

HEP ML LAB: An end-to-end framework for applying machine learning
into phenomenology studies*

Jing Li (李靖) Hao Sun (孙昊)
Department of Physics, Dalian University of Technology, Dalian, 116024, China

hml

Abstract: Recent years have seen the development and growth of machine learning in high energy physics. There
will be more effort to continue exploring its full potential. To make it easier for researchers to apply existing al-
gorithms and neural networks and to advance the reproducibility of the analysis, we develop the HEP ML LAB
(), a Python-based, end-to-end framework for phenomenology studies. It covers the complete workflow from
event generation to performance evaluation, and provides a consistent style of use for different approaches. We pro-
pose an observable naming convention to streamline the data extraction and conversion processes. In the KERAS
style, we provide the traditional cut-and-count and boosted decision trees together with neural networks. We take the
W^+ tagging as an example and evaluate all built-in approaches with the metrics of significance and background
rejection. With its modular design, HEP ML LAB is easy to extend and customize, and can be used as a tool for both
beginners and experienced researchers.

Keywords: Framework, Machine Learning, Phenomenological Research, Jet, New Physics

DOI: CSTR:

I. INTRODUCTION

In recent years, with the continuous accumulation of
data from the Large Hadron Collider experiments, the
search for new physics has posed higher demands. Ma-
chine learning techniques, due to their outstanding capab-
ilities in data analysis and pattern recognition, have re-
ceived wide-spread attention, exploration, and applica-
tion in high-energy physics, such as jet tagging tasks
[1−34], rapid generation of simulated events [35−40].
More applications can refer to this review [41].

Typically, the process of research involving machine
learning models in high-energy physics comprises four
steps: data generation, dataset construction, model train-
ing, and performance evaluation. In this process, coopera-
tion between various software is often required. For in-
stance, use MADGRAPH5_AMC [42] for generating
simulated events, PYTHIA8 [43] for simulating parton
showering, DELPHES [44] for fast simulating detector
effects, ROOT [45] for data processing, and sub-
sequently building neural networks with deep learning
frameworks such as PYTORCH [46] and TENSOR-
FLOW [47]. For researchers new to high-energy physics,
learning and using these software tools pose a significant
challenge, while for experienced researchers, switching

between different software can be a tedious task. Such a
process inevitably increases the complexity of computa-
tional results, making them potentially difficult to replic-
ate, leading to difficulties in result comparison in sub-
sequent research.

Currently, some efforts have been made to simplify
the entire process: PD4ML [48] includes five datasets:
Top Tagging Landscape, Smart Background, Spinodal or
Not, EoS, Air Showers, and provides a set of concise ap-
plication programming interfaces (API) for importing
them; MLANALYSIS [49] can convert LHE and LHCO
files generated by MADGRAPH5_AMC into datasets,
and has three built-in machine learning algorithms: isola-
tion forest (IF), nested isolation forest (NIF), and k-
means anomaly detection (KMAD); MADMINER [50]
offers a complete process for inference tasks [51], and in-
ternally encapsulates the necessary simulation software,
as well as neural networks based on PYTORCH. These
frameworks significantly reduce the workload related to
specific tasks but still have areas that could be improved.

HEP ML LAB, developed in Python, encompasses an
end-to-end complete process. All modules are shown
briefly in Figure 1. MADGRAPH5_AMC is minimally
encapsulated for event generation, such as defining pro-
cesses, generating Feynman diagrams, and launching

 Received 28 March 2025; Accepted 23 May 2025
 * H.S. is supported by the National Natural Science Foundation of China under Grants No. 12075043

Chinese Physics C Vol. 49, No. 10 (2025)

 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-
tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-
lishing Ltd

-1

CPC
 A

cce
pte

d

runs. In the transition from events to datasets, we intro-
duced an observable naming convention that directly
links physical objects with observables, facilitating users
to directly use the names of observables to retrieve cor-
responding values. This convention can further apply to
the definitions of cuts. Inspired by the expression form of
cuts in UPROOT [52], we expand the corresponding syn-
tax to support filtering at the event level, using veto to
define events that need to be removed and more complex
custom observables. When creating datasets with differ-
ent representations, this naming rule still applies. In the
current version, users can easily create set and image
datasets, and for images, we also offer a rich set of func-
tions for preprocessing and displaying.

In the part of machine learning, we introduce two ba-
sic deep learning models: simple multi-layer perceptron
and simple convolutional neural network. Both have few-
er than ten thousand parameters, providing a baseline for
classification performance. These models are implemen-
ted using KERAS [53] without any custom modifications,
making it easy to expand to other existing models. Addi-
tionally, we integrate two traditional approaches, cut-and-
count, and gradient boosted decision tree, ensuring com-
patibility with KERAS. After different approaches are
trained, we provide physics-based evaluation metrics: sig-
nal significance and background rejection rate at fixed
signal efficiency, to assess their performance.

pip install hep-ml-lab

This package is publicly available through the Py-
thon Package Index (PyPI) and can be installed using the
standard pip package manager with the command

. It supports Python 3.9+ and
is compatible with Linux, MacOS, and Windows operat-

ing systems. The source code is open-sourced at Github1).
The structure of the paper is as follows. The section 2

introduces the wrapper class of MADGRAPH5_AMC to
generate events. In the section 3, we describe the observ-
able naming convention and show step by step how it is
used to extract data from events and extended to filter
data and to create datasets. Three types of approaches: cut
and count, decision trees, and neural networks available
now are shown in the section 4. Physics-inspired metrics
are also included there. In the section 5, we demonstrate
the effectiveness of the framework by a simple and com-
plete W boson tagging as a case study. Finally, we con-
clude the paper and discuss the future work in the section 6.

II. GENERATE EVENTS

generators

All phenomenological studies generally start from
simulating collision events, for example using MAD-
GRAPH5_AMC. The module provides a
wrapper for parts of its core functionalities, aiming to fa-
cilitate its integration into Python scripts for customized
setting requirements.

