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Abstract: The percolation study offers valuable insights into the characteristics of phase transition, shedding light

on the underlying mechanisms that govern the formation of global connectivity within the system. We explore the

percolation phase transition in the 3D cubic Ising model by employing two machine learning techniques. Our results

demonstrate the capability of machine learning methods in distinguishing different phases during the percolation

transition. Through the finite-size scaling analysis on the output of the neural networks, the percolation temperature

and a correlation length exponent in the geometrical percolation transition are extracted and compared to those in the

thermal magnetization phase transition within the 3D Ising model.-These findings provide a valuable way essential

for enhancing our understanding of the property of the QCD critical point, which belongs to the same universality

class as the 3D Ising model.

Keywords: percolation phase transition, machine learning, QCD critical point, three-dimensional Ising

model

DOI: CSTR:

I. INTRODUCTION

Exploring the phase diagram of Quantum Chromody-
namics (QCD) and searching for the critical point (CP) of
the phase transition from hadrons to Quark-Gluon Plasma
(QGP) is a hot topic in relativistic heavy-ion collisions
[1-4]. It is suggested that at vanishing or low baryon
chemical potential yp and high temperature 7, the trans-
ition is a smooth crossover [5]. Predictions from effect-
ive field theory indicate that at low T and high ug, the
phase transition may be first-order [6, 7], with the CP
representing the end point of the first-order transition
line. Physicists are currently dedicated to investigating
the boundaries of the QCD phase diagram and determin-
ing the location of the CP, as these subjects hold consid-
erable scientific interest [8, 9].

The QCD phase diagram is not yet well understood,
either experimentally or theoretically. Lattice QCD calcu-
lations are currently limited to scenarios with zero or
small baryon chemical potentials due to the sign problem
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[10, 11]. As a result, various phenomenological models,
including spin models, have been proposed to study the
universality aspect of critical phenomena [12—16]. Phase
transitions arise from spontaneous symmetry breaking,
and systems sharing the same symmetry fall into the same
universality class, exhibiting identical critical exponents
and potentially similar critical behaviors. It is argued that
the QCD critical point belongs to the Z(2) universality
class, the same as the 3D Ising model [1, 17-20]. By
mapping the parametric equation-of-state of the Ising
model, one can establish a connection between the phase
diagram of the 3D Ising model in the (7, H) plane and
that of QCD in the (7, up) plane [21, 22].

Over the past few decades, there has been increasing
interest in exploration of geometrical characteristics of
phase transitions [23—25]. Geometry holds a unique sig-
nificance in its ability to provide insight into the underly-
ing mechanisms and behaviors of critical phenomena. By
analyzing geometric properties, one can predict critical
exponents, scaling laws, and universal properties of a
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critical system [25-29]. In particular, percolation theory
serves as an optimal framework for this purpose. As a
statistical mechanism, percolation theory is dedicated to
investigate the behavior of interconnected clusters within
various media and how this connectivity affects the
macro-scale properties of the system. This theory has
demonstrated its utility in detecting the distinctive fea-
tures of the QCD phase transition. It has been used to in-
vestigate the initial phase of deconfinement transition in
heavy-ion collisions [30—32]. The method has also been
extended to explore the confinement-deconfinement
transition of both SU(2) [33—35] and SU(3) [36, 37] lat-
tice gauge theories. Through a suitable definition of
clusters, it is found that the deconfinement transition of
gauge theory can be characterized by percolation of
clusters within the dominant sector. Additionally, the
QGP to hadron crossover transition has been character-
ized via the temperature dependence of the shear viscos-
ity over entropy density ratio, utilizing the percolation
framework within the Color String Percolation Model
[38].

The studies on phase transitions in the Ising model in
the market have commonly employed magnetization to
explore the thermal magnetization transition under altera-
tions in temperature or external field. This thermal mag-
netization transition is characterized by a pivotal Curie
temperature (7.). When surpassing 7, the system as-
sumes a disordered phase, but when dropping below it,
the system transitions into an ordered phase character-
ized by a non-zero spontaneous magnetization. The geo-
metrical percolation transition, on the other hand, is re-
lated to connectivity of spin clusters-[39]. Envision a lat-
tice of spins where each spin interacts with its nearest
neighbors. At a specific critical percolation threshold, de-
noted as 7,, the emergence of percolation cluster, in
which the microscopic elements become connected and
form a sample-spanning path across the system, is sug-
gested to be an indicator of the occurrence of a continu-
ous percolation phase transition [40].

