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Abstract: Recent years have seen the development and growth of machine learning in high energy physics. There
will be  more  effort  to  continue  exploring  its  full  potential.  To  make  it  easier  for  researchers  to  apply  existing  al-
gorithms  and  neural  networks  and  to  advance  the  reproducibility  of  the  analysis,  we  develop  the  HEP  ML  LAB
( ),  a  Python-based,  end-to-end  framework  for  phenomenology  studies.  It  covers  the  complete  workflow  from
event generation to performance evaluation, and provides a consistent style of use for different approaches. We pro-
pose  an  observable  naming convention to  streamline  the  data  extraction and conversion processes.  In  the  KERAS
style, we provide the traditional cut-and-count and boosted decision trees together with neural networks. We take the
$W^+$ tagging as an example and evaluate all built-in approaches with the metrics of significance and background
rejection. With its modular design, HEP ML LAB is easy to extend and customize, and can be used as a tool for both
beginners and experienced researchers.
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I.  INTRODUCTION

In  recent  years,  with  the  continuous  accumulation  of
data  from  the  Large  Hadron  Collider  experiments,  the
search for  new  physics  has  posed  higher  demands.  Ma-
chine learning techniques, due to their outstanding capab-
ilities in  data  analysis  and  pattern  recognition,  have  re-
ceived  wide-spread attention,  exploration,  and  applica-
tion  in  high-energy  physics,  such  as  jet  tagging  tasks
[1−34],  rapid  generation  of  simulated  events  [35−40].
More applications can refer to this review [41].

Typically,  the process of  research involving machine
learning  models  in  high-energy  physics  comprises  four
steps: data  generation,  dataset  construction,  model  train-
ing, and performance evaluation. In this process, coopera-
tion between  various  software  is  often  required.  For  in-
stance,  use  MADGRAPH5_AMC  [42]  for  generating
simulated  events,  PYTHIA8  [43]  for  simulating  parton
showering,  DELPHES  [44]  for  fast  simulating  detector
effects,  ROOT  [45] for  data  processing,  and  sub-
sequently  building  neural  networks  with  deep  learning
frameworks  such  as  PYTORCH  [46] and  TENSOR-
FLOW [47]. For researchers new to high-energy physics,
learning and using these software tools pose a significant
challenge,  while  for  experienced  researchers,  switching

between different software can be a tedious task.  Such a
process inevitably  increases  the  complexity  of  computa-
tional results, making them potentially difficult to replic-
ate, leading  to  difficulties  in  result  comparison  in  sub-
sequent research.

Currently,  some  efforts  have  been  made  to  simplify
the  entire  process:  PD4ML  [48]  includes  five  datasets:
Top Tagging Landscape, Smart Background, Spinodal or
Not, EoS, Air Showers, and provides a set of concise ap-
plication  programming  interfaces  (API)  for  importing
them; MLANALYSIS [49] can convert LHE and LHCO
files  generated  by  MADGRAPH5_AMC  into  datasets,
and has three built-in machine learning algorithms: isola-
tion  forest  (IF),  nested  isolation  forest  (NIF),  and  k-
means  anomaly  detection  (KMAD);  MADMINER  [50]
offers a complete process for inference tasks [51], and in-
ternally  encapsulates  the  necessary  simulation  software,
as  well  as  neural  networks  based  on  PYTORCH.  These
frameworks  significantly  reduce  the  workload  related  to
specific tasks but still have areas that could be improved.

HEP ML LAB, developed in Python, encompasses an
end-to-end  complete  process.  All  modules  are  shown
briefly  in Figure  1.  MADGRAPH5_AMC  is  minimally
encapsulated for  event  generation,  such  as  defining  pro-
cesses,  generating  Feynman  diagrams,  and  launching
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runs. In  the  transition  from events  to  datasets,  we  intro-
duced  an observable  naming  convention that  directly
links physical objects with observables, facilitating users
to directly  use  the  names  of  observables  to  retrieve  cor-
responding  values.  This  convention  can  further  apply  to
the definitions of cuts. Inspired by the expression form of
cuts in UPROOT [52], we expand the corresponding syn-
tax  to  support  filtering  at  the  event  level,  using  veto  to
define events that need to be removed and more complex
custom observables.  When  creating  datasets  with  differ-
ent  representations,  this  naming  rule  still  applies.  In  the
current  version,  users  can  easily  create  set  and  image
datasets, and for images, we also offer a rich set of func-
tions for preprocessing and displaying.

In the part of machine learning, we introduce two ba-
sic  deep  learning  models:  simple  multi-layer  perceptron
and simple convolutional neural network. Both have few-
er than ten thousand parameters, providing a baseline for
classification performance.  These  models  are  implemen-
ted using KERAS [53] without any custom modifications,
making it easy to expand to other existing models. Addi-
tionally, we integrate two traditional approaches, cut-and-
count, and gradient boosted decision tree,  ensuring com-
patibility  with  KERAS.  After  different  approaches  are
trained, we provide physics-based evaluation metrics: sig-
nal  significance  and  background  rejection  rate  at  fixed
signal efficiency, to assess their performance.

pip install hep-ml-lab

This package  is  publicly  available  through  the  Py-
thon Package Index (PyPI) and can be installed using the
standard  pip  package  manager  with  the  command

.  It  supports  Python  3.9+  and
is compatible with Linux, MacOS, and Windows operat-

ing systems. The source code is open-sourced at Github1).
The structure of the paper is as follows. The section 2

introduces the wrapper class of MADGRAPH5_AMC to
generate events. In the section 3, we describe the observ-
able naming convention and show step by step how it  is
used  to  extract  data  from  events  and  extended  to  filter
data and to create datasets. Three types of approaches: cut
and  count,  decision  trees,  and  neural  networks  available
now are shown in the section 4. Physics-inspired metrics
are also included there.  In the section 5, we demonstrate
the effectiveness of the framework by a simple and com-
plete W boson tagging as  a  case  study.  Finally,  we con-
clude the paper and discuss the future work in the section 6. 

II.  GENERATE EVENTS

generators

All  phenomenological  studies  generally  start  from
simulating collision  events,  for  example  using  MAD-
GRAPH5_AMC.  The  module  provides  a
wrapper for parts of its core functionalities, aiming to fa-
cilitate  its  integration  into  Python  scripts  for  customized
setting requirements.

Madgraph5Code example 1: Initialize .

executive
verbose

In code example 1, users need to pass the executable
path  to  the  parameter  to  ensure  commands
can be sent to it. The  parameter controls wheth-
er to display intermediate outputs, with the default value

 

hmlFig. 1.    (color online) All modules in the  framework and main classes in each module.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

1) https://github.com/Star9daisy/hep-ml-lab
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of 1, meaning they are displayed, consistent with the out-
put seen when using MADGRAPH5_AMC in the termin-
al. After initialization, we can use its various methods to
simulate  commands  entered  in  the  terminal  as  shown  in
code example 2.