Madgraph5Code example 1: Initialize .

executive
verbose

In code example 1, users need to pass the executable
path to the parameter to ensure commands
can be sent to it. The parameter controls wheth-
er to display intermediate outputs, with the default value

hmlFig. 1. (color online) All modules in the framework and main classes in each module.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

1) https://github.com/Star9daisy/hep-ml-lab

-2

CPC
 A

cce
pte

d

of 1, meaning they are displayed, consistent with the out-
put seen when using MADGRAPH5_AMC in the termin-
al. After initialization, we can use its various methods to
simulate commands entered in the terminal as shown in
code example 2.

Madgraph5Code example 2: Methods of to generate pro-
cesses.

import_model

define
define ("j =

j b b ∼ ") generate

add process

g.generate("p p > w+ z", "p p > w- z")

display_diagrams
diagram_dir

output

During the process generation, we first need to use
the method to import the model file. This
method supports passing the path of the model or the
name of the model (MADGRAPH5_AMC will search for
the model in the models folder or download the model
based on its name). Next, use the method to
define multi-particles, for example,

. Then, in the method, pass in all
the processes to be generated without having to input

 like in the terminal. Here, the asterisk rep-
resents the unpacking operation in Python, and you can
directly enter multiple processes separated by commas

 without
needing to construct a list with square brackets. Usually,
to confirm processes have been generated as expected, we
need to view the Feynman diagrams, at which point the

 method can be used. It saves the gen-
erated Feynman diagrams to the folder and
has already converted the default eps files into pdf format
for convenience. Finally, use the method to ex-
port the processes to a folder.

launchCode example 3: Use method and set up all pos-
sible parameters for generating events.

launch
shower

detector madspin

settings

With the process folder ready, we can start to pro-
duce runs to generate simulated events as shown in code
example 3. The method includes parameters you
may need to configure for the run, where ,

, represent switches for PYTHIA8,
DELPHES, and MADSPIN, respectively, consistent with
the options in the terminal's prompt. includes

settings = {"nevents": 1000, "iseed": 42}
iseed

seed

decays

decays = ["w+ > j j", "z > vl vl ∼ "] cards

cards = ["delphes_card.dat",
"pythia8_card.dat"]

multi_run
multi_run = 2

run_01_1
run_01_2 MadEvent

nevents
settings

nevents
multi_run hml

dry = True

parameters configured in the run card, for example,
.

While is the random seed used by
MADGRAPH5_AMC to control the randomness of the
sub-level events, it does not affect PYTHIA8 and DEL-
PHES. You can specify the parameter to uniformly
configure these three, ensuring the cross section, error,
and events are fully reproducible. The method is
used to set the decay of particles, for example,

. The
parameter accepts the path to your pre-configured para-
meter files, for example,

. In this version, only Pythia8 and
Delphes cards can be recognized correctly with "pythia8"
and "delphes" in their file names. It currently doesn't sup-
port the cards that have external folders as dependencies
like the muon collider delphes card. When a large num-
ber of events need to be generated, you can set the

 parameter to create multiple sub-runs for a
single run, for example, setting , the final
event files will be named in the form of ,

, which is controled by . Note, since
MADGRAPH5_AMC does not recommend generating
more than one million events in a single run, the
parameter in should also be set appropriately,
as the total number of events is the result of
multiplied by . will generate the corres-
ponding valid commands based on your settings and send
them to MADGRAPH5_AMC running in the back-
ground. If you want to check the actual commands be-
fore the run starts, you can set , which re-
turns the generated commands instead of starting the run.

Code example 4: All the information seen in the table can
be accessed.

summary
g.summary()

After generating the events, you can use the
method, i.e., to print the results in a table
as shown in Figure 2. The table includes the name of each
run, the number of sub-runs in brackets, colliding particle
beam information, tags, cross-section, error, total number
of events, and the random seed. The header displays pro-
cess information, and the footnote shows the output's rel-
ative path, essentially consistent with the results you see
on the web page.

launch
If you wish to continue experimenting with different

parameter combinations, you can use the method
again, or employ Python's loop statements to generate a

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-3

CPC
 A

cce
pte

d

series of combinations to observe the differences in cross-
section under various conditions. When doing so, it is re-
commended to set short label names to facilitate sub-
sequent search and analysis like code example 5 does.

Code example 5: Use a loop to scan the mass of a particle
called "nh2" and show the summary.

hml

Madgraph5.from_output
Madgraph5Run

output
MadGraph5

events

uproot

If there're already output files and you can use to
extract some information for subsequent use. The class
method and the

 will be of great assistance as shown in 6.
The former accepts the path to the output folder, which is
the path you enter in the command of

, as well as the path to the executable file. The
latter requires the output folder path and the name of the
run to access information such as cross section and error.
The method allows for retrieving the paths to all
event files under a run, including sub-runs. Currently, it
only supports files in root format. You can use to
open these files for subsequent processing.

Madgraph5.from_output
Madgraph5Run
Code example 6: Use and

 to access the information.

III. CREATE DATASETS

<physics object>.<observable type>

The leading fat jet's mass, the angular distance
between the primary and secondary jets, the total trans-
verse momentum of all jets, the number of electrons, etc.,
all demonstrate that observables are always connected to
certain physical objects. Thus, we propose the observ-
able naming convention: the name of an observable is a
combination of the physical object's name and the type of
observable, connected by a dot, denoted as

. In this sec-
tion, starting from physical objects, we gradually refine
this representation, eventually extending it to the acquisi-
tion of observables, the construction of data representa-
tions, and the definitions of cuts.

A. Physics objects
Physical objects in DELPHES are stored in different

branches, representing a category rather than a specific
instance. Considering that the calculation of many ob-
servables involves different types and numbers of physic-
al objects, often utilizing their fundamental four-mo-
mentum information, we have categorized physical ob-
jects into four types based on their quantity and category:

Single1. physical objects, which precisely refer to a
specific physical object. For example:

"jet0"– is the leading jet.
"electron1"– is the secondary electron.

