
 

Note on single-trace EYM amplitudes with MHV configuration

Zhirun Li (李至润)†    Yi-Jian Du (杜一剑)‡

School of Physics and Technology, Wuhan University, No.299 Bayi Road, Wuhan 430072, P.R. China

Abstract: In  the  maximally-helicity-violating  (MHV)  configuration,  tree-level  single-trace  Einstein-Yang-Mills
(EYM) amplitude with one and two gravitons have been shown to satisfy a formula where each graviton splits into a
pair of collinear gluons. In this paper, we extend this formula to more general cases. We provide a general formula
which  expresses  tree-level  single-trace  MHV  amplitudes  in  terms  of  pure  gluon  amplitudes,  where  each  graviton
turns into a pair of collinear gluons.
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I.  INTRODUCTION

In four dimensional spacetime, tree-level single-trace
maximally-helicity-violating (MHV)  amplitudes  of  Ein-
stein-Yang-Mills (EYM) theory have been shown to sat-
isfy the Selivanov-Bern-De Freitas-Wong [1−3] (SBDW)
formula,  which expresses  the amplitude via  a  generating
function.  On  another  hand,  Cachazo-He-Yuan  (CHY)
[4−6] formula  gives  a  general  approach  to  EYM  amp-
litudes, which is  independent of the dimension of space-
time  and  the  helicity  configuration.  In  four  dimensions,
the CHY formula has been shown to provide a spanning
forest formula (first proposed in gravity, along the line of
[7], [8] and [9]) for the single-trace MHV amplitude [10],
which  was  further  proven  to  be  equivalent  with  the
SBDW formula [10] and was generalized to double-trace
MHV  amplitudes  [11] via  the  recursion  expansion  for-
mula [12−16].

From another perspective, as pointed out in earlier lit-
eratures  [17−21],  each  graviton  in  an  EYM  amplitude
could  be  considered  as  a  pair  of  collinear  gluons  which
carry the same momentum and the same helicity. Particu-
larly,  inspired  by  the  SBDW  formula,  [18]  pointed  out
that  the  single-trace  MHV  amplitude  with  one  and  two
gravitons  can  be  explicitly  expressed  in  terms  of  the
MHV amplitudes where each graviton splits into a pair of
collinear gluons [18]. This explicit formula of the single-
trace MHV amplitudes was not extended into cases with
an arbitrary number of gravitons yet. In this note, we take
a small step forward in this direction: we provide a gener-
al  formula for  single-trace  MHV amplitudes  where  each

graviton splits  into a pair  of  collinear gluons. When the
number  of  gravitons  is  one  or  two,  this  formula  turns
back into the known results [18]. We hope this approach
may provide a new insight for the study of helicity amp-
litudes in EYM.

The  structure  of  this  note  is  arranged  as  follows.  In
section  2,  a  helpful  review  of  spinor-helicity  formalism
and the SBDW formula is presented. We study the amp-
litude  with  three  gravitons  in  section  3  and  sketch  the
general proof  in  section  4.  Further  discussions  and  con-
clusions are presented in section 5. 

II.  BACKGROUNDS

In  this  section,  we  provide  a  brief  review  of  the
spinor-helicity formalism in four dimensions [22], as well
as the SBDW [1−3] formula and the spanning forest for-
mula [10] for single-trace EYM amplitudes. 

A.    Spinor-helicity formalism in four dimensions
kµi

λa
i λ̃

ȧ
i

The momentum  of each on-shell massless particle i
is  expressed  by  two  copies  of  Weyl  spinors .  We
define the spinor products as 

⟨i, j⟩ ≡ ϵabλ
a
i λ

b
j ,

[
i, j
]
≡ ϵȧḃλ̃

ȧ
i λ̃

ḃ
j ,

ϵab ϵȧḃ

kµa

where  and  are totally  antisymmetric  tensors.  Ap-
parently,  the  spinor  products  are  antisymmetric  objects
under the  exchanging  of  the  two  spinors.  With  this  ex-
pression, the Lorentz contraction of two momenta  and
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kµb  reads: 

ka · kb =
1
2
⟨a,b⟩ [b,a] .

More  helpful  properties  in  spinor-helicity  formalsim
are displayed as follows.
 

● Momentum conservation for an n-point amplitude: 

n∑
i, j,k
i=1

[
j, i
]
⟨i,k⟩ = 0.