Madgraph5Code example 2: Methods of  to generate pro-
cesses.

import_model

define
define ("j =

j b b ∼ ") generate

add process

g.generate("p p > w+ z", "p p > w- z")

display_diagrams
diagram_dir

output

During  the  process  generation,  we  first  need  to  use
the  method to import the model file. This
method  supports  passing  the  path  of  the  model  or  the
name of the model (MADGRAPH5_AMC will search for
the  model  in  the  models  folder  or  download  the  model
based  on  its  name).  Next,  use  the  method  to
define  multi-particles,  for  example, 

.  Then,  in  the  method,  pass  in  all
the  processes  to  be  generated  without  having  to  input

 like in the terminal. Here, the asterisk rep-
resents  the  unpacking  operation  in  Python,  and  you  can
directly  enter  multiple  processes  separated  by  commas

 without
needing to construct a list with square brackets. Usually,
to confirm processes have been generated as expected, we
need  to  view the  Feynman  diagrams,  at  which  point  the

 method can be used. It saves the gen-
erated Feynman diagrams to the  folder and
has already converted the default eps files into pdf format
for  convenience.  Finally,  use  the  method to  ex-
port the processes to a folder.

launchCode example 3: Use  method and set up all pos-
sible parameters for generating events.

launch
shower

detector madspin

settings

With the  process  folder  ready,  we  can  start  to  pro-
duce runs to generate simulated events as shown in code
example 3. The  method includes parameters you
may  need  to  configure  for  the  run,  where ,

,  represent  switches  for  PYTHIA8,
DELPHES, and MADSPIN, respectively, consistent with
the  options  in  the  terminal's  prompt.  includes

settings = {"nevents": 1000, "iseed": 42}
iseed

seed

decays

decays = ["w+ > j j", "z > vl vl ∼ "] cards

cards = ["delphes_card.dat",
"pythia8_card.dat"]

multi_run
multi_run = 2

run_01_1
run_01_2 MadEvent

nevents
settings

nevents
multi_run hml

dry = True

parameters  configured  in  the  run  card,  for  example,
.

While  is  the  random  seed  used  by
MADGRAPH5_AMC  to  control  the  randomness  of  the
sub-level events,  it  does  not  affect  PYTHIA8 and  DEL-
PHES. You can specify the  parameter to uniformly
configure  these  three,  ensuring  the  cross  section,  error,
and events are fully reproducible. The  method is
used  to  set  the  decay  of  particles,  for  example,

.  The 
parameter  accepts  the  path  to  your  pre-configured para-
meter files, for example, 

. In this version, only Pythia8 and
Delphes cards can be recognized correctly with "pythia8"
and "delphes" in their file names. It currently doesn't sup-
port the cards that have external folders as dependencies
like the  muon collider  delphes  card.  When a  large  num-
ber  of  events  need  to  be  generated,  you  can  set  the

 parameter  to  create  multiple  sub-runs  for  a
single  run,  for  example,  setting ,  the final
event  files  will  be  named  in  the  form  of ,

,  which  is  controled  by .  Note,  since
MADGRAPH5_AMC  does  not  recommend  generating
more than one million events in a single run, the 
parameter  in  should  also  be  set  appropriately,
as  the  total  number  of  events  is  the  result  of 
multiplied  by .  will generate  the  corres-
ponding valid commands based on your settings and send
them to  MADGRAPH5_AMC  running  in  the  back-
ground. If  you  want  to  check  the  actual  commands  be-
fore  the  run  starts,  you  can  set , which  re-
turns the generated commands instead of starting the run.

Code example 4: All the information seen in the table can
be accessed.

summary
g.summary()

After generating the events, you can use the 
method,  i.e.,  to  print  the  results  in  a  table
as shown in Figure 2. The table includes the name of each
run, the number of sub-runs in brackets, colliding particle
beam information, tags, cross-section, error, total number
of events, and the random seed. The header displays pro-
cess information, and the footnote shows the output's rel-
ative path,  essentially consistent  with the results  you see
on the web page.

launch
If  you wish to  continue experimenting with  different

parameter combinations, you can use the  method
again,  or  employ  Python's  loop  statements  to  generate  a

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)
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series of combinations to observe the differences in cross-
section under various conditions. When doing so, it is re-
commended to  set  short  label  names  to  facilitate  sub-
sequent search and analysis like code example 5 does.

Code example 5: Use a loop to scan the mass of a particle
called "nh2" and show the summary.

hml

Madgraph5.from_output
Madgraph5Run

output
MadGraph5

events

uproot

If there're already output files and you can use  to
extract  some  information  for  subsequent  use.  The  class
method  and  the

 will be of great assistance as shown in 6.
The former accepts the path to the output folder, which is
the  path  you  enter  in  the  command  of

, as well as the path to the executable file. The
latter requires the output folder path and the name of the
run to access information such as cross section and error.
The  method allows for retrieving the paths to all
event  files  under  a  run,  including  sub-runs.  Currently,  it
only supports files in root format. You can use  to
open these files for subsequent processing.

Madgraph5.from_output
Madgraph5Run
Code  example  6:  Use   and

 to access the information. 

III.  CREATE DATASETS

<physics object>.<observable type>

The  leading  fat  jet's  mass,  the  angular  distance
between the  primary  and  secondary  jets,  the  total  trans-
verse momentum of all jets, the number of electrons, etc.,
all demonstrate that observables are always connected to
certain physical  objects.  Thus,  we  propose  the  observ-
able  naming  convention:  the  name of  an  observable  is  a
combination of the physical object's name and the type of
observable,  connected  by  a  dot,  denoted  as

. In  this  sec-
tion,  starting  from  physical  objects,  we  gradually  refine
this representation, eventually extending it to the acquisi-
tion of  observables,  the  construction  of  data  representa-
tions, and the definitions of cuts. 

A.    Physics objects
Physical  objects  in  DELPHES are  stored in  different

branches,  representing  a  category  rather  than  a  specific
instance. Considering  that  the  calculation  of  many  ob-
servables involves different types and numbers of physic-
al  objects,  often  utilizing  their  fundamental  four-mo-
mentum information,  we  have  categorized  physical  ob-
jects into four types based on their quantity and category:
 

Single1.  physical objects, which precisely refer to a
specific physical object. For example:

"jet0"–  is the leading jet.
"electron1"–  is the secondary electron.

 
Collective2.  physical objects,  representing  a  cat-

egory of physical objects. For example:
"jet" "jet:"–  or  represents all jets.
"electron:2"–  represents the first two electrons.

 
Nested3.  physical objects, formed by free combina-

tions of  single  and  collective  physical  objects.  It  cur-
rently supports the combination of "FatJet/Jet" and "Con-
stituents":

"jet.constituents"–  represents all constituents of
all jets.

"fatjet0.constituents:100"–  represents the first
100 constituents of the leading fat jet.
 

Multiple4.  physical objects, composed of the previ-
ous three types and separated by commas. For example:

"jet0,jet1"–  represents the leading and secondary
jets.
 

This  naming  convention  is  inspired  by  the  syntax  of
Python lists. To minimize the input cost for the user, we
discard  the  original  requirement  to  use  square  brackets
for receiving indexes or slices: for single physical objects,
the type name is directly connected to the index value; for
collective physical objects, a colon is used to separate the

 

summaryFig. 2.    (color online) The output of  method.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)
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parse_physics_object
start  index from the end index,  and the type name alone
represents the whole. Use  meth-
od to get the branch and the required index values based
on the name of the physical objects as shown in code ex-
ample  7.  This  design  makes  users  focus  on  the  physical
objects themselves, rather than on how the corresponding
classes should be initialized. In Table 1, we also summar-
ize all  types of  physical  objects,  their  initialization para-
meters, and examples.

parse_physics_objectCode example 7: Use  method to
get the branch and slices of physics objects.