Collective2. physical objects, representing a cat-

egory of physical objects. For example:
"jet" "jet:"– or represents all jets.
"electron:2"– represents the first two electrons.

Nested3. physical objects, formed by free combina-

tions of single and collective physical objects. It cur-
rently supports the combination of "FatJet/Jet" and "Con-
stituents":

"jet.constituents"– represents all constituents of
all jets.

"fatjet0.constituents:100"– represents the first
100 constituents of the leading fat jet.

Multiple4. physical objects, composed of the previ-
ous three types and separated by commas. For example:

"jet0,jet1"– represents the leading and secondary
jets.

This naming convention is inspired by the syntax of
Python lists. To minimize the input cost for the user, we
discard the original requirement to use square brackets
for receiving indexes or slices: for single physical objects,
the type name is directly connected to the index value; for
collective physical objects, a colon is used to separate the

summaryFig. 2. (color online) The output of method.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-4

CPC
 A

cce
pte

d

parse_physics_object
start index from the end index, and the type name alone
represents the whole. Use meth-
od to get the branch and the required index values based
on the name of the physical objects as shown in code ex-
ample 7. This design makes users focus on the physical
objects themselves, rather than on how the corresponding
classes should be initialized. In Table 1, we also summar-
ize all types of physical objects, their initialization para-
meters, and examples.

parse_physics_objectCode example 7: Use method to
get the branch and slices of physics objects.

In this version, physical objects are merely tools for
parsing user input and do not contain any information
about observables. Unlike other software packages, we
strictly separate the acquisition of observables from the
physical objects. Physical objects only store information
about the connection between observables and their data
sources, not the data itself.

B. Observable

branch slices

After defining physical objects, the task of observ-
ables is to extract information from them. In code ex-
ample 7, we store all useful information from a physical
object in and : the former refers to the
corresponding branch name, and the latter means a spe-

False

cific parts of array-like data. The advantage of doing so is
that when encountering certain physical objects, such as
the hundredth jet, which does not exist, it returns a list of
length zero instead of an error. An empty list will auto-
matically be judged as when applying cuts,
thereby being skipped.

Mass mass m
NSubjettinessRatio taumn

m n

Size
AngularDistance

In Table 2, we list all the observables currently avail-
able. To avoid remembering exact name of an observable,
its name is case-insensitive and common aliases are ad-
ded. For example, can be written as or , and

 has the alias , where the
values of and are passed as parameters into the cor-
responding class. For the transverse momentum, consid-
ering the style in different softwares, we more aliases for
its symbol representation. Moreover, different observ-
ables support different types of physical objects. For ex-
ample, the observable supports collective physical
objects, while the observable sup-
ports all combinations of multi-body objects.

parse_observable
observables read

read

awkward

None var

In code example 8, we show how to use such an ob-
servable. First initialize the corresponding observables
using the function from the

 module, then use the method to ex-
tract the values from an event. As the returns the
object itself, you can take the advantage of method chain-
ing to define an observable directly followed by reading
an event. We also add extra information when you print
the observable itself: its name, shape, and data type. In-
ternally, [54] is used for manipulating variable-
lengthed jagged arrays. The question mark in the data
type indicates there are missing values (). The
appearing in the shape indicates inconsistent lengths, for
example, each event has a varying number of jets and
each jet has a varying number of constituents.

Size

1 AngularDistance

(n_events, var, 1)
n_events var

While the first dimension of the observable value al-
ways represents the number of events, the shape is gener-
ally determined by the related physical objects. For ex-
ample, the shape of transverse momentum and other kin-
ematic variables is exactly as its physics obsject.
However, this also depends on how to compute the ob-
servable. For instance, the shape of the observable
is the number of physics objects and the second dimen-
sion is always , whereas the shape of
depends on the type of physical objects: if calculating the
distance between all jets and the leading fat jet, we will
get an array of shape , where

 represents the number of events, repres-

Table 1. All types of physics objects and their examples.

Type Initialization parameters Name examples

Single branch: str, index: int "jet0", "muon0"

Collective branch: str, start: int|None "jet", "jet1:", "jet:3", "jet1:3

Nested main: str|PhysicsObject, sub: str|PhysicsObject "jet.constituents", "jet0.constituents:100

Multiple all: list[str|Physicsobject] "jet0,jet1", "jet0,jet"

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-5

CPC
 A

cce
pte

d

1

(n_events, 10, var) var

None

ents a variable number of jets, and represents the lead-
ing fat jet; if calculating the distance between the first ten
fat jets and all constituents of all jets, we obtain an array
of shape . The now comes
from the number of constituents and the number of jets,
which we compress two dimensions into one. For events
that do not have enough physics objects, the missing val-
ues are filled with .

parse_observable read
events

uproot

Code example 8: Use and to
get the value of observables. are opened by

.

The built-in observables are only some of the most
basic ones, so they may not be sufficient for every use

Observable hml

MET
MissingET

parse_observable register_
observable

"missinget0.met"
"MissingET0.MET" parse_observables

"MET" "met"

"MissingET"

case. Therefore, we show three examples of building your
own observables. In the first example 9, when the needed
observable is already stored under a certain branch, you
only need to declare the name of this observable as a
class that inherits from . will search for
the branch based on the physical object name and extract
the corresponding value based on the slices. Here, we
take the observable as an example, which is origin-
ally stored under the branch . To use the

 function, you can call
 function to register an alias for it. Please

note that this implementation requires a physical object,
which means that only by entering or

 can the works
as normal. Only or without an physics ob-
ject is not allowed. As each event has only one missing
energy physical object, is followed by 0.

ObservableCode example 9: Inherit from and it will
automatically retrieve the corresponding value if the

Table 2. All types of observables and their supported types of physical objects.