● Schouten identity: 

⟨a,b⟩ ⟨c,d⟩ = ⟨a,c⟩ ⟨b,d⟩+ ⟨b,c⟩ ⟨d,a⟩ ,

[a,b] [c,d] = [a,c] [b,d]+ [b,c] [d,a] .

● The eikonal identity resulted by Schouten identity 

k−1∑
i= j

⟨i, i+1⟩
⟨i,q⟩ ⟨q, i+1⟩ =

⟨ j,k⟩
⟨ j,q⟩ ⟨q,k⟩ . (1)

A(1, ...,n)Finally, the n-gluon MHV amplitude  at tree
level satisfies the famous Parke-Taylor formula [23]1): 

A(1, ...,n) ∼ ⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨n1⟩ ,

where i, j denote  the  two  negative-helicity  gluons  and
other gluons are supposed to be positive-helicity ones. 

B.    SBDW formula and the spanning forest formula

g−,g−

h−,g−

g−,g−

h−,g−

In EYM, there are two possible situations of the tree-
level  single-trace  MHV  amplitudes:  the  ( )  and
( )  configurations,  which  correspond  to  amplitudes
with two negative-helicity gluons, and one negative-heli-
city gluon plus one negative-helicity graviton. In the fol-
lowing,  we  focus  on  the  ( )  configuration.  The
( ) can be studied similarly.

g−g− A(1, ..., i, ..., j, ...,N |H)
The SBDW [1−3]  formula  expresses  the  single  trace

( )-MHV amplitude  in EYM as: 

A(1, ..., i, ..., j, ...,N |H) ∼ ⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩S (i, j,H, {1, ...,N})

(2)

H = {n1, ...,nM}
where  1,..., N are  gluons  arranged  in  a  fixed  ordering,

 are  gravitons  which  are  independent  of
color  orderings.  The  negative-helicity gluons  are  sup-

S (i, j,H, {1, ...,N})posed to be i and j. The  factor is gener-
ated by an exponential generating function, particularly 

S (H; {1, ...,N}) =
(∏

m∈H

d
dam

)
exp
ï∑

n1∈H
an1

∑
l∈G

ψln1

× exp
ï ∑

n2∈H,n2,n1

an2ψn1n2 exp(...)
òò∣∣∣∣

am=0

,

(3)

in which 

ψab ≡
[ab]⟨aξ⟩⟨aη⟩
⟨ab⟩⟨bξ⟩⟨bη⟩ (4)

ξ η

ξ = 1 η = N
g−,g−

where ,  are arbitrarily chosen reference spinors and G
is the gluon set. In this note, we set  and  when
studying the ( ) configuration.

S (H;G)It was shown in [10] that  could be expanded
by spanning forest form. Particularly: 

S (H;G) =
∑

F∈FG(G∪H)

(
∏

ab∈E(F)

ψab), (5)

ab
ψab

where we have summed over all possible forests F, where
gluons  and  gravitons  are  considered  as  vertices,  and  the
gluons  are  considered  as  the  root  set.  Each  edge  is
dressed  by ,  and  multiply  all  such  edges  in  a  given
forest F together.

h−,g−

i, j

H+

(−1)

In the case of ( ), the formulas (2) (3) and (5) are
slightly changed [3, 10, 11] via (i). replacing  in (2) by
the  negative  helicity  graviton  and  the  negative-helicity
gluon, (ii). replacing the gravitons set H in (3) and (5) by
the positive-helicity graviton set , while the root set is
still the gluon set. (ii). introducing an extra minus . 

III.  AMPLITUDES WITH THREE GRAVITONS

In  this  section,  we  extend  the  study  of  one  and  two
graviton  single-trace  MHV  amplitudes  [18],  where  each
gravition is presented as a pair of collinear gluons, to the
cases with an arbitrary number of gravitons. We demon-
strate this by the example with three gravitons in the cur-
rent  section,  and  then  provide  a  general  formula  in  the
next section.

n1 n2 n3

According  to  (2)  and  (5),  the  MHV  amplitude  with
gluons 1,..., N and three gravitons , ,  is presented
by 

A(1, ...,N |n1,n2,n3) ∼ ⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ S 3,
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S 3

S 3

where  is  the  abbreviation of  the  factor  (5)  with  three
gravitons. Specifically,  is expressed as 