The investigations on percolation transitions within
the Ising model originally concentrate on the Geometric-
al Spin (GS) clusters, which comprise nearest neighbor
spins with the same sign in the lattice. The results of the
2D Ising model show that percolation transition occurs
exactly at the critical temperature T, of the thermal mag-
netization transition [41]. However, a noticeable dispar-
ity between these two transitions is observed in three di-
mensions [42]. Consequently, the introduction of Fortu-
in—Kasteleyn (FK) clusters is proposed [43, 44], wherein
nearest neighboring spins of the same sign are con-
sidered to belong to the same cluster with a certain prob-
ability. By introducing a parameter of the bond probabil-
ity, the critical point and the critical exponents of the FK
clusters between the thermal and percolation transitions

coincide. Nevertheless, precise solutions of the percola-
tion temperature and associate theoretical values of critic-
al exponents concerning the percolation phase transition
of the GS clusters within the 3D Ising model remain as
open issues.

In traditional statistical physics, the order parameter is
commonly used to classify different states of matter and
identify phase transitions within a system. However, the
intricate nature of robust interactions introduces consider-
able challenges in ascertaining the order parameter asso-
ciated with the QCD phase transition and subsequently
measuring it through experiments. Recent advancements
have proposed integrating machine learning (ML)[45, 46]
as a promising approach to explore this complex physical
issue[47, 48]. The advantage of ML methods lies in their
strong adaptability and generalization capabilities. They
can automatically learn features, handle large-scale data,
recognize complex patterns and relationships, and sup-
port multi-task learning. This makes ML a powerful tool
not only for enhancing efficiency and discovery but also
for solving complex problems and achieving intelligent
decision-making. Empirical evidence now substantiates
that ML techniques can effectively discern the order para-
meter [49—54], learn percolation phase transition in vari-
ous models [55, 56] and identify thermal magnetization
phase transitions [12, 57—61] in the Ising model using
various ML methodologies. Furthermore, recent study
shows that the same neural network can be utilized to
identify different phase transitions belonging to the same
universality class [62]. This finding enhances the feasibil-
ity of using ML methods to investigate phase transitions
across a wide range of scenarios.

In this work, we aim to investigate the percolation
transition of GS clusters in the 3D Ising model using
state-of-the-art ML techniques. Unlike conventional ap-
proaches, these methods do not require prior knowledge
of order parameters or any additional information. We
demonstrate the efficacy of both the unsupervised and
semi-supervised ML methodologies in categorizing dif-
ferent phases of the percolation transition. Furthermore,
we try to extract the temperature of the percolation
threshold and a critical exponent associated with correla-
tion length directly from the output layer of the neural
networks. The subsequent sections of this paper are struc-
tured as follows: In Section 2, we offer a brief introduc-
tion to the percolation transition in the 3D Ising model.
Section 3 gives an overview of the network algorithms
employed in this study. Moving on to Section 4 and 5, we
present and discuss the results pertaining to the identifica-
tion of percolation phase transitions within the Ising mod-
el, utilizing the Principal Component Analysis and the
Domain Adversarial Neural Network methods, respect-
ively. Finally, in Section 6, we summarize our discover-
ies and provide an outlook for future directions.
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II. PERCOLATION TRANSITION IN THE 3D
ISING MODEL

Ising model [63] is a classic spin model utilized for
investigating phase transitions. We consider a three-di-
mensional cubic lattice composed of N=LXxLxL sites
with periodic boundary conditions. Each site is occupied
by a spin, s;. We assume that the spin of individual site
can have one of the two states, either spin-up, s; = +1, or
spin-down, s; = —1. In this analysis, we only study the 3D
Ising model in zero external field, as described by the
Hamiltonian

H = —JZsisj,

(ij)

(M

where J is known as the coupling constant between two
spins s; and s;. Here we set J =1 as the energy unit. The
sum is taken only over nearest-neighbor pairs in the grid,
and it describes the interaction of the spins with each oth-
er.