In  this  version,  physical  objects  are  merely  tools  for
parsing  user  input  and  do  not  contain  any  information
about  observables.  Unlike  other  software  packages,  we
strictly  separate  the  acquisition  of  observables  from  the
physical  objects.  Physical  objects  only  store  information
about  the connection between observables and their  data
sources, not the data itself. 

B.    Observable

branch slices

After defining  physical  objects,  the  task  of  observ-
ables is  to  extract  information  from  them.  In  code  ex-
ample 7,  we store all  useful information from a physical
object  in  and :  the  former  refers  to  the
corresponding branch  name,  and  the  latter  means  a  spe-

False

cific parts of array-like data. The advantage of doing so is
that  when  encountering  certain  physical  objects,  such  as
the hundredth jet, which does not exist, it returns a list of
length zero  instead  of  an  error.  An  empty  list  will  auto-
matically  be  judged  as  when  applying  cuts,
thereby being skipped.

Mass mass m
NSubjettinessRatio taumn

m n

Size
AngularDistance

In Table 2, we list all the observables currently avail-
able. To avoid remembering exact name of an observable,
its  name  is  case-insensitive and  common  aliases  are  ad-
ded. For example,  can be written as  or , and

 has  the  alias ,  where  the
values of  and  are passed as parameters into the cor-
responding class.  For  the  transverse  momentum,  consid-
ering the style in different softwares, we more aliases for
its symbol  representation.  Moreover,  different  observ-
ables support  different types of physical  objects.  For ex-
ample,  the  observable  supports  collective  physical
objects,  while  the  observable sup-
ports all combinations of multi-body objects.

parse_observable
observables read

read

awkward

None var

In code example 8, we show how to use such an ob-
servable.  First  initialize  the  corresponding  observables
using  the  function  from  the

 module,  then  use  the  method to  ex-
tract  the  values  from  an  event.  As  the  returns  the
object itself, you can take the advantage of method chain-
ing to  define an observable  directly  followed by reading
an event.  We also add extra  information when you print
the observable  itself:  its  name,  shape,  and  data  type.  In-
ternally, [54]  is  used  for  manipulating  variable-
lengthed  jagged  arrays.  The  question  mark  in  the  data
type  indicates  there  are  missing  values  ( ).  The 
appearing in the shape indicates inconsistent  lengths,  for
example,  each  event  has  a  varying  number  of  jets  and
each jet has a varying number of constituents.

Size

1 AngularDistance

(n_events, var, 1)
n_events var

While the first  dimension of the observable value al-
ways represents the number of events, the shape is gener-
ally determined  by  the  related  physical  objects.  For  ex-
ample, the shape of transverse momentum and other kin-
ematic  variables  is  exactly  as  its  physics  obsject.
However, this  also  depends  on  how  to  compute  the  ob-
servable.  For  instance,  the shape of  the  observable
is the  number  of  physics  objects  and  the  second  dimen-
sion is always , whereas the shape of 
depends on the type of physical objects: if calculating the
distance  between  all  jets  and  the  leading  fat  jet,  we  will
get  an  array  of  shape ,  where

 represents  the  number  of  events,  repres-
 

Table 1.    All types of physics objects and their examples.

Type Initialization parameters Name examples

Single branch: str, index: int "jet0", "muon0"

Collective branch: str, start: int|None "jet", "jet1:", "jet:3", "jet1:3

Nested main: str|PhysicsObject, sub: str|PhysicsObject "jet.constituents", "jet0.constituents:100

Multiple all: list[str|Physicsobject] "jet0,jet1", "jet0,jet"

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)
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1

(n_events, 10, var) var

None

ents a variable number of jets, and  represents the lead-
ing fat jet; if calculating the distance between the first ten
fat jets and all constituents of all jets, we obtain an array
of  shape .  The  now  comes
from the  number  of  constituents  and  the  number  of  jets,
which we compress two dimensions into one. For events
that do not have enough physics objects, the missing val-
ues are filled with .

parse_observable read
events

uproot

Code example 8:  Use  and  to
get  the  value  of  observables.   are  opened  by

.

The  built-in  observables  are  only  some  of  the  most
basic  ones,  so  they  may  not  be  sufficient  for  every  use

Observable hml

MET
MissingET

parse_observable register_
observable

"missinget0.met"
"MissingET0.MET" parse_observables

"MET" "met"

"MissingET"

case. Therefore, we show three examples of building your
own observables. In the first example 9, when the needed
observable  is  already  stored  under  a  certain  branch,  you
only  need  to  declare  the  name  of  this  observable  as  a
class that inherits from .  will  search for
the branch based on the physical object name and extract
the  corresponding  value  based  on  the  slices.  Here,  we
take  the  observable  as an  example,  which is  origin-
ally  stored  under  the  branch .  To  use  the

 function,  you  can  call 
 function  to  register  an  alias  for  it.  Please

note  that  this  implementation  requires  a  physical  object,
which means that only by entering  or

 can  the  works
as normal. Only  or  without an physics ob-
ject  is  not  allowed.  As  each  event  has  only  one  missing
energy physical object,  is followed by 0.

ObservableCode example 9:  Inherit  from  and it  will
automatically  retrieve  the  corresponding  value  if  the

 

Table 2.    All types of observables and their supported types of physical objects.

Type Alias Single Collective Nested Multiple

MomentumX, Px momentum_x, px ✓ ✓ ✓

MomentumY, Py momentum_y, py ✓ ✓ ✓

MomentumZ, Pz momentum_z, pz ✓ ✓ ✓

Energy, E energy, e ✓ ✓ ✓

TransverseMomentum, Pt transverse_momentum, pt, pT, PT ✓ ✓ ✓

PseudoRapidity, Eta pseudo_rapadity, eta ✓ ✓ ✓

AzimuthalAngle, Phi azimuthal_angle, phi ✓ ✓ ✓

Mass, M mass, m ✓ ✓ ✓

Charge charge ✓ ✓

BTag b_tag ✓ ✓

TauTag tau_tag ✓ ✓

NSubjettiness, TauN n_subjettiness,tau_n, taun ✓ ✓

NSubjettinessRatio, TauMN n_subjettiness_ratio, tau_mn, taumn ✓ ✓

Size size ✓

InvariantMass invariant_mass, inv_mass, inv_m ✓ ✓

AngularDistance, DeltaR angular_distance, delta_r ✓ ✓ ✓ ✓

Jing Li, Hao Sun Chin. Phys. C 49, (2025)
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physics object does have it.

read
events

uproot.open
events

awkward _value

awkward hml
self

If you  already  have  established  a  computation  pro-
cess and do not want to consider the physical objects, we
recommend referring to  the  second example  10.  All  you
need to do is overwrite the  method, defining how to
compute the values of observables. The  is the re-
turn value of .  You may need to adjust  the
calculation  due  to  the  and  the  underlying

 array.  It  is  important  to  note  that  must
be an  iterable  object,  such  as  a  list  or  array,  to  be  cor-
rectly converted into an  array by . Addition-
ally,  you  should  return  at  the  end,  enabling  chain
calls similar to other observables.

readCode example 10: Overwrite the  method to define
how to calculate the value of the observable.

read

The  third  example  11  changes  the  initialization.  We
add  constraints  on  physical  objects,  i.e.  it  could  only  be
related to a single physics object. There's also a new para-
meter  for  more  flexibility.  The  part  is  the  same as
the  second  example.  This  is  the  strictest  observable  but
also the safest one.

