=0.0411997

T=0.0416997

Fig. 5. (color online) P-V diagram of Kerr-AdS black hole
with J=1. The brown solid line is the critical isotherm and
the red dot is the critical point.

Following the method used in [30], after neglecting
all higher order terms of J, the equation of state can be
written as

e
A

22 (4 Vor? TNV + 3)

P= - — +
VU 26BRVE 3 (et i 4 1)
(39
where V satisfies
. 4xr?  A8x(4mxPri+1)J?
V= e, n ( + )2 ) (60)
3 ry (871Pr3 + 3)
. . . .. opP
Following the critical point condition —zx |TC =0,
702 ’TC =0, we can get
0.003 A . 0.041
P.=—"——, V.=129.603°7 T.,=—. (6]
J \

Now we consider the phase transition which happens
below the critical temperature T..In Fig. 5, this van der
Waals-like phase structure is clearly visualized. The be-
havior of the physical variables near its critical point is
quantitatively described by the critical exponents. Fol-
lowing a similar method in Section 4, we have

y=1, §=3. (62)

The above results show that the phase structure for
the modified black hole thermodynamics in (P, V) section
is almost the same as the standard one [31, 32], the only
difference is that all thermal quantities have a deforma-

tion factor V= which is shown in eq.(7).

VI. DISCUSSION

In Kerr-AdS spacetime, there exist two sets of the
first law of thermodynamics, because of different choices
of observers at infinity. We focus on investigating the
critical phenomena of black hole thermodynamics associ-
ated with rotating observers. Based on the modified first
law and mass formula, we obtain the phase structures in
the extended phase space for both the (€y,J) cross-sec-
tion and (P, V) cross-section. In comparison with the pre-
vious results [16], the phase structure within the (Qy,J)
plane remains analogous to the van der Waals-like phase
structure. However, the difference lies in the correspond-
ence of thermodynamic quantities. In previous work [16],
the correspondence is J — P, Q; — V, but in our case it
is Oy — P.J > V. The aforementioned changes result
from differences in observers. Compared to non-rotating
observers, the energy measured by rotating observers in-
cludes rotational kinetic energy part ~QJ. This vari-
ation is equivalent to performing a Legendre transforma-
tion in the extended phase space with respect to the con-
jugate coordinates J and €, which is the reason why the
thermodynamic quantities correspond differently. Addi-
tionally, we discussed the phase structures on the (P,V)
plane in modified thermodynamics, finding that the ob-
tained results closely resemble those in standard thermo-
dynamics.
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