The Wolff algorithm, a Monte-Carlo method, is fre-
quently employed to generate equilibrium configurations
of the Ising model under varying conditions, such ‘as
changes in system size or temperature. In the present in-
vestigation, we explore a temperature range spanning
from 7 =0.02 to T =7.92 with external magnetic field
H =0. We generate a set of 2000 independent spin con-
figurations for each selected temperature with a given
system size.

In the Ising model, the GS clusters are identified as
groups of nearest-neighboring sites-with the same spin
direction. As the temperature of the system changes, the
spins tend to align with their neighbors due to interac-
tions between them. The percolation phase transition in-
fers a significant change in the way clusters of aligned
spins form and extend within the whole lattice at a cer-
tain critical threshold T,. Beyond the percolation temper-
ature, small clusters of aligned spins are isolated and do
not span the entire lattice. However, as the temperature
crosses T,, these smaller clusters start to coalesce and
connect, leading to the emergence of a percolating cluster
that wraps around the whole lattice. This percolating
cluster signifies a sudden change in the system behavior,
as the alignment of spins becomes correlated over long
distances.

To facilitate an intuitive comprehension, Fig. 1 (a)
shows the spin configurations within the 3D Ising model
for a system size of 32x32x32 at a temperature of
T =17.52. In this depiction, red lattices represent spin-up
orientations, while blue ones denote spin-down. At high
temperature, owing to the stochastic distribution of the
spin states, no percolation clusters are discernible. Mov-
ing to Fig. 1 (b), which illustrates the configuration at a

@ (b)

Fig. 1.  (color online) The spin configurations of the 3D
Ising model with a lattice size of L =32 are depicted as (a) in
the absence of percolation clusters at 7 =7.52, and (b) in the
presence of a percolation cluster at 7 = 4.42.

low temperature of T =4.42, we observe a predominant
cluster colored in red. This cluster spans the whole lattice,
signifying the presence of percolation clusters. The per-
colation tramsition is of great interest because it often
leads to emergent behaviors and critical phenomena,
where; small changes in a model parameter can lead to
drastic alterations in the overall behavior of the system.

III. MACHINE LEARNING METHODOLOGY

Supervised learning, unsupervised learning, and semi-
supervised learning are fundamental paradigms in ma-
chine learning [64], each with different approaches and
applications. Supervised learning involves training a
model on labeled data, where input-output pairs are
provided, enabling the model to learn patterns and make
accurate predictions on new, unseen data. Unsupervised
learning, on the other hand, deals with unlabeled data,
aiming to uncover inherent structures, clusters, or rela-
tionships within the data. Semi-supervised learning
merges elements of both, incorporating labeled and un-
labeled data to enhance model performance. By lever-
aging the small amount of labeled data alongside the lar-
ger pool of unlabeled data, semi-supervised learning
strikes a balance between efficiency and accuracy, mak-
ing it valuable when acquiring fully labeled datasets is
expensive or time-consuming.

To enhance the versatility and future applicability of
our approach, we use both the unsupervised Principal
Component Analysis (PCA) method and the semi-super-
vised Domain Adversarial Neural Network (DANN)
methodology in this study. It allows to extend the pos-
sible utility of our methods to the analysis of experiment-
al data, ensuring a broader scope and improved adaptabil-
ity for future applications in high energy physics.

PCA is among the most widely utilized multivariate
techniques [65], with its origins tracing back to Pearson's
pioneering work in statistics [66]. Pearson's formulation
involves identifying optimal lines and planes to closely
align with point distributions in space. PCA aims to sim-
plify complex datasets by identifying a new set of ortho-
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gonal axes, called principal components, that capture the
most significant variations in the data. These components
are ordered in terms of the amount of variance they ex-
plain, allowing for the reduction of high-dimensional data
into a lower-dimensional space while retaining as much
relevant information as possible. Functioning as a classic
example of unsupervised learning, PCA finds extensive
application in tasks such as data clustering and dimen-
sionality reduction [49, 50, 67].