Type Alias Single Collective Nested Multiple

MomentumX, Px momentum_x, px ✓ ✓ ✓

MomentumY, Py momentum_y, py ✓ ✓ ✓

MomentumZ, Pz momentum_z, pz ✓ ✓ ✓

Energy, E energy, e ✓ ✓ ✓

TransverseMomentum, Pt transverse_momentum, pt, pT, PT ✓ ✓ ✓

PseudoRapidity, Eta pseudo_rapadity, eta ✓ ✓ ✓

AzimuthalAngle, Phi azimuthal_angle, phi ✓ ✓ ✓

Mass, M mass, m ✓ ✓ ✓

Charge charge ✓ ✓

BTag b_tag ✓ ✓

TauTag tau_tag ✓ ✓

NSubjettiness, TauN n_subjettiness,tau_n, taun ✓ ✓

NSubjettinessRatio, TauMN n_subjettiness_ratio, tau_mn, taumn ✓ ✓

Size size ✓

InvariantMass invariant_mass, inv_mass, inv_m ✓ ✓

AngularDistance, DeltaR angular_distance, delta_r ✓ ✓ ✓ ✓

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-6

CPC
 A

cce
pte

d

physics object does have it.

read
events

uproot.open
events

awkward _value

awkward hml
self

If you already have established a computation pro-
cess and do not want to consider the physical objects, we
recommend referring to the second example 10. All you
need to do is overwrite the method, defining how to
compute the values of observables. The is the re-
turn value of . You may need to adjust the
calculation due to the and the underlying

 array. It is important to note that must
be an iterable object, such as a list or array, to be cor-
rectly converted into an array by . Addition-
ally, you should return at the end, enabling chain
calls similar to other observables.

readCode example 10: Overwrite the method to define
how to calculate the value of the observable.

read

The third example 11 changes the initialization. We
add constraints on physical objects, i.e. it could only be
related to a single physics object. There's also a new para-
meter for more flexibility. The part is the same as
the second example. This is the strictest observable but
also the safest one.

Currently, the naming convention is built upon the
output of DELPHES and does not support other formats
yet. However, considering that different analyses require
data at different levels and in different formats, we plan
to gradually add support for other event formats in future
versions, such as HEPMC, LHE, etc.

C. Representation
To make high-energy physics data compatible with

different analysis approaches, it necessary to convert data
into various representations. The review [55] summar-

hml

izes six representations of jets: ordered sets, images, se-
quences, binary trees, graphs, and unordered sets. Built
upon the observable naming convention, we extend the
representation to an event. Currently, supports the
(ordered) set and image representations. In future ver-
sions, we will prioritize adding the graph representation
and corresponding neural networks.

Code example 11: Define an observable with constraints
on the type of physical objects and with a new parameter.

(n_events, n_observables)

The ordered set is one of the most commonly used
representations. It arranges physics-inspired observables
in an arbitrary order to form a vector that describes an
event. The vectors from all events are then assembled in-
to one matrix by event, with the shape

. Following the naming
convention, it is straightforward and concise to construct
such a set as illustrated in code example 12.

SetCode example 12: Use to represent the ordered set of
observables.

Set read

values awkward

muon0.charge
None

You need to package the observable names into a list
and pass it into the , then call the method to get
the values from events. The values will be stored in the

 attribute. Here, you can see that we use
arrays to store data. For observables with the correct
physical object name but not existing (for example,

, when there are no muons produced in the
event), we treat its value as . This way of handling
missing values allows us to follow the matrix operation

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-7

CPC
 A

cce
pte

d

habit: first build the data matrix, then deal with the miss-
ing values.

read

Image

with_subjets

translate

pixelate

For the image representation, we also use observable
names to define the way of fetching the data for its
height, width, and channel, as shown in code example 13.
The method is used to read events as before. Here,
we construct an image of the leading fat jet, with all its
constituents' pseudorapidity, azimuthal angle, and trans-
verse momentum. Considering the significant amount of
works that includes similar preprocessing processes, we
add them as the methods of the class. Since the
preprocessing often relates to sub-jets, it's necessary to
add information about sub-jets via the method

: its parameters include the name of con-
stituents, clustering algorithm, radius, and the jet's min-
imum momentum. The method moves the po-
sition of the leading sub-jet to the origin, which reduces
the complexity of position information helping speed up
the learning process. Next, for the sub-leading sub-jet, it
can be rotated right below the origin, making the features
of the entire image more pronounced. Lastly, the

 method is used to pixelate the data to make up
an real image. Since pixelation leads to a reduction in
data precision, this step is separated out, allowing for fur-
ther studies on when to apply it and the impacts of the or-
der.

ImageCode example 13: Use to represent a fat jet and
preprocess it via sub-jets.

Image
show

norm="log"
.values

For convenience in displaying images, the
class contains a method that can directly plot it as
an image. Code example 14 shows all the available para-
meters: the first two are used to show the image as dots,
and the last three parameters display a pixel-level grid,
enable the grid by default, and apply normalization over
the whole image, respectively. The Figure 3 shows an im-
age representation before and after preprocessing steps.
In the raw image, the observables used for "height" and
"width" are directly plotted as a 2D scatter image. For the
final pixelated image, enhances its features
more distinctly. The data can be accessed via
property as a list of awkward array (before pixelation) or

one awkward array (after pixelation). You can convert
them and then save them in formats like numpy array,
JSON files to handle them with tools you're more famili-
ar with.

showCode example 14: Use to plot the image as a 2d
heatmap if it has been pixelated or as a 2d scatter plot.