S 3 = ψ1ψ2ψ3+ψ1ψ2(ψ13+ψ23)+ψ1ψ3(ψ12+ψ32)

+ψ2ψ3(ψ21+ψ31)+ψ1(ψ12ψ23+ψ13ψ32+ψ12ψ13)

+ψ2(ψ21ψ13+ψ23ψ31+ψ21ψ23)

+ψ3(ψ31ψ12+ψ32ψ21+ψ31ψ32), (6)

ψab

a , b,a,b = 1,2,3

ψi i = 1,2,3 ni

which  are  characterized  by  all  possible  spanning
forests  with  structures Fig.  1.  Each 
( )  in the above expression is  defined by
(4)  and  is  associating  to  an  edge  in  the  graphs Fig.  1,
while the  ( ),  associating to the graviton ,  is
defined by 

ψi ≡
∑
l∈G

ψlni .

In the following, we analyze the contribution of each
term in eq. (6).

ψ1ψ12ψ23

a = 1 b = 2 c = 3
First,  let  us  deal  with  the  term ,  which  is

characterized  by Fig.  1 (a)  (with , , ),  on
the right hand side of eq. (6). Noting that 

ψ1 =
∑
l∈G

[ln1]⟨l1⟩⟨lN⟩
⟨ln1⟩⟨n11⟩⟨n1N⟩

=
∑
l∈G

[ln1]⟨ln1⟩
−⟨1l⟩
⟨1n1⟩⟨n1l⟩

⟨lN⟩
⟨ln1⟩⟨n1N⟩

=
∑
l∈G

sln1 ×
l−1∑

r1=1

⟨r1,r1+1⟩
⟨r1,n1⟩⟨n1,r1+1⟩

N−1∑
t1=l

⟨t1, t1+1⟩
⟨t1,n1⟩⟨n1, t1+1⟩ ,

(7)

sln1 = [ln1]⟨n1l⟩
ψ1ψ12ψ23

where  the  eikonal  identity  (1)  and  the  fact  that
 are  applied,  we  write  the  Parke-Taylor

factor accompanied by  as 

⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ12ψ23 = ψ12ψ23ï∑

l∈G
sln1

l−1∑
r1=1

N−1∑
t1=l

⟨i j⟩4 1
⟨12⟩ · · · ⟨r1,n1⟩⟨n1,r1+1⟩ · · · ⟨l−1, l⟩

× 1
⟨l, l+1⟩ · · · ⟨t1, ñ1⟩⟨ñ1, t1+1⟩ · · · ⟨N1⟩

ò
,

(8)

⟨r1,r1+1⟩ ⟨t1, t1+1⟩

⟨r1,n1⟩⟨n1,r1+1⟩ ⟨t1,n1⟩⟨n1, t1+1⟩
n1

ñ1 n1 n1

where the factors  and  in the denom-
inator  of  the  Parke-Taylor  factor  have  been  replaced  by

 and ,  respectively.  The
 in the second Parke-Taylor factor is further denoted by
.  Hence,  the  graviton  splits  into  two gluons  and

ñ1

ψ12 ψ23

 with the  same momentum and  helicity,  which  are  re-
spectively inserted between 1, l and l, N. Now we further
express  and  by 

ψ12 = sn1n2

n1−1∑
r2=1

⟨r2,r2+1⟩
⟨r2,n2⟩⟨n2,r2+1⟩

N−1∑
t2=̃n1

⟨t2, t2+1⟩
⟨t2,n2⟩⟨n2, t2+1⟩ ,

(9)

 

ψ23 = sn2n3

n2−1∑
r3=1

⟨r3,r3+1⟩
⟨r3,n3⟩⟨n3,r3+1⟩

N−1∑
t3=̃n2

⟨t3, t3+1⟩
⟨t3,n3⟩⟨n3, t3+1⟩ ,

(10)

n2 n2 ñ2

n1

ñ1

n3 ñ3 n3

n2 ñ2
⟨i j⟩4

⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ12ψ23

respectively. When (9) is substituted into (8), we find that
the  graviton  splits  into  two  gluons  and ,  which
are  respectively  inserted to  the  left  side  of  and to  the
right side of . Similarly, (10) finally inserts two gluons

 and  corresponding to the graviton  to the left side
of  and  the  right  side  of .  The  term

 is then written as
 

∑
l∈G

sn1lsn2n1 sn3n2

∑
ρ(l)