The sketch in Fig. 2 illustrates the network architec-
ture employed by the PCA algorithm in this investigation.
It can be segmented into two main components: the fit
stage and the transform stage. To begin with, the net-
work takes as input the spin configurations of the data de-
noted as X, along with the predetermined number of
principal component features, denoted as K. In the fit
stage, PCA computes the mean and covariance matrix for
the dataset X, . Subsequently, the Singular Value De-
composition (SVD) decomposes the covariance matrix
into eigenvalues and their corresponding eigenvectors,
which are denoted as V. Fig. 2 presents the mathematical
expression of SVD as UxZxV{ . In this expression, X
contains the singular values of the original matrix, while
U and V,,, represent the left and right singular vectors of
the original matrix, respectively. V{,  denotes the trans-
pose of V.. Subsequently, based on the predefined
number of features K, we retain the first K rows of the
feature matrix V, represented as Vix,,= V[0 : K]. Shifting

fit(X)

svd_solver = 'full’

to the transform stage, the network executes a projection
of the original data X, ,, onto the selected principal com-
ponents V(. As a result, the data is transformed into a
reduced-dimensional representation, denoted as X, .
This accomplishment effectively realizes the objectives
of both dimensionality reduction and feature extraction.

DANN [68] is a specific type of transfer learning [69,
70] that emphasizes the mapping relationship between
labeled source domain data and unlabeled target domain
data, rather than the clustering and dimensionality reduc-
tion features provided by PCA. DANN uniquely integ-
rates deep feature learning and domain adaptation, en-
abling the classification decision to be based on both dis-
criminative and domain-invariant features for accurate
data classification. By leveraging DANN, the classifica-
tion process can effectively utilize features that are both
informative and immune to domain variations.

The overall structure of DANN is shown in Fig. 3,
comprising three main components: a feature extractor
(green), a label predictor (blue), and a domain classifier
(red). The feature extractor captures informative features
from the input data, transforming them into the feature
vector f. It is composed of a convolutional layer, a max-
pooling layer and a fully connected hidden layer. In the
convolutional layer, there are 16 filters, each measuring
4x4x4 with a stride of 1, applied to the input data to
generate feature maps. The max-pooling layer uses a fil-
ter of size 2x2x 2 with strides of 2 to reduce the dimen-

transform(X)

X mn T !
oK VU2V, Vi = V0:K] Xnmy * Vikn Xm0
Fig. 2. (color online) The PCA architecture used in our analysis.
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sionality of the feature maps. These feature maps are then
flattened and passed to a fully connected (FC) layer con-
taining 50 neurons. Additionally, Batch Normalization
(BN) and ReLU activation are applied to prevent overfit-
ting and speed up the training process. Once the feature
extractor has extracted feature vectors f from both the
source and target domain data, the network forwards
these vectors fto the label predictor and the domain clas-
sifier. The label predictor consists of a fully connected
layer with 2 neurons, applying BN and softmax activa-
tion. Its output is expressed as a vector (P, P;), indicat-
ing the probabilities of the input data belonging to differ-
ent event types. The domain classifier comprises a fully
connected layer with 1 neuron, utilizing BN and sigmoid
activation. It outputs the vector P;, determining whether
the feature vector f originates from the source domain or
the target domain; if it is from the source domain, P; = 0;
if from the target domain, P, = 1. In our neural network
architecture, the feature extractor and label predictor form
a conventional feedforward neural network. Additionally,
the feature extractor constitutes an adversarial network by
connecting a gradient reversal layer to the domain classi-
fier. The loss function for the domain adversarial « net-
work comprises two components: one for the label pre-
dictor and the other for the domain classifier. The loss
function of the network is  defined as:
L(07.6y,04) = L,(6,0,) — La(0y,64), where y, f, and d refer
to the labels of the three components-of DANN, and 6
represents the internal parameters of the network. The
learning rate A is set to 0.0005. During the iterative train-
ing process, the Adam optimizer in TensorFlow 2.4.1 is
utilized to minimize the loss functions for each compon-
ent of the network. Once training is complete, the trained
model can be employed to predict unlabeled samples and
generate prediction results. This approach utilizes both
labeled and unlabeled samples to train different parts of
the model, facilitating comprehensive training and optim-
ization of the model.