(
uproot cut hml

Cut
read

After acquiring the original event data, it's time to fil-
ter it to obtain events that satisfy specific criteria. In the
old workflow, during the event loop, it was common to
manually include the calculation of observables and then
apply conditionals to filter events. We note that the ar-
ray) method in supports parameter. In ,
we utilize a matrix-oriented programming style to change
the filtering procedure into boolean indexing; further-
more, we add logical operation syntax upon the observ-
able naming convention to make the definition of cuts in-
tuitive, as shown in code example 15. still has the
similar method. The values form a one-dimension-
al boolean matrix, length of which is equal to the number
of events. It allows you to directly use it to filter other ob-
servables via boolean indexing.

uproot
| and or

(pt1 > 50) ((E1>100) | (E1<90))
pt1 E1

n_events, var

For the extend syntax of logical operations, i.e. how
to combine multiple conditions, we referr to the imple-
mentation of : it uses the bitwise logical operat-
ors of matrices, & and to replace or , and adding
parentheses to ensure priority. For example,

 & expresses the
condition that is greater than 50 and is either
greater than 100 or less than 90. The expression is then
parsed directly by Python: it is purely matrix operation,
without considering the case of DELPHES output. It can-
not handle such cuts: "all jets are required to have trans-
verse momentum greater than 10 GeV", whose data is of
shape . It undoubtedly requires users to

Fig. 3. (color online) The raw image and the pixelated im-
age after preprocessing.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-8

CPC
 A

cce
pte

d

rearrange the original data to make the dimensions of the
matrices consistent since the number of jets is not neces-
sarily the same among events. This essentially only fil-
ters values that meet the conditions, not the events that
meet the conditions. In conjunction with the observable
naming convention, we advocate simplifying the matrix
logical operation syntax to facilitate user input.

Code example 15: Cut values are boolean arrays that can
be used to filter other observables.

and or
|

1. Logical AND and logical OR are still represented
by or . They are converted into bitwise logical op-
erators & and automatically, avoiding too many paren-
theses;

2. The result of the logical expression acts on the first
dimension, that is, the dimension of events, to filter
events;

3. Involved observables must have the same dimen-
sions to ensure the correctness of logical operations;

[all]

[any]

4. At the end of a cut, default represents a lo-
gical AND operation on all values of all observables in
each event. It can be ignored and not written; rep-
resents a logical OR operation on all values of all observ-
ables in each event. This syntax is suitable for cases
where all of a certain observable or any one observable in
the events needs to meet the conditions;

veto5. Add support for at the beginning of a cut for
cases where certain events need to be excluded.

Below, we take specific literatures to demonstrate and
explain the new syntax. The original text will be presen-
ted first, followed by the corresponding cut in the next
line. We assume that data is stored in the same units as
the description indicates. In the literature [56]:

µ±

pµT > 10GeV
|ηµ| < 2.4

1. Muons are identified with a minimum trans-
verse momentum and rapidity range

...

muon.pt > = 10 and -2.4 < muon.eta < 2.4

and

[any]

Here, we take all the muons and simplify the syntax
for pseudorapidity within a certain range, which can be
written consecutively. Here, the represents the bit-
wise logical operator of the matrix. For each event, if
there is no at the end of the expression, it means
that all values need to satisfy the condition;

2. Only events with reconstructed di-muons having
same sign are selected.

muon0.charge = = muon1.charge

None

False

Here, we only need to judge whether the charges of
the two muons are the same, without determining wheth-
er the number of muons is two. When there are fewer
than two muons, the charge of one muon will be ,
and such judgment will be automatically treated as

;
W±

J pJ
T > 100GeV

3. We identify the hardest fat-jet with the candid-
ate jet () and this is required to have .

fatjet0.pt > = 100

In the literature [57]:
1. C3: we veto events if the OS di-muon invariant

mass is less than 200 GeV.

muon0.charge ! = muon1.charge and muon0,muon1.inv
_mass > 200

2. C4: we apply a b-veto.

veto jet.b_tag = = 1 [any]

veto [any]Use and to indicate that for all jets, if any
one of them is b-tagged, then the event is excluded.

3. C5: we consider only events with a maximum MET
of 60 GeV.

MissingET0.PT < 60

Using uppercase and lowercase is equivalent because
there is only one missing energy, so it is represented by 0.
The MET observable here actually also refers to the
transverse momentum, so it can be represented by PT.

N τJ0
21 < 0.44. C8: we choose events with -subjettiness .

fatjet0.tau21 < 0.4

The definition of this observable is provided by the

DELPHES card. We have already defined its parsing

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-9

CPC
 A

cce
pte

d

method in the observables module, so here we can dir-
ectly use its name.

MN = 600−900
In the literature [58], the cuts of CBA-I for

 GeV:
2.8 < ∆R(j, ℓ) < 3.81. Jet-lepton separation

2.8 < jet0,lepton0.delta__mass > 200r < 3.8

In the literature [59]:

e µ |ηℓ| < 2.5 pT,ℓ > 500
1. The basic selections in our signal region require a

lepton (or) with and GeV...

-2.5 < muon0.eta < 2.5 and muon0.pt > 500.

We take the muon as the example.

|ηℓ| < 2.5 pT,ℓ > 7GeV
2. ... veto events that contain additional leptons with

 and

veto -2.5 < muon.eta < 2.5 and muon.pt >
7 [any]

vetoIn this cut, it's easier to use to exclude events
with additional leptons.∣∣η j

∣∣ < 2.5 pT, j > 30GeV
3. ... and impose a jet veto on subleading jets with

 and .

veto -2.5 < jet1.eta < 2.5 and jet1.pt >
30 [any]

In the literature [60]:

pT > 15 |η| < 2.5
1. Photon-veto: Events having any photon with

 GeV in the central region, are discarded.

veto -2.5 < photon.eta < 2.5 and photon.pt
> 15 [any]

τ |η| < 2.3
pT > 18 |η| < 2.5
pT > 20

2. and b-veto: No tau-tagged jets in with
 GeV, and no b-tagged jets in with
 GeV are allowed.

veto jet.tau_tag = = 1 and -2.3 < jet.eta <

2.3 and jet.pt > 18 [any]

min(∆ϕ(pMET
T ,p j

T)) > 0.5
pT > 30GeV |η| < 4.7

3. Alignment of MET with respect to jet directions:
Azimuthal angle separation between the reconstructed jet
with the MET to satisfy for up to
four leading jets with and .

jet:4,missinget0.min_delta_phi > 0.5 and
jet:4.pt >30 and -4.7 < jet:4.eta < 4.7

MinDeltaPhi
min_delta_phi

Users need to define the observable in
advance and register it with alias .