PT
(
1,ρ(l),N

)
,

PT (a1, ...,am)
⟨i j⟩4

⟨a1a2⟩⟨a2a3⟩ · · · ⟨ama1⟩ ρ(l)

l ∈ G

in  which,  we  introduced  to  denote  the  PT

factor  for  short.  Permutations 
for a given  are given by 

ρ(l) ∈
¶
{2, ..., l−1}⊔⊔{n3,n2,n1}, l, {l+1, ...,N−1}⊔⊔{ñ1, ñ2, ñ3}

©
,

A⊔⊔Bwhere  the  for  two  ordered  sets A, B denotes  all
possible  permutations  by  merging A and B together  so
that the relative ordering of elements in each of A and B
is preserved.  The  above  permutations  can  be  character-
ized by the graph Fig. 2 (a).

ψ1ψ12ψ13

a = 1 b = 2
c = 3 ψ1 ψ12

ψ13

Second, we investigate the term with , which
is  associated  to  the  graph Fig.  1 (b)  (with , ,

).  When the  factor  and  are  expressed by (7)
and (9), and  is expressed as follows 

ψ13 = sn1n3

n1−1∑
r3=1

⟨r3,r3+1⟩
⟨r3,n3⟩⟨n3,r3+1⟩

N−1∑
t3=̃n1

⟨t3, t3+1⟩
⟨t3,n3⟩⟨n3, t3+1⟩ ,

n1 n2 n3

{n1, ñ1} {n2, ñ2} {n3, ñ3}
n1 ñ1 n1

n2

ñ2 n3 ñ3

n1 ñ1

we  just  split  the  gravitons ,  and  into  three
pairs  of  gluons ,  and ,  respectively.
The  two  gluons ,  coming  from  the  graviton  are
inserted  to  the  left  and  the  right  sides  of l,  while  the 
and  (and also  and ) are further inserted to the left
of  and the right of . Thus this term turns into 
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⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ12ψ13

=
∑
l∈G

sn1lsn2n1 sn3n1

∑
ρ(l)

PT
(
1,ρ(l),N

)
,

ρ(l)where  for a given l is now given by
 

ρ(l) ∈
¶
{2, ..., l−1}⊔⊔{{n3}⊔⊔{n2},n1}, l,

{l+1, ...,N −1}⊔⊔{ñ1, {ñ2}⊔⊔{ñ3}}
©
, (11)

which are characterized by Fig. 2 (a) and (b).
ψ1ψ3ψ12

a = 1 b = 2 c = 3
ψ1 ψ12

ψ3 n1

n3

Third, we calculate the term with  (see Fig. 1
(c) with , , ). When the same trick with the
previous  examples  is  applied,  and  are  expressed
by (7) and (9), while  is obtained via replacing  in (7)
by . Again, these factors are used to insert gluon pairs
into the Parke-Taylor factor. The result is
 

⟨i j⟩4
⟨12⟩⟨23⟩ · · · ⟨N1⟩ψ1ψ3ψ12

=
∑

l1 ,l2∈G
sn1l1 sn2n1 sn3l2

∑
ρ(l1 ,l2)

PT
(
1,ρ(l1 ,l2),N

)
,

ρ(l1 ,l2) (l1, l2)in which,  for given  satisfies
 

ρ(l1 ,l2) ∈
¶
ρ(l1)

L ⊔⊔{n3}, l2,ρ
(l1)
R ⊔⊔{ñ3}

©
,

where ρ(l1) ∈
¶
{2, ..., l1−1}⊔⊔{n2,n1}, l1,

{l1+1, ...,N −1}⊔⊔{ñ1, ñ2}
©
.

(12)

ρ(l1)

n1 n2 ρ(l1)
L

ρ(l1)
R l2

ρ(l1) l2 ρ(l1)

l1 l2

l1 l2

l1 l2

On the second line, the  denotes the permutations
established by  inserting  the  collinear  gluons  correspond-
ing to  and  into the original gluon set, while  and

 are  the  sectors  separated by the  gluon  in the  per-
mutation . Possible relative positions of  in  are
displayed by Fig. 3 (a)-(g). Since the choices of  and 
are  independent  of  each  other  and  we  finally  summed
over  all  possible  choices  of  and ,  one  can  exchange
the roles of ,  in (12) as follows 

ρ(l1 ,l2) ∈
¶
ρ(l2)

L ⊔⊔{n2,n1}, l1,ρ
(l2)
R ⊔⊔{ñ1, ñ2}

©
,

where ρ(l2) ∈
¶
{2, ..., l2−1}⊔⊔{n3}, l2,

{l2+1, ...,N −1}⊔⊔{ñ3}
©
.