Currently,  the  naming  convention  is  built  upon  the
output  of  DELPHES and does not  support  other  formats
yet.  However,  considering that different analyses require
data  at  different  levels  and  in  different  formats,  we  plan
to gradually add support for other event formats in future
versions, such as HEPMC, LHE, etc. 

C.    Representation
To  make  high-energy  physics  data  compatible  with

different analysis approaches, it necessary to convert data
into  various  representations.  The  review  [55] summar-

hml

izes six  representations  of  jets:  ordered  sets,  images,  se-
quences,  binary  trees,  graphs,  and  unordered  sets.  Built
upon  the  observable  naming  convention,  we  extend  the
representation  to  an  event.  Currently,  supports  the
(ordered) set  and  image  representations.  In  future  ver-
sions,  we  will  prioritize  adding  the  graph  representation
and corresponding neural networks.

Code example 11: Define an observable with constraints
on the type of physical objects and with a new parameter.

(n_events, n_observables)

The  ordered  set  is  one  of  the  most  commonly  used
representations.  It  arranges  physics-inspired  observables
in  an  arbitrary  order  to  form  a  vector  that  describes  an
event. The vectors from all events are then assembled in-
to  one  matrix  by  event,  with  the  shape

.  Following  the  naming
convention, it is straightforward and concise to construct
such a set as illustrated in code example 12.

SetCode example 12: Use  to represent the ordered set of
observables.

Set read

values awkward

muon0.charge
None

You need to package the observable names into a list
and pass it into the , then call the  method to get
the  values  from events.  The  values  will  be  stored  in  the

 attribute. Here, you can see that we use 
arrays  to  store  data.  For  observables  with  the  correct
physical  object  name  but  not  existing  (for  example,

, when there are no muons produced in the
event),  we treat  its  value as .  This  way of  handling
missing  values  allows  us  to  follow  the  matrix  operation
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habit: first build the data matrix, then deal with the miss-
ing values.

read

Image

with_subjets

translate

pixelate

For the image representation, we also use observable
names  to  define  the  way  of  fetching  the  data  for  its
height, width, and channel, as shown in code example 13.
The  method is used to read events as before. Here,
we  construct  an  image  of  the  leading  fat  jet,  with  all  its
constituents' pseudorapidity,  azimuthal  angle,  and  trans-
verse  momentum.  Considering  the  significant  amount  of
works  that  includes  similar  preprocessing  processes,  we
add  them  as  the  methods  of  the  class.  Since  the
preprocessing  often  relates  to  sub-jets,  it's  necessary  to
add  information  about  sub-jets  via  the  method

: its  parameters  include  the  name  of  con-
stituents, clustering  algorithm,  radius,  and  the  jet's  min-
imum momentum. The  method moves the po-
sition of  the  leading sub-jet  to  the  origin,  which reduces
the  complexity  of  position information helping speed up
the learning process.  Next,  for the sub-leading sub-jet,  it
can be rotated right below the origin, making the features
of  the  entire  image  more  pronounced.  Lastly,  the

 method is used to pixelate the data to make up
an  real  image.  Since  pixelation  leads  to  a  reduction  in
data precision, this step is separated out, allowing for fur-
ther studies on when to apply it and the impacts of the or-
der.

ImageCode example 13: Use  to represent a fat jet and
preprocess it via sub-jets.

Image
show

norm="log"
.values

For  convenience  in  displaying  images,  the 
class  contains  a  method that  can  directly  plot  it  as
an image. Code example 14 shows all the available para-
meters: the first two are used to show the image as dots,
and  the  last  three  parameters  display  a  pixel-level  grid,
enable the grid by default,  and apply normalization over
the whole image, respectively. The Figure 3 shows an im-
age  representation  before  and  after  preprocessing  steps.
In  the  raw image,  the  observables  used  for  "height"  and
"width" are directly plotted as a 2D scatter image. For the
final  pixelated  image,  enhances  its  features
more  distinctly.  The  data  can  be  accessed  via 
property as a list of awkward array (before pixelation) or

one  awkward  array  (after  pixelation).  You  can  convert
them  and  then  save  them  in  formats  like  numpy  array,
JSON files to handle them with tools you're more famili-
ar with.

showCode example 14: Use  to plot the image as a 2d
heatmap if it has been pixelated or as a 2d scatter plot.

(
uproot cut hml

Cut
read

After acquiring the original event data, it's time to fil-
ter  it  to  obtain events  that  satisfy specific  criteria.  In the
old  workflow,  during  the  event  loop,  it  was  common  to
manually include the calculation of observables and then
apply  conditionals  to  filter  events.  We note  that  the ar-
ray)  method in  supports  parameter.  In ,
we utilize a matrix-oriented programming style to change
the filtering  procedure  into  boolean  indexing;  further-
more, we  add  logical  operation  syntax  upon  the  observ-
able naming convention to make the definition of cuts in-
tuitive,  as  shown  in  code  example  15.  still  has  the
similar  method. The values form a one-dimension-
al boolean matrix, length of which is equal to the number
of events. It allows you to directly use it to filter other ob-
servables via boolean indexing.

uproot
| and or

(pt1 > 50) ((E1>100) | (E1<90))
pt1 E1

n_events, var

For  the  extend  syntax  of  logical  operations,  i.e.  how
to combine  multiple  conditions,  we  referr  to  the  imple-
mentation  of : it  uses  the  bitwise  logical  operat-
ors of matrices, & and  to replace  or , and adding
parentheses  to  ensure  priority.  For  example,

 &  expresses the
condition  that  is  greater  than  50  and  is  either
greater  than  100  or  less  than  90.  The  expression  is  then
parsed  directly  by  Python:  it  is  purely  matrix  operation,
without considering the case of DELPHES output. It can-
not handle such cuts: "all jets are required to have trans-
verse momentum greater than 10 GeV", whose data is of
shape .  It  undoubtedly  requires  users  to

 

Fig.  3.    (color online) The raw image  and  the  pixelated  im-
age after preprocessing.
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rearrange the original data to make the dimensions of the
matrices consistent since the number of jets is not neces-
sarily the  same  among  events.  This  essentially  only  fil-
ters  values  that  meet  the  conditions,  not  the  events  that
meet  the  conditions.  In  conjunction  with  the  observable
naming  convention,  we  advocate  simplifying  the  matrix
logical operation syntax to facilitate user input.

Code example 15: Cut values are boolean arrays that can
be used to filter other observables.

and or
|

1.  Logical  AND and  logical  OR are  still  represented
by  or . They are converted into bitwise logical op-
erators & and  automatically, avoiding too many paren-
theses;

2. The result of the logical expression acts on the first
dimension,  that  is,  the  dimension  of  events,  to  filter
events;
 

3. Involved  observables  must  have  the  same  dimen-
sions to ensure the correctness of logical operations;
 

[all]

[any]

4. At the end of a cut, default  represents a lo-
gical  AND  operation  on  all  values  of  all  observables  in
each event. It can be ignored and not written;  rep-
resents a logical OR operation on all values of all observ-
ables  in  each  event.  This  syntax  is  suitable  for  cases
where all of a certain observable or any one observable in
the events needs to meet the conditions;
 

veto5. Add support for  at the beginning of a cut for
cases where certain events need to be excluded.
 