IV. ML THE PERCOLATION TRANSITIONS IN
THE ISING MODEL BY PCA

The geometrical percolation transition typically in-
volves several key quantities, such as percolation
strength, the largest cluster size, average cluster size, as
discussed in reference [71]. The cluster size, denoted as
S, is determined by the count of spin sites it encompasses.
To ensure sufficient data for subsequent calculations, our
primary focus is on the largest cluster size, referred to as
S max» Which is influenced by both temperature and
volume of the system.

It has been verified that S,,. plays a crucial role in
understanding the behavior of systems undergoing a
phase transition from a disconnected state to a connected
state [14]. The appearance of a percolating cluster serves

as a critical indicator of a phase transition within the sys-
tem. Along with other extensive variables such as sus-
ceptibility and correlation length, the size of the largest
cluster obeys scaling laws near the critical threshold. Un-
derstanding the size and structure of the largest cluster is
essential for gaining insights into the critical behavior of
percolating systems and characterizing overall connectiv-
ity properties.

In the thermal magnetization phase transition of the
Ising model, it has been found that the first principal
component (K;), defined as the direction that maximizes
variance in the data; captures the highest level of variabil-
ity in the dataset [52].. The results derived from K; con-
firm its linear relationship with magnetization within a fi-
nite system size. This implies that the first principal com-
ponent of the input data can effectively capture and learn
about magnetization, which is the characteristic order
parameter for the thermal magnetization transition in the
3D Ising model. To assess the capacity of the unsuper-
vised ML method for learning and identifying important
features associated with the largest cluster size from the
input data in the percolation transition, we choose PCA
methodology with one principal component.

For the implementation of PCA network, we employ
the PCA class methods from the scikit-learn library 1.0.1
in Python 3.7.11, focusing on data processing with the
relevant functions. The key hyperparameters of our PCA
network include the dimensionality reduction parameter
K, and the singular value decomposition method set as
svd_solver = full. Upon configuring these hyperparamet-
ers, we employ the pca.fir() function to conduct princip-
al component analysis on the input data. This function fits
the PCA model to the data, enabling the computation of
principal components and explained variance ratios. It in-
volves learning the transformation parameters from the
data necessary for dimensionality reduction.  Sub-
sequently, the pca.transform() function is used to reduce
the dimensionality of data by projecting it onto the new
feature space defined by the principal components. This
process effectively reduces the dimensionality of data
while preserving the essential information captured by the
principal components.

We generate event samples for a given system size of
L =28 and cover a temperature range spanning from
T =352 to T=5.52. The spin configurations of the
largest cluster, which means we retain only the spins in
that cluster and set all other spins to 0, are utilized as in-
put data for each sample of the 3D Ising model for the
PCA network architecture as depicted in Fig. 2. Sub-
sequently, we compute the average sizes of the 2000
largest clusters at each temperature point and conduct a
Pearson correlation analysis with respect to the first prin-
cipal component obtained from PCA. The correlation
between the average size of the largest clusters (S ,,,,) and
the first principal component K; of the PCA is graphic-
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ally illustrated in Fig. 4. Our findings reveal a linear rela-
tionship between (S ... and K;. The computed Pearson
correlation coefficient of 1.0 suggests a strong positive
correlation between (S ,..,) and K.

As we know, the first principal component represents
the newly defined coordinate axis within PCA. This axis
encapsulates the highest amount of information and ex-
hibits the greatest power in distinguishing patterns in the
data. It plays the most significant role in accounting for
variations in the data and excels at elucidating data
changes. The observed strong positive correlation
between the average size of the largest clusters S .., and
K, provides further confirmation that the largest cluster
carries a substantial amount of critical system informa-
tion, and this information can be effectively acquired
from the first principal component of PCA in the geomet-
ric percolation phase transition.

We will now explore the capability of PCA in identi-
fying different phases and investigating the critical
threshold associated with the percolation transition with-
in the 3D Ising model. As detailed in Sec. II, the Ising
model undergoes a geometric percolation phase trans-
ition at a critical threshold T,. This transition separates a
disconnected state at high temperatures from a fully con-
nected state at low temperatures. To achieve-this, we es-
tablish a PCA network to conduct unsupervised learning
directly on samples of spin configurations of the largest
clusters.