(13)

When all possible spanning forests for amplitude with
three  gravitons  are  considered,  the  full  MHV  amplitude
with three gravitons is finally expressed by the following
formula: 

A(1, ...,N |n1,n2,n3) ∼
∑

Spanning Forests
{T1 ,...,Ti}

∑
l1 ,...,li∈G

K(T1) ...

K(Ti)PT
(
1,ρ(l1 ,...,li),N

)
. (i ≤ 3) (14)

i ≤ 3 T1, ...,Ti l1, ..., li ∈ G l j

lk K(T j)
j = 1, ..., i

In  the  above  expression,  we  have  summed  over  all
possible  spanning forests  where the  original  gluon set  G
plays  as  the  root  set.  For  a  given  spanning  forest  with i
( ) trees  planted at gluons  (  and

 with  distinct  labels  may  be  identical),  each 
( ) is given by 

K(T j) =
∏

ab∈E(T j)

sab,

ab ∈ E(T j) T jwhere  is an edge of the tree  with vertices a

 

Fig. 1.    All possible topologies of spanning forests for the three-graviton example. The a, b and c refer to different gravitons.

 

1, ...,n3, ...,n2, ...,n1, ..., l, ..., ñ1, ..., ñ2, ..., ñ3, ...,N

1, ...,n2, ...,n3, ...,n1, ..., l, ..., ñ1, ..., ñ3, ..., ñ2, ...,N

Fig.  2.    (a).  Permutations  with  the  relative  orderings
.  (b).  Permutations

with  the  relative  orderings
.
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and b.  More explicity,  there  are  four  possible  topologies
for the three-graviton amplitude, as shown by Fig.  1 (a),
(b), (c) and (d), which respectively provide factors 

scbsbasal, sbascasal, sbasal1 scl2 , sal1 sbl2 scl3 ,

while a, b, c represent  distinct  gravitons.  Two  graphs
with  exchanging  the  branches  attached  to  a  same  vertex
are considered as the same graph, e.g. Fig. 1 (b). The per-
mutations  associated to Fig.  1 (a) and (b)  can be recurs-
ively defined  by  (11)  and  (12),  via  replacing  the  sub-
scripts  1,  2  and 3  of  gravitons  in  (12)  by a, b and c, re-
spectively. The permutations for Fig. 1 (c) satisfy 

ρ(l1 ,l2) ∈
¶
ρ(l1)⊔⊔{nc}, l2,ρ

(l1)∪{ñc}
©
,

where ρ(l1) ∈
¶
{2, ..., l1−1}∪ {nb,na}, l1,

{l1+1, ...,N −1}⊔⊔{ña, ñb}
©
.

Permutations accompanying to Fig.  1 (d) are  presen-
ted by 

ρ(l1 ,l2 ,l3) ∈
¶
ρ(l1 ,l2)⊔⊔{nc}, l3,ρ

(l1 ,l2)⊔⊔{ñc}
©
,

where ρ(l1 ,l2) ∈
¶
ρ(l1)

L ⊔⊔{nb}, l2,ρ
(l1)
R ⊔⊔{ñb}

©
and ρ(l1) ∈

¶
{2, ..., l1−1}⊔⊔{na}, l1, {l1+1, ...,N −1}⊔⊔{ña}

©
.

Having  displayed  the  example  with  three  gravitons,
we turn to the general formula in the next section. 

IV.  THE GENERAL FORMULA

Inspired  by  the  example  in  the  previous  section,  we
propose  the  following  general  formula  where  gravitions

split into pairs of collinear gluons 

A(1, ...,N |H) ∼
∑

l1 ,...,li∈G

∑
Spanning Forests
{T1 ,...,Ti}

K(T1) ...