Below, we take specific literatures to demonstrate and
explain the new syntax. The original text will be presen-
ted  first,  followed  by  the  corresponding  cut  in  the  next
line.  We  assume  that  data  is  stored  in  the  same  units  as
the description indicates. In the literature [56]:

 
µ±

pµT > 10GeV
|ηµ| < 2.4

1.  Muons  are identified  with  a  minimum  trans-
verse  momentum  and  rapidity  range

...
 

muon.pt > = 10 and -2.4 < muon.eta < 2.4
 

and

[any]

Here,  we take  all  the  muons  and  simplify  the  syntax
for  pseudorapidity  within  a  certain  range,  which  can  be
written  consecutively.  Here,  the  represents the  bit-
wise  logical  operator  of  the  matrix.  For  each  event,  if
there  is  no  at  the  end of  the  expression,  it  means
that all values need to satisfy the condition;

2.  Only  events  with  reconstructed  di-muons  having
same sign are selected.
 

muon0.charge = = muon1.charge
 

None

False

Here,  we  only  need  to  judge  whether  the  charges  of
the two muons are the same, without determining wheth-
er  the  number  of  muons  is  two.  When  there  are  fewer
than  two  muons,  the  charge  of  one  muon  will  be ,
and  such  judgment  will  be  automatically  treated  as

;
W±

J pJ
T > 100GeV

3. We identify the hardest fat-jet with the  candid-
ate jet ( ) and this is required to have .
 

fatjet0.pt > = 100
 

In the literature [57]:
1.  C3:  we  veto  events  if  the  OS  di-muon  invariant

mass is less than 200 GeV.
 

muon0.charge ! = muon1.charge and muon0,muon1.inv
_mass > 200
 

2. C4: we apply a b-veto.
 

veto jet.b_tag = = 1 [any]
 

veto [any]Use  and  to indicate that for all jets, if any
one of them is b-tagged, then the event is excluded.

3. C5: we consider only events with a maximum MET
of 60 GeV.
 

MissingET0.PT < 60
 

Using uppercase and lowercase is equivalent because
there is only one missing energy, so it is represented by 0.
The  MET  observable  here  actually  also  refers  to  the
transverse momentum, so it can be represented by PT.

N τJ0
21 < 0.44. C8: we choose events with -subjettiness .

 
fatjet0.tau21 < 0.4

 
The  definition  of  this  observable  is  provided  by  the

DELPHES  card.  We  have  already  defined  its  parsing
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method in  the  observables  module,  so  here  we  can  dir-
ectly use its name.

MN = 600−900
In  the  literature  [58],  the  cuts  of  CBA-I  for

 GeV:
2.8 < ∆R( j, ℓ) < 3.81. Jet-lepton separation 

 
2.8 < jet0,lepton0.delta__mass > 200r < 3.8

 
In the literature [59]:

e µ |ηℓ| < 2.5 pT,ℓ > 500
1.  The basic selections in our signal  region require a

lepton (  or ) with  and  GeV...
 

-2.5 < muon0.eta < 2.5 and muon0.pt > 500.
 

We take the muon as the example.

|ηℓ| < 2.5 pT,ℓ > 7GeV
2.  ...  veto  events  that  contain  additional  leptons  with

 and 
 

veto -2.5 < muon.eta < 2.5 and muon.pt >
7 [any]
 

vetoIn  this  cut,  it's  easier  to  use  to  exclude  events
with additional leptons.∣∣η j

∣∣ < 2.5 pT, j > 30GeV
3.  ...  and  impose  a  jet  veto  on  subleading  jets  with

 and .
 

veto -2.5 < jet1.eta < 2.5 and jet1.pt >
30 [any]
 

In the literature [60]:

pT > 15 |η| < 2.5
1.  Photon-veto:  Events  having  any  photon  with

 GeV in the central region,  are discarded.
 

veto -2.5 < photon.eta < 2.5 and photon.pt
> 15 [any]
 

τ |η| < 2.3
pT > 18 |η| < 2.5
pT > 20

2.  and  b-veto:  No  tau-tagged  jets  in  with
 GeV,  and  no  b-tagged  jets  in  with
 GeV are allowed.

 
veto jet.tau_tag = = 1 and -2.3 < jet.eta <

2.3 and jet.pt > 18 [any]
 

min(∆ϕ(pMET
T ,p j

T )) > 0.5
pT > 30GeV |η| < 4.7

3.  Alignment  of  MET  with  respect  to  jet  directions:
Azimuthal angle separation between the reconstructed jet
with the MET to satisfy  for up to
four leading jets with  and .
 

jet:4,missinget0.min_delta_phi > 0.5 and
jet:4.pt >30 and -4.7 < jet:4.eta < 4.7
 

MinDeltaPhi
min_delta_phi

Users need to define the observable  in
advance and register it with alias . 

D.    Dataset
With the  data  representation  and  cuts  defined  previ-

ously, we can now proceed to construct the dataset. Cor-

SetDataset ImageDataset

read read
targets

1
cuts

1
0

split

samples
targets

numpy save

.ds
load_dataset SetDataset.load

responding to data representations, we currently offer two
datasets:  and . Code  ex-
ample 16 shows the use of the dataset of an ordered set.
Its initialization requires names of the observables. Then
still  use  the  method  to  read  events.  For  this ,
we  added  two  additional  parameters:  is the  in-
teger label you assign to the event, which is the target of
convergence.  Here  we  assign  to denote  events  as  sig-
nals;  are your filtering criteria. Here we require the
number of jets to be more than , and the number of lead-
ing  fat  jets  to  be  more  than .  When  you  use  multiple
cuts, the result of each cut is applied to the dataset one by
one,  which  means  they  are  connected  by  logical  AND.
When splitting the dataset, you can use the  meth-
od. Its parameters are the ratios for train, test, and valida-
tion sets, here we used 70% of the data as the training set,
20% as the test set, and 10% as the validation set. Before
saving  the  dataset,  you  can  access  the  and

 to  view  the  stored  data,  which  have  already
been converted  into  arrays.  Finally,  use  the 
method to save the dataset  to a zip compressed file  with

 suffix.  Such  a  file  can  be  loaded  by  the
 function  or  class

method.

SetDatasetCode example  16:  Use  to  build  a  dataset
representing each event as a set of observables.

show
n_feature_per_line

n_samples
target

To quickly view the distributions of the entire dataset,
you  can  use  the  method.  The  code  example  17
shows all the available parameters: 
is  the  number  of  observables  to  display  per  line,

 is  the  number  of  events  to  display,  and
 is the label of the events to display.

showCode example 17: Use  to display the observable
distributions of a set dataset.

Image

The construction process of an image dataset is simil-
ar to that of an ordered set, as shown in code example 18.
When  initializing  an ,  you  can  directly  configure
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the  necessary  preprocessing  steps  in  method  chaining.
When the dataset reads events afterwards, these steps will
be carried out in sequence.

ImageDatasetCode example 18: Use  to build a dataset
representing each event as an image

showCode example 19: Use  to plot the image of the data-
set.

show

n_events, height, width, channel
height, width, channel

show
Image

n_samples
target

The  method of  an  image  dataset  enable  you to
display events as an image as shown in Example 19. By
default,  the  entire  dataset's  images  are  compressed  into
one  image.  If  the  original  dimensions  are

,  the  compressed
dimensions  will  be .  While
most parameters are the same as those in the  meth-
od  of ,  two  additional  parameters  are  added:

 is  the  number  of  events  to  display,  and
 is the label of the events to display. 