The numerical results obtained from five different
system sizes and spanning the temperature range
T €[3.52,5.52] are illustrated in Fig. 5 (a). The first prin-
cipal component K, initially exhibits a gradual decrease
as the temperature increases for all sizes considered. This
is followed by a sharp drop as the temperature ap-
proaches a specific point, ultimately reaching equilibri-
um at higher temperatures. Notably, the K; values for dif-
ferent sizes intersect at a particular temperature, corres-
ponding to the critical threshold of the percolation phase
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Fig. 4. (color online) The average size of the largest clusters
as a function of the output of the first principal component in
PCA with L=28
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Fig. 5.  (color online)(a) The first principal component of

PCA as a function of temperature for five different system
sizes. (b) Finite-size scaling analysis to determine percolation
critical threshold based on the first principal component.

transition. This demonstrates the effectiveness of PCA as
a methodology for classifying the two different phases of
the percolation transition in the 3D Ising model.

We conduct five independent iterations of the PCA
network, each with a different size of L = 12, 16, 20, 24,
28. The pseudo-critical threshold T for each size corres-
ponds to the point where K; = 0. Subsequently, we em-
ploy a finite-size scaling analysis to estimate the percola-
tion transition temperature in the infinite L limit, using in-
formation derived from the first principal component [52,
72]. Followed by the same methods as used in Refs. [73,
74], the percolation temperature T, is achieved by extra-
polating through the fit of |7 —T,| ~ L™/ as the limit 1/L
approached zero, as illustrated in Fig. 5 (b). The statistic-
al errors are estimated using the standard deviation and
are found to be smaller than the size of the data points.
The percolation temperature determined from the fitting
process yields 7, =4.475+0.004. We would point out
that this critical threshold for the percolation transition in
the 3D Ising model is slightly lower than the critical tem-
perature for the thermal magnetization phase transition,
which is T.=4.5115+0.0001 as reported in references
[75, 76]. This finding is qualitatively consistent with the
results in reference [42, 77].

V. ML the percolation transitions by DANN

Domain Adversarial Neural Network is a deep learn-
ing technique mainly applied in the domain adaptation
field. The primary advantage of DANN is its ability to
adapt a machine learning model from one domain to an-
other, particularly when the source and target domains
have different data distributions. This neural network is
trained in such a way that the feature representations of
the two domains become indistinguishable to the domain
classifier.

In our analysis, we label percolation phenomenon at
extremely low temperatures as phase ‘1’ and those with
no percolation phenomenon at exceedingly high temper-
atures as phase ‘0’ in the Ising model. Consequently, we
designate the spin data of the largest clusters at low and
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high temperatures as the source domain data during
DANN network training, with the unlabeled one in the in-
termediate temperature range regarded as the target do-
main data. Detailed network architectures and the train-
ing process of DANN are illustrated in Fig. 3. To estab-
lish the optimal temperature range for each scale, we em-
ploy a technique involving the fixation of either low-tem-
perature or high-temperature labels while decreasing the
high-temperature labels or increasing the low-temperat-
ure labels, respectively. The specific selection of the tem-
perature range for target domain data at various system
sizes is outlined in Table 1. The source domain data can
then be annotated with suitable labels according to the
target domain range. In this process, DANN learns the
mapping relationship between the source domain data and
the target domain data. The ultimate label predictor
proves effective at accurately forecasting the percolation
classification of unlabeled data in the target domain
through the utilization of domain adaptation and back-
propagation techniques.

After training the DANN on the optimal domain, we
assess samples at various temperatures, and then use
DANN to predict the probability of each configuration
belonging to phase '1’ or phase '0’. The numerical res-
ults obtained at various system sizes at a vanishing mag-
netic field are illustrated in Fig. 6 (a). The average out-
puts of different sizes cross at a specific temperature cor-
responding to the percolation temperature. It infers that
the DANN can successfully classify the two different
phases in the percolation transition in the Ising model.

To determine the percolation critical threshold, we
conduct DANN training at five different sizes and identi-
fy the pseudo-critical threshold T as the intersection point
of the two curves corresponding to phase ‘0’ and phase
'1” for each size. The percolation threshold T, is achieved

by extrapolating through the fit of |T—T,|~ L™ as the
limit 1/L approached zero, as illustrated in Fig. 6 (b). The
obtained critical threshold for the percolation transition,
T, =4.466+0.005, is in agreement with the result from
the PCA network within errors. This temperature is
slightly lower than the critical temperature associated
with the thermal magnetization phase transition in the 3D
Ising model.