D. Dataset
With the data representation and cuts defined previ-

ously, we can now proceed to construct the dataset. Cor-

SetDataset ImageDataset

read read
targets

1
cuts

1
0

split

samples
targets

numpy save

.ds
load_dataset SetDataset.load

responding to data representations, we currently offer two
datasets: and . Code ex-
ample 16 shows the use of the dataset of an ordered set.
Its initialization requires names of the observables. Then
still use the method to read events. For this ,
we added two additional parameters: is the in-
teger label you assign to the event, which is the target of
convergence. Here we assign to denote events as sig-
nals; are your filtering criteria. Here we require the
number of jets to be more than , and the number of lead-
ing fat jets to be more than . When you use multiple
cuts, the result of each cut is applied to the dataset one by
one, which means they are connected by logical AND.
When splitting the dataset, you can use the meth-
od. Its parameters are the ratios for train, test, and valida-
tion sets, here we used 70% of the data as the training set,
20% as the test set, and 10% as the validation set. Before
saving the dataset, you can access the and

 to view the stored data, which have already
been converted into arrays. Finally, use the
method to save the dataset to a zip compressed file with

 suffix. Such a file can be loaded by the
 function or class

method.

SetDatasetCode example 16: Use to build a dataset
representing each event as a set of observables.

show
n_feature_per_line

n_samples
target

To quickly view the distributions of the entire dataset,
you can use the method. The code example 17
shows all the available parameters:
is the number of observables to display per line,

 is the number of events to display, and
 is the label of the events to display.

showCode example 17: Use to display the observable
distributions of a set dataset.

Image

The construction process of an image dataset is simil-
ar to that of an ordered set, as shown in code example 18.
When initializing an , you can directly configure

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-10

CPC
 A

cce
pte

d

the necessary preprocessing steps in method chaining.
When the dataset reads events afterwards, these steps will
be carried out in sequence.

ImageDatasetCode example 18: Use to build a dataset
representing each event as an image

showCode example 19: Use to plot the image of the data-
set.

show

n_events, height, width, channel
height, width, channel

show
Image

n_samples
target

The method of an image dataset enable you to
display events as an image as shown in Example 19. By
default, the entire dataset's images are compressed into
one image. If the original dimensions are

, the compressed
dimensions will be . While
most parameters are the same as those in the meth-
od of , two additional parameters are added:

 is the number of events to display, and
 is the label of the events to display.

IV. APPLY APPROACHES

approaches

With well-prepared datasets, we can apply different
approaches to identify rare new physics signals. The

 module includes cut-and-count, trees, and
neural networks. We will gradually add more in the com-
ing versions. The basic design principle of this module is

compile
fit predict

minimal encapsulation to interface with current frame-
works, such as SCIKIT-LEARN [61], TENSORFLOW,
and PYTORCH. Considering the simplicity, we adopt the
Keras-style interface design: decide approach structure at
initialization, for configuring the training pro-
cess, for training the approach, and for pre-
diction on new data. KERAS is originally a high-level en-
capsulation of TENSORFLOW, but after the version 3, it
begins to support multiple backends, offering unpreced-
ented flexibility, which is one of the reasons we choose it.
You should note that we only test the compatibility with
TensorFlow backend currently.

A. CutAndCount
Cut-and-count (or cut-based analysis) is fundamental

and widely used when studying the impact of various ob-
servables on the final sensitivity. It provides evidence to
support the discovery of new particles and the verifica-
tion of new theories.

As the name suggests, it involves two steps: applying
a series of cuts to distinguish the signal from the back-
ground as much as possible, then counting the number of
events that pass the cuts. The subsequent distribution,
such as invariant mass, is used to determine the nature of
the particles involved. These cuts can be applied onto
properties of specific particles, such as kinematic quantit-
ies, charge, other observables, or other characteristics as-
sociated with simulated collision events, like particle
states in decay chains. Filtering the data allows focusing
on areas of interest, increasing the possibility of discover-
ing new physics.

Applying cuts involves some technique to make the
final signal more evident. Typically, one would plot the
distribution of observables that reflect signal characterist-
ics and choose the area with a higher signal ratio as the
cut range based on manual judgment. There are two is-
sues here: 1) manual judgment is subjective and cannot
guarantee the effect of the cut; 2) the observable distribu-
tions that people observe is sometimes the source data
without any cuts. If there is an unavoidable association
between observables, applying a cut will affect the distri-
bution of the next observable. Therefore, a more rigorous
way is to apply one cut first, plot the distribution of the
next observable, then determine the next cut, and so on.

Code example 20: Initialize the CutAndCount approach

CutAndCountUsers can use to implement these two

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-11

CPC
 A

cce
pte

d

CutAndCount

CutLayer

n_bins

topology
parallel

sequential

different strategies of applying cuts. In code example 20,
we demonstrate how to initialize a method.
You need to specify the number of involved observables,
and then an internal will be created to automat-
ically search for optimal cut values. For each observable,
four possible conditions are considered: the signal on the
left side, right side, middle, and both sides of the cut.
Then, it calculates the user-specified loss function for
each case, choosing the one with minimum loss as the fi-
nal cut. sets the granularity of the data when
searching, i.e., the number of bins for the distribution of
each observable. A higher number of bins can make the
cut more precise but also increases the cost of calculation,
which also relates to the size of data and the complexity
of its distribution. The principle here is that as long as the
data distributions become stable, then the number of bins
can be appropriately reduced without affecting the final
result. sets the order or the strategy that cuts
are applied: means all cuts are independent,
and the distributions referred to come from the original
data, while considers the correlation among
cuts, with each cut applied on the basis of the previous
one.