IV.  APPLY APPROACHES

approaches

With  well-prepared  datasets,  we  can  apply  different
approaches  to  identify  rare  new  physics  signals.  The

 module  includes  cut-and-count,  trees,  and
neural networks. We will gradually add more in the com-
ing versions. The basic design principle of this module is

compile
fit predict

minimal encapsulation  to  interface  with  current  frame-
works,  such  as  SCIKIT-LEARN  [61],  TENSORFLOW,
and PYTORCH. Considering the simplicity, we adopt the
Keras-style interface design: decide approach structure at
initialization,  for configuring  the  training  pro-
cess,  for training the approach, and  for pre-
diction on new data. KERAS is originally a high-level en-
capsulation of TENSORFLOW, but after the version 3, it
begins to  support  multiple  backends,  offering  unpreced-
ented flexibility, which is one of the reasons we choose it.
You should note that we only test the compatibility with
TensorFlow backend currently. 

A.    CutAndCount
Cut-and-count  (or  cut-based analysis)  is  fundamental

and widely used when studying the impact of various ob-
servables on the final  sensitivity.  It  provides evidence to
support the  discovery  of  new  particles  and  the  verifica-
tion of new theories.

As the name suggests, it involves two steps: applying
a series  of  cuts  to  distinguish  the  signal  from  the  back-
ground as much as possible, then counting the number of
events  that  pass  the  cuts.  The  subsequent  distribution,
such as invariant mass, is used to determine the nature of
the  particles  involved.  These  cuts  can  be  applied  onto
properties of specific particles, such as kinematic quantit-
ies, charge, other observables, or other characteristics as-
sociated  with  simulated  collision  events,  like  particle
states in decay chains.  Filtering the data allows focusing
on areas of interest, increasing the possibility of discover-
ing new physics.

Applying  cuts  involves  some  technique  to  make  the
final  signal  more  evident.  Typically,  one  would  plot  the
distribution of observables that reflect signal characterist-
ics  and  choose  the  area  with  a  higher  signal  ratio  as  the
cut range  based  on  manual  judgment.  There  are  two  is-
sues  here:  1)  manual  judgment  is  subjective  and  cannot
guarantee the effect of the cut; 2) the observable distribu-
tions  that  people  observe  is  sometimes  the  source  data
without  any  cuts.  If  there  is  an  unavoidable  association
between observables, applying a cut will affect the distri-
bution of the next observable. Therefore, a more rigorous
way is  to  apply  one  cut  first,  plot  the  distribution  of  the
next observable, then determine the next cut, and so on.

Code example 20: Initialize the CutAndCount approach

CutAndCountUsers  can  use  to  implement  these  two
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CutAndCount

CutLayer

n_bins

topology
parallel

sequential

different strategies of applying cuts. In code example 20,
we demonstrate how to initialize a  method.
You need to specify the number of involved observables,
and then an internal  will be created to automat-
ically search for optimal cut values. For each observable,
four possible conditions are considered: the signal on the
left  side,  right  side,  middle,  and  both  sides  of  the  cut.
Then,  it  calculates  the  user-specified  loss  function  for
each case, choosing the one with minimum loss as the fi-
nal  cut.  sets  the  granularity  of  the  data  when
searching,  i.e.,  the number of bins for the distribution of
each  observable.  A higher  number  of  bins  can  make  the
cut more precise but also increases the cost of calculation,
which also relates to the size of data and the complexity
of its distribution. The principle here is that as long as the
data distributions become stable, then the number of bins
can  be  appropriately  reduced  without  affecting  the  final
result.  sets  the  order  or  the  strategy  that  cuts
are  applied:  means  all  cuts  are  independent,
and  the  distributions  referred  to  come  from  the  original
data, while  considers the correlation among
cuts,  with  each  cut  applied  on  the  basis  of  the  previous
one.

CutAndCount compile

CutAndCount

run_eagerly = True

CutAndCount

True
fit

epochs
callbacks

In  code  example  21,  we  show how to  configure  and
train  a  approach.  In  the  method,
you can  specify  the  optimizer,  loss  function,  and  evalu-
ation  metrics.  For , the  optimizer  is  unne-
cessary because it does not use gradient descent methods
internally, but rather finds the optimal cut values through
a search process. The loss function is used to evaluate the
effectiveness  of  each  cut,  while  the  evaluation  metrics
here will be used to show the performance scores during
the training, it is better to evaluate the performance after
training all  at  once.  The  is neces-
sary. By default, KERAS uses a computational graph for
calculations,  which  is  very  efficient  for  training  neural
networks. However,  includes some custom
calculations  that  are  not  yet  fully  compatible  within  the
computational graph, so it needs to be set to . In the

 method, you need to input the samples and targets of
the training set,  where the batch size should be the min-
imum number  that  can  reflect  the  distribution  pattern  of
the data. If your dataset is relatively small and can fit en-
tirely into the GPU's memory, you can set the batch size
to the size of the entire training set. Besides, the 
parameter  is  unnecessary,  and  the  parameter
has not  been  implemented  yet,  but  will  be  gradually  ad-
ded in future versions. 

B.    Trees and Neural Networks
Decision trees are a common method of classification,

and there are many mature frameworks available, such as
TMVA  [62],  XGBOOST  [63],  SCIKIT-LEARN,  etc.
TENSORFLOW  DECISION  FORESTS  [64]  is  also  a
good  choice  as  it  also  adopts  the  KERAS training  style.

GradientBoostingClassifier

Considering  our  preference  for  the  multi-backend sup-
port,  we  modify  parts  of  the

 code  from  SCIKIT-
LEARN to conform to the same style.

fit

Keras
"accuracy"

predict
Keras

Keras

scikit-learn
compile

Firstly, the original  method is enhanced to handle
input  targets  in  one-hot encoded  format.  Secondly,  sup-
port  for  metrics  during  the  training  process,  such
as  the  commonly  used .  Thirdly,  the  output
of its  method is changed to predict probabilities,
aligning  it  with .  Despite  these  changes,  many
parameters are still not supported yet: many of the origin-
al  initialization  parameters  are  related  to  early  stopping,
learning rate adjustments, etc., which in  are imple-
mented through callback functions.  Moreover,  loss func-
tions  are  not  uniformly  customizable  in ,
so we do not support changing it in  method. In
code example 22, we demonstrate the basic usage.

CutAndCountCode example 21: Configure and train the 
approach

GradientBoostedDecisionTree
Code  example  22:  Basic  usage  of  the  modified

 approach.

hml

SimpleMLP
SimpleCNN

A starting point of  is to provide researchers with
existing  deep  learning  models  so  that  they  can  conduct
benchmark  tests  on  their  datasets  and  select  the  optimal
model.  At  this  early  development  stage,  we  only  offer
two  basic  models:  (multi-layer  perceptron)
and  (convolutional neural network). In future
versions,  after  thorough  testing,  we  will  gradually  add
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more existing models to provide the utmost convenience.