K(Ti)PT
(
1,ρ(l1 ,...,li),N

)
. (15)

l1, ..., li ∈ G
Here  we  sum  over  all  possible  spanning  forests  in

which  trees  are  planted  at  gluons . This  sum-
mation is expressed by two summations:
 

l1, ..., li i = 1, ...,M
● (i).  summing over  all  possible choices of  the roots

 ( ),
 

l1 li

T1 Ti l1 li

●  (ii).  for  a  given  choice  of  roots ,..., ,  summing
over  all  possible  configurations of  forests,  which consist
of nontrivial trees ,...,  planted at the gluons ,..., .
 

Tk

K(Tk)
sab ρ(l1 ,...,lk)

For  a  fixed  forest,  each  tree  is  associated  with  a
factor  where each edge between two vertices a, b
is  assigned  by  a  factor .  The  permutations  in
the PT factors can be defined recursively: 

ρ(l1 ,...,lk) =
¶
ρ(l1 ,...,lk−1)

L ⊔⊔σTk , lk, ρ
(l1 ,...,lk−1)
R ⊔⊔

(
σ̃Tk
)T
©
. (k ≤ i)

(16)

ρ(l1 ,...,lk−1)
L ρ(l1 ,...,lk−1)

R

lk

ρ(l1 ,...,lk−1) σTk σ̃Tk

Tk {ni} {ñi}
(σ̃Tk )T σ̃Tk

where  and  denote  the  two ordered  sets
which  are  separated  by  the  gluon  in  the  permutation

. The  ( ) stands for the permutations estab-
lished  by  the  tree  graph  whose  nodes  are  ( ),
while  denotes the reverse of .

Now we sketch the proof of the general formula (15):
 

 

l2 ρ(l1)Fig. 3.    Possible relative positions of  in the permutations  in (12)
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T1 Ti

l1, ..., li ∈ G

● (i). Step-1 Expand the MHV amplitude according to
(2) and (5) in terms of spanning forests. Each forest F in
general  consists  of i tree  structures ,...,  planted  to
gluons .
 

F = {T1 Ti}
T1

l1 ∈ G

ψa

ψbc

ψa

na na ña

l1

ψbc nc nc ñc

nb

ñb nb nc

bc sbc

K(T1)

● (ii). Step-2 For a given forest ,...,  and the
tree ,  there  are  two  types  of  edges  (a).  the  edge
between  a  graviton a and  the  root  (a  gluon ),  (b).
The  edge  between  two  gravitons b and c.  In  the  former
case, the edge is associated with a factor  which is ex-
pressed according to (7), while an edge of the latter form
is accompanied by a factor , which is further rewritten
as  (9).  After  this  manipulation,  the  factor  splits  the
graviton  into  collinear  gluons  and  and then  in-
serts them to the left and right of , respectively. A factor

 splits  the graviton  into collinear gluons  and 
which are further inserted to the left of  and the right of

 (  which  is  nearer  to  root  than  has  already  been
treated before). The factor assigned to each edge  is ,
and the product of all these factors gives . The per-
mutations established by this step are given by 

ρ(l1) =
¶
{2, ..., l1−1}⊔⊔σT1 , l1, {l1+1, ...,N −1}⊔⊔

(
σ̃T1
)T
©
.

T2 Ti

● (iii). Step-3 Insert the collinear gluons correspond-
ing to the gravitons on trees ,...,  in turn, by repeat-
ing  step-2.  We finally  get  the  general  formula  (15)  with
permutations defined in (16). 

V.  CONCLUSION

N +2M

(−1)

In  this  note,  we  presented  a  formula  (15)  for  single-
trace  EYM  amplitudes  in  the  MHV  configuration  (with
two  negative-helicity gluons).  Each  graviton  in  this  for-
mula  splits  into  a  pair  of  collinear  gluons.  Thus  an N-
gluon, M-graviton  amplitude  is  finally  expressed  as  a
combination of  gluon amplitudes with M pairs of
collinear gluons. When the adjustment pointed in section
2 is considered, the formula (15) is straightforwardly ex-
tended to the MHV amplitude with one negative-helicity
gluon  and  one  negative-helicity graviton  via  (i).  repla-
cing i, j in the numerator of the PT factor by the negative-
helicity graviton and the negative-helicity gluon, (ii).  us-
ing  the  positive-helicity  graviton  set  instead  of  the  full
graviton set on the RHS of (15). (iii). dressing the expres-
sion by an extra sign . It is worth extending the col-
linear expression in the current paper to the double-trace
amplitudes and amplitudes with other helicity configura-
tions in a future work.
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