CutAndCount compile

CutAndCount

run_eagerly = True

CutAndCount

True
fit

epochs
callbacks

In code example 21, we show how to configure and
train a approach. In the method,
you can specify the optimizer, loss function, and evalu-
ation metrics. For , the optimizer is unne-
cessary because it does not use gradient descent methods
internally, but rather finds the optimal cut values through
a search process. The loss function is used to evaluate the
effectiveness of each cut, while the evaluation metrics
here will be used to show the performance scores during
the training, it is better to evaluate the performance after
training all at once. The is neces-
sary. By default, KERAS uses a computational graph for
calculations, which is very efficient for training neural
networks. However, includes some custom
calculations that are not yet fully compatible within the
computational graph, so it needs to be set to . In the

 method, you need to input the samples and targets of
the training set, where the batch size should be the min-
imum number that can reflect the distribution pattern of
the data. If your dataset is relatively small and can fit en-
tirely into the GPU's memory, you can set the batch size
to the size of the entire training set. Besides, the
parameter is unnecessary, and the parameter
has not been implemented yet, but will be gradually ad-
ded in future versions.

B. Trees and Neural Networks
Decision trees are a common method of classification,

and there are many mature frameworks available, such as
TMVA [62], XGBOOST [63], SCIKIT-LEARN, etc.
TENSORFLOW DECISION FORESTS [64] is also a
good choice as it also adopts the KERAS training style.

GradientBoostingClassifier

Considering our preference for the multi-backend sup-
port, we modify parts of the

 code from SCIKIT-
LEARN to conform to the same style.

fit

Keras
"accuracy"

predict
Keras

Keras

scikit-learn
compile

Firstly, the original method is enhanced to handle
input targets in one-hot encoded format. Secondly, sup-
port for metrics during the training process, such
as the commonly used . Thirdly, the output
of its method is changed to predict probabilities,
aligning it with . Despite these changes, many
parameters are still not supported yet: many of the origin-
al initialization parameters are related to early stopping,
learning rate adjustments, etc., which in are imple-
mented through callback functions. Moreover, loss func-
tions are not uniformly customizable in ,
so we do not support changing it in method. In
code example 22, we demonstrate the basic usage.

CutAndCountCode example 21: Configure and train the
approach

GradientBoostedDecisionTree
Code example 22: Basic usage of the modified

 approach.

hml

SimpleMLP
SimpleCNN

A starting point of is to provide researchers with
existing deep learning models so that they can conduct
benchmark tests on their datasets and select the optimal
model. At this early development stage, we only offer
two basic models: (multi-layer perceptron)
and (convolutional neural network). In future
versions, after thorough testing, we will gradually add

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-12

CPC
 A

cce
pte

d

more existing models to provide the utmost convenience.

Sequential

Model

SimpleMLP 4386
SimpleCNN

5960
(33,33,1)

In KERAS, there are three ways to build a model: 1.
Using to stack layers, 2. Using the Function-
al API to construct more complex topologies, 3. Inherit-
ing from to declare a subclass for greater flexibil-
ity. Considering that the construction of many models is
quite complex and requires exposing a certain number of
hyper-parameters for tuning, we choose the third way to
build the provided models. The Figure 4 shows the struc-
tures of two models. The has paramet-
ers with the inputs are three observables. The
has parameters with the inputs are images of shape

. Both models are shallow and simple, so they
do not consume too much computing resource during the
training and testing stages.

C. Metrics

σ

σ

σ

After training an approach on a dataset, it is often ne-
cessary to use various metrics to assess its effectiveness.
Unlike the classical accuracy score, which is commonly
used in classification tasks, in high-energy physics, the
scarcity of signals shifts the focus towards the signal sig-
nificance, denoted by . A higher value indicates a lower
probability that the observed signal is a result of back-
ground fluctuations alone. For instance, 3 is often con-
sidered as an evidence of a signal, indicating that there is
about a 0.27% chance of the signal being a statistical
fluke. Meanwhile, 5 is the gold standard in high-energy
physics for claiming a discovery, corresponding to a
probability of roughly 1 in 3.5 million that the observed

hml S
B

signal is due to background noise. Equation 1 is the for-
mula for calculating significance in . Note that here
represents the number of signals, and represents the
number of backgrounds, which refer to the number of
simulated events when the cross section of the corres-
ponding process and integrated luminosity are not spe-
cified. In code example 23 we show how to use it.

σ =
S√

S +B
(1)

MaxSignificanceCode example 23: Use the metric to
evaluate performance of an trained approach.

MaxSignificance
thresholds

class_id = 1

For the built-in approaches, their outputs are probabil-
ities for signal and background. By default, only when the
probability exceeds 0.5 do we consider it as a signal or
background. In , we can change this
threshold by setting . By default, data with

 is viewed as signal and 0 as background.
Change it if the targets for signal and background in your
dataset are not like this.

reset_state

In addition to significance, some literatures also in-
clude the background rejection at a fixed signal effi-
ciency as an evaluation metric, so we also support it,
shown in equation 2. The higher the background rejec-
tion rate, the fewer the number of background events that
are mistakenly classified as signals. In the example 24,
you can see the same way to use it. Note that for both the
metrics, if you call them multiple times, the values will
be averaged. So if you want to calculate them from
scratch, you need to call the method.

rejection = 1/ ϵb|ϵs (2)

V. EXAMPLE: W BOSON TAGGING

To give users a complete understanding of the entire
workflow, this section show how to integrate various
modules to complete a task of jet tagging. This example
serves merely as a proof of concept; users still need to
conduct more personalized analysis on this basis.

SimpleMLP SimpleCNNFig. 4. The structure of the and models.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-13

CPC
 A

cce
pte

d

A. Step 1: generate events

W+

We choose to simulate the production of highly boos-
ted bosons that decay into two jets, resulting in a
single fat jet during event reconstruction. This jet has dis-
tinct characteristics of mass and spatial distributions,
making it easier to identify using all built-in approaches.