Sequential

Model

SimpleMLP 4386
SimpleCNN

5960
(33,33,1)

In KERAS, there are three ways to build a model: 1.
Using  to stack layers, 2. Using the Function-
al API to construct  more complex topologies,  3.  Inherit-
ing from  to declare a subclass for greater flexibil-
ity.  Considering that  the construction of  many models  is
quite complex and requires exposing a certain number of
hyper-parameters  for  tuning,  we choose the third way to
build the provided models. The Figure 4 shows the struc-
tures  of  two models.  The  has  paramet-
ers with the inputs are three observables. The 
has  parameters with the inputs are images of shape

.  Both  models  are  shallow  and  simple,  so  they
do not consume too much computing resource during the
training and testing stages. 

C.    Metrics

σ

σ

σ

After training an approach on a dataset, it is often ne-
cessary to use various metrics to assess its effectiveness.
Unlike  the  classical  accuracy  score,  which  is  commonly
used  in  classification  tasks,  in  high-energy  physics,  the
scarcity of signals shifts the focus towards the signal sig-
nificance, denoted by . A higher value indicates a lower
probability that  the  observed  signal  is  a  result  of  back-
ground fluctuations alone. For instance, 3  is often con-
sidered as an evidence of a signal, indicating that there is
about  a  0.27%  chance  of  the  signal  being  a  statistical
fluke. Meanwhile, 5  is the gold standard in high-energy
physics  for  claiming  a  discovery,  corresponding  to  a
probability  of  roughly 1  in  3.5  million that  the  observed

hml S
B

signal is  due to background noise.  Equation 1 is the for-
mula for calculating significance in . Note that here 
represents  the  number  of  signals,  and  represents  the
number  of  backgrounds,  which  refer  to  the  number  of
simulated events  when  the  cross  section  of  the  corres-
ponding process  and  integrated  luminosity  are  not  spe-
cified. In code example 23 we show how to use it. 

σ =
S√

S +B
(1)

MaxSignificanceCode example 23: Use the  metric to
evaluate performance of an trained approach.

MaxSignificance
thresholds

class_id = 1

For the built-in approaches, their outputs are probabil-
ities for signal and background. By default, only when the
probability  exceeds  0.5  do  we  consider  it  as  a  signal  or
background.  In ,  we  can  change  this
threshold  by  setting .  By  default,  data  with

 is viewed as signal and 0 as background.
Change it if the targets for signal and background in your
dataset are not like this.

reset_state

In addition  to  significance,  some  literatures  also  in-
clude the  background  rejection  at  a  fixed  signal  effi-
ciency  as  an  evaluation  metric,  so  we  also  support  it,
shown in  equation  2.  The  higher  the  background  rejec-
tion rate, the fewer the number of background events that
are  mistakenly  classified  as  signals.  In  the  example  24,
you can see the same way to use it. Note that for both the
metrics,  if  you  call  them  multiple  times,  the  values  will
be  averaged.  So  if  you  want  to  calculate  them  from
scratch, you need to call the  method. 

rejection = 1/ ϵb|ϵs (2)
 

V.  EXAMPLE: W BOSON TAGGING

To give users a  complete understanding of the entire
workflow,  this  section  show  how  to  integrate  various
modules to complete a  task of  jet  tagging.  This  example
serves  merely  as  a  proof  of  concept;  users  still  need  to
conduct more personalized analysis on this basis. 

 

SimpleMLP SimpleCNNFig. 4.    The structure of the  and  models.
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A.    Step 1: generate events

W+

We choose to simulate the production of highly boos-
ted  bosons  that  decay  into  two  jets,  resulting  in  a
single fat jet during event reconstruction. This jet has dis-
tinct  characteristics  of  mass  and  spatial  distributions,
making it easier to identify using all built-in approaches.

RejectionAtEfficiencyCode  example  24:  Use  the  
metric to evaluate the model's performance.

Madgraph5 generate
output
W+

pT

output
Diagrams

In code example 25, we first import the event generat-
or  module from  using the  method
to  create  the  signal  process,  and  then  use  the 
method to save it to a designated folder. To make  bo-
sons highly boosted, we leave the decay chain unfinished
here  and  constrain  its  range  in  code  example  26.  If
you want to view the output Feynman diagrams, after the

 command  is  completed,  you  can  check  them  in
the  folder inside the output folder.

W+

Madgraph5
Code  example  25:  Generate   boson  events  using

launch
shower detector

W+

pT

W+ 250 350
R = 0.8

kT

W+

decay
seed

summary
Madgraph5

Then, use the  method in code example 26 to
start  the  simulation,  turn  on  the  and .
To boost  boson, we set spin mode as "none" to apply
following  cuts1) in  settings.  Following  [3],  set  the 
range for the  boson from  to  GeV. When us-
ing  the  default  CMS  delphes  card  with  and  the
anti-  algorithm to cluster the jets,  you can obtain a fat
jet that is expected to come from the decay of the  bo-
son.  Use  the  method  for  further  specific  decays.
Set the random seed ( ) to 42 to ensure the reprodu-
cibility of the results.  When the simulation ends, use the

 method  to  review  the  results  (shown  in Figure
5), akin to viewing results on the website of .

pT

The generation process for background events is sim-
ilar 27, with the difference lying in the  range settings.
Since the jets in this case do not originate from the decay

pTof  a  single  particle,  we  directly  restrict  the  range  of
the jets.

W+Code example 26: Launch the simulation of  boson
events.

Madgraph5
Code example  27:  Generate  background events  using

uproot

generators Madgraph5Run

After the  event  generation  is  complete,  we  start  pre-
paring  the  dataset.  First,  in  code  example  28,  we  use

 to open the root file output by DELPHES, which
stores branches categorized according to physical objects.
The  module includes , which
conveniently retrieves information about the run, such as
the  cross  section  and  generated  event  files.  Since  it

 

Fig.  5.    The summary  table  of  the  signal  (upper)  and  back-
ground (lower) events.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)
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run_01

searches for files produced in all sub-runs of a given run,
even though the files for signal events are stored in sub-
runs,  can  also  retrieve  the  corresponding  path
correctly.

uprootCode example 28: Use  to open the DELPHES
output root file.

SetDataset ImageDataset
read

Cut

In code  example  29,  to  avoid  missing  values  of  de-
sired observables,  we  use  the  previously  mentioned  ex-
tended logical operations to apply cuts. For both types of
datasets:  and ,  it  is  required
to have at least one fat jet and two regular jets. The 
method  supports  entering  multiple  cuts,  thus  there  is  no
need  to  use  the  class  to  parse  the  expressions  first.
When reading  events,  integer  labels  are  assigned  separ-
ately  for  signal  and  background  events.  Before  saving
locally, the data is split into a training set and a testing set
at a 7:3 ratio.

Code example 29: Prepare the set dataset.

ϕ η pT

with_subjets

0.3
kT R = 0.3 translate rotate

For the  image dataset,  it  is  first  to  construct  the  rep-
resentation of the data: namely, what observables should
constitute  the  images  and  what  preprocessing  steps
should be taken. In code example 30, , , and  of all
constituents  from the  leading fat  jet  are  used as  the  data
source for  height,  width,  and  channel  of  an  image.  Be-
fore  preprocessing,  is  used  to  recluster
constituents  to  add  information  about  the  subjets.  Since
the distance between the two sub-jets will not be less than

 according the previous equation,  it  is  safe  to  use the
 algorithm with . Then,  and 

pixelate
33×33

(−1.6,1.6)
0.1

are used to translate and rotate the image, aligning the in-
formation of the two sub-jets.  Finally,  is  used
to  pixelate  the  image;  the  size  here  is ,  with  a
range of , and an equivalent precision of around

. This precision does not match the precision in the de-
tector card. For simplicity, we take this fixed precision. In
code  example  31,  we  show  how  to  prepare  the  image
dataset.