The critical exponents associated with the 3D Ising
model play a crucial role in characterizing the behavior of
various thermodynamic and correlation functions as the
system approaches the critical point. They are considered
universal in nature, i.e., they remain unchanged regard-
less of the specific characteristics of the physical system.
Among these exponents, the correlation length exponent
v holds significance as it reveals how the correlation
length undergoes a pronounced divergence near the critic-
al point. This divergence is described by the relationship
between the correlation length ¢ and temperature, ex-
pressed as & ~|T —T,|™. In the case of a finite system, it
is expected that the correlation length scales proportion-
ally to the size of the system. Consequently, one can es-
tablish a connection between the temperature and the sys-
tem size, characterized by the expression |7 —T,| ~ L™'/".

To extract the critical exponent v, we employ the
technique of data collapse [78, 79] and the results are
shown in Fig. 6 (c). What becomes evident from the fig-
ure is that as different system sizes are considered, they
exhibit a compelling convergence with v =0.72+0.03.
This value quantitatively agrees with the previously
measured cluster size heterogeneity result of v = 0.75 for
geometric clusters in the 3D Ising model [80]. Earlier
studies on FK clusters [81, 82] demonstrated that the cal-
culated correlation length exponent v is consistent with
that of the thermal magnetization phase transition, repor-

Table 1. Selection of optimal temperature range of target domain in DANN
System size L 12 16 20 24 28
The optimal temperature range of the target domain [3.92,4.52] [4.27,4.52] [4.27,4.57] [4.37,4.57]
1.0 e WU 7 448 1.0 = Y
‘A:\:g f;A | ‘LAE AR
0.8 W Y2 446>~ 0.8 Lt
- \ ;1 -4 =12 XY - “
S 0.6 -k LE16 4.44 . 306 A
% : e 120 . . 2 W V=072 %0.03
0.4 L=24 442 . S 04 A
© A L=28 © ;
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Fig. 6.

tion of tL!", where t = (T - T,)/T,, is the reduced temperature.

(color online) (a) The output layer averaged over test sets of DANN as a function of temperature for five different system
sizes. (b) Finite-size scaling analysis to determine percolation critical threshold. (c) Data collapse of the average output layer as a func-
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ted as v=0.629912(86) using the MC method [75]. Our
findings indicate that the extracted correlation length ex-
ponent for GS clusters surpasses that of the thermal mag-
netization phase transition in the 3D Ising model.

VI. CONCLUSIONS AND OUTLOOK

In summary, we employ both unsupervised and semi-
supervised machine learning techniques to investigate
percolation phase transitions of the geometrical spin
clusters within the 3D Ising model. We find a linear cor-
relation between the average size of the largest clusters
and the primary component of PCA, suggesting that the
largest clusters contain sufficient information pertaining
to the percolation transition. We use two distinct ma-
chine learning approaches by utilizing the spin configura-
tions from the largest clusters as input data, and apply the
finite-size scaling method to estimate the critical
threshold of the percolation phase transition. Both of
these machine learning methodologies effectively classi-
fy disconnected states at higher temperatures and fully
connected states at lower temperatures. As a result, we
determine the critical threshold for the percolation trans-
ition to be T, =4.475+0.004 and T, =4.466+0.005 by
using PCA and DANN, respectively. These temperatures
are found to be a little bit lower than the critical temperat-
ure for the thermal magnetization phase transition. The
extracted correlation length exponent-is found to be

vy =0.72+0.03, which is consistent with the cluster size
heterogeneity result for geometric clusters. This value is
greater than the critical exponent associated with the
thermal magnetization phase transition in the 3D Ising
model.

Percolation theory has become a powerful tool for in-
vestigating phase transitions in various physical systems.
The machine learning methods developed in this study
have the remarkable ability to identify phase transitions
and extract critical temperature and critical exponents
with minimal or even no training data. This capability al-
lows for the convenient application in the investigation of
criticality in high energy experimental data or other
Monte Carlo models, which could help to explore the un-
derlying physical mechanisms governing the QCD phase
transition in heavy-ion collisions.
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