Code example 30: Construct the representation of the im-
age dataset.

Code example 31: Prepare the image dataset.

show

After  constructing  the  datasets,  we  count  signal  and
background samples in code example 32 to avoid introdu-
cing artificial bias. We then use the dataset's  meth-
od to  display  the  distribution  of  observables,  as  illus-
trated in Figure 6 and Figure 7.

 

Fig. 6.    (color online) Feature distributions of the set dataset.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)
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Code example 32: Count the number of signals and back-
grounds and show the distribution of the datasets.

It is  observed  that  the  number  of  signal  and  back-
ground instances is approximately equal, and the observ-
ables  used  clearly  reflect  the  distinct  characteristics  of
each, which  is  beneficial  for  our  subsequent  classifica-
tion tasks. In the display of the image dataset, we show a
merged  image  of  the  signal  and  background.  It  can  be
seen  that  the  signal's  fat  jet  image  prominently  features
two sub-jets,  whereas  the  sub-jets  in  the  background are
less distinct. 

B.    Step 3: apply approaches
Once the datasets are prepared, let us import all avail-

able  approaches  for  training.  These approaches  learn the
differences between  the  signal  and  background.  Sub-
sequently, we use a dictionary and the built-in metrics to
gather their performance, which will then be presented as
a benchmark  test.  First,  import  all  the  necessary  pack-
ages as 33, which we have roughly categorized to facilit-
ate understanding of their purposes.

The  selected  evaluation  metrics  are  accuracy,  AUC
(Area Under  the  Curve),  signal  significance,  and  back-
ground  rejection  rate  at  fixed  signal  efficiency.  These
metrics  are  commonly  used  in  high-energy  physics  and
help us better understand the approaches' performance. In
code  example  34,  we  define  a  function  to  retrieve  the
evaluation metrics of an approach.

For  approaches,  cut-and-count  and  the  decision  tree,
they are  not  sensitive to  the scale  of  features,  so we can
directly  import  the  dataset  (code  example  35)  and  start

training  (code  example  36).  Two  different  topologies  of
the cut-and-count are taken to demonstrate how the order
of applying cuts impacts performance.

Code  example  33:  Import  necessary  packages  for  the
benchmark test.

Code example 34: Define a function to get the evaluation
metrics of a model.

MinMaxScaler
The  input  for  the  multilayer  perceptron  requires  the

use of  to scale the features within the 0-1
range,  as detailed in code example 38,  which aids in the
model's  rapid  convergence.  We  train  the  model  for  100

 

Fig.  7.    (color online) Combined images  of  signal  (left)  and
background (right) events.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)
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epochs with a batch size of 128. In code example 39, we
illustrate the training process.

Code example 35: Load the set dataset for training cut-
and-count and decision tree approaches.

Code example 36: Train the cut-and-count approaches
with two different topologies.

Code example 37: Train the decision tree approach.

For the convolutional neural network, we employ two
different  preprocessing  methods.  One  scales  each  image
by its  maximum  value,  while  the  other  applies  a  logar-
ithmic transformation to each pixel value. Given the large
variations in pixel intensity in jet images, scaling directly
by the maximum value might result  in excessively small

pixel  values,  whereas  logarithmic  transformation  better
preserves  information.  In  code  example  40  and  42,  we
load the image dataset and demonstrate these two distinct
preprocessing techniques.

Code example 38: Load the set dataset for training the
multilayer perceptron approach.

Code example 39: Train the multilayer perceptron ap-
proach.

Finally, we present a comparison of performance us-
ing code example 43. The results are shown in Table 3.
 
 

Table 3.  Comparison of different approaches

Name ACC AUC Significance R50 R99

cnc_parallel 0.750323 0.728121 33.660892 4.005174 1.000000

cnc_sequential 0.787784 0.769440 36.557026 4.712174 1.000000

bdt 0.902011 0.955063 44.368549 117.804291 2.146139

mlp 0.900904 0.956274 44.205276 117.804291 2.124265

cnn_max 0.806827 0.867769 38.444225 17.089737 1.188322

cnn_log 0.809452 0.876692 38.732323 19.042860 1.276514

 
From the significance column, we observe that for the

cut-and-count  method,  the  sequential  topology,  which
considers  the  impacts  among  cuts,  performs  better  than
the parallel topology. For convolutional neural networks,
the performance  of  logarithmic  scaling  is  roughly  equi-
valent to  that  using  maximum  value  scaling.  The  mul-
tilayer perceptron  and  decision  trees,  which  utilize  fea-
tures with clear distinctions, exhibit the best performance.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)
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For more  practical  problems,  we  can  apply  different  ap-
proaches  to  the  dataset  and then select  the  most  suitable
one based on various performance metrics.

Code example 40: Load the image dataset and normalize
the pixel values with the maximum value.

Code example 41: Train the convolutional neural  net-
work approach with the maximum value normalization.
 

VI.  SUMMARY

hml

In the current era where machine learning models are
rapidly  evolving,  it  is  worthwhile  to  explore  how to  use
them  more  conveniently  in  high-energy  physics  for
searching new  physical  signals.  In  this  paper,  we  intro-
duce the  Python package, which offers a streamlined

workflow from  event  generation  to  performance  evalu-
ation.  The  simplified  process  and  control  over  random
seeds significantly  enhance  the  reproducibility  of  the  fi-
nal analysis results.

"..."
Code example 42: Normalize the pixel values by taking
the logarithm.  indicates the same code as in 40 and
41.

Code example 43: Compare the performance of different
approaches.

show

We  propose  a  naming  convention  for  observables,
which  enables  users  to  easily  extract  the  required  data
from events  output  by  DELPHES.  Additionally,  we  ex-
tend the cut  expression syntax originally in UPROOT to
make  it  more  user-friendly and  compatible  with  DEL-
PHES output formats. This convention is also utilized in
our dataset construction process, helping users to quickly
and  conveniently  build  datasets.  Based  on  this  naming
convention, we implement a transformation from the out-
put of event generators to datasets usable by various ana-
lysis approaches. Moreover, the  method included in
datasets enables users to display data either as 1D distri-
butions or  2D  images,  facilitating  the  adjustment  of  ob-
servable selections based on observed differences.

We  have  adopted  the  interface  style  of  KERAS  to
standardize traditional methods such as the cut-and-count
technique  and  decision  trees.  Furthermore,  the  cut-and-
count approach supports  automatic  searching for  the  op-
timal  cut  positions,  significantly  reducing  the  workload
for  users.  Additionally,  we have incorporated commonly

Jing Li, Hao Sun Chin. Phys. C 49, (2025)
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used  evaluation  metrics  in  high-energy  physics,  such  as
signal significance and background rejection rate at fixed
signal efficiency.  These  metrics  help  users  better  under-
stand the performance of the models.

We  demonstrate  the  complete  workflow  through  a

hml hml
practical  example.  It  intuitively  showcases  the  usage  of

.  Currently,  is  continuously  being  updated.  We
plan  to  incorporate  more  existing  deep  learning  models,
datasets,  and  extend  to  graph  representations  of  data  to
further enhance its capabilities.
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