RejectionAtEfficiencyCode example 24: Use the
metric to evaluate the model's performance.

Madgraph5 generate
output
W+

pT

output
Diagrams

In code example 25, we first import the event generat-
or module from using the method
to create the signal process, and then use the
method to save it to a designated folder. To make bo-
sons highly boosted, we leave the decay chain unfinished
here and constrain its range in code example 26. If
you want to view the output Feynman diagrams, after the

 command is completed, you can check them in
the folder inside the output folder.

W+

Madgraph5
Code example 25: Generate boson events using

launch
shower detector

W+

pT

W+ 250 350
R = 0.8

kT

W+

decay
seed

summary
Madgraph5

Then, use the method in code example 26 to
start the simulation, turn on the and .
To boost boson, we set spin mode as "none" to apply
following cuts1) in settings. Following [3], set the
range for the boson from to GeV. When us-
ing the default CMS delphes card with and the
anti- algorithm to cluster the jets, you can obtain a fat
jet that is expected to come from the decay of the bo-
son. Use the method for further specific decays.
Set the random seed () to 42 to ensure the reprodu-
cibility of the results. When the simulation ends, use the

 method to review the results (shown in Figure
5), akin to viewing results on the website of .

pT

The generation process for background events is sim-
ilar 27, with the difference lying in the range settings.
Since the jets in this case do not originate from the decay

pTof a single particle, we directly restrict the range of
the jets.

W+Code example 26: Launch the simulation of boson
events.

Madgraph5
Code example 27: Generate background events using

uproot

generators Madgraph5Run

After the event generation is complete, we start pre-
paring the dataset. First, in code example 28, we use

 to open the root file output by DELPHES, which
stores branches categorized according to physical objects.
The module includes , which
conveniently retrieves information about the run, such as
the cross section and generated event files. Since it

Fig. 5. The summary table of the signal (upper) and back-
ground (lower) events.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

1) https://answers.launchpad.net/mg5amcnlo/+question/666825

-14

CPC
 A

cce
pte

d

run_01

searches for files produced in all sub-runs of a given run,
even though the files for signal events are stored in sub-
runs, can also retrieve the corresponding path
correctly.

uprootCode example 28: Use to open the DELPHES
output root file.

SetDataset ImageDataset
read

Cut

In code example 29, to avoid missing values of de-
sired observables, we use the previously mentioned ex-
tended logical operations to apply cuts. For both types of
datasets: and , it is required
to have at least one fat jet and two regular jets. The
method supports entering multiple cuts, thus there is no
need to use the class to parse the expressions first.
When reading events, integer labels are assigned separ-
ately for signal and background events. Before saving
locally, the data is split into a training set and a testing set
at a 7:3 ratio.

Code example 29: Prepare the set dataset.

ϕ η pT

with_subjets

0.3
kT R = 0.3 translate rotate

For the image dataset, it is first to construct the rep-
resentation of the data: namely, what observables should
constitute the images and what preprocessing steps
should be taken. In code example 30, , , and of all
constituents from the leading fat jet are used as the data
source for height, width, and channel of an image. Be-
fore preprocessing, is used to recluster
constituents to add information about the subjets. Since
the distance between the two sub-jets will not be less than

 according the previous equation, it is safe to use the
 algorithm with . Then, and

pixelate
33×33

(−1.6,1.6)
0.1

are used to translate and rotate the image, aligning the in-
formation of the two sub-jets. Finally, is used
to pixelate the image; the size here is , with a
range of , and an equivalent precision of around

. This precision does not match the precision in the de-
tector card. For simplicity, we take this fixed precision. In
code example 31, we show how to prepare the image
dataset.

Code example 30: Construct the representation of the im-
age dataset.

Code example 31: Prepare the image dataset.

show

After constructing the datasets, we count signal and
background samples in code example 32 to avoid introdu-
cing artificial bias. We then use the dataset's meth-
od to display the distribution of observables, as illus-
trated in Figure 6 and Figure 7.

Fig. 6. (color online) Feature distributions of the set dataset.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-15

CPC
 A

cce
pte

d

Code example 32: Count the number of signals and back-
grounds and show the distribution of the datasets.

It is observed that the number of signal and back-
ground instances is approximately equal, and the observ-
ables used clearly reflect the distinct characteristics of
each, which is beneficial for our subsequent classifica-
tion tasks. In the display of the image dataset, we show a
merged image of the signal and background. It can be
seen that the signal's fat jet image prominently features
two sub-jets, whereas the sub-jets in the background are
less distinct.

B. Step 3: apply approaches
Once the datasets are prepared, let us import all avail-

able approaches for training. These approaches learn the
differences between the signal and background. Sub-
sequently, we use a dictionary and the built-in metrics to
gather their performance, which will then be presented as
a benchmark test. First, import all the necessary pack-
ages as 33, which we have roughly categorized to facilit-
ate understanding of their purposes.

The selected evaluation metrics are accuracy, AUC
(Area Under the Curve), signal significance, and back-
ground rejection rate at fixed signal efficiency. These
metrics are commonly used in high-energy physics and
help us better understand the approaches' performance. In
code example 34, we define a function to retrieve the
evaluation metrics of an approach.

For approaches, cut-and-count and the decision tree,
they are not sensitive to the scale of features, so we can
directly import the dataset (code example 35) and start

training (code example 36). Two different topologies of
the cut-and-count are taken to demonstrate how the order
of applying cuts impacts performance.

Code example 33: Import necessary packages for the
benchmark test.

Code example 34: Define a function to get the evaluation
metrics of a model.

MinMaxScaler
The input for the multilayer perceptron requires the

use of to scale the features within the 0-1
range, as detailed in code example 38, which aids in the
model's rapid convergence. We train the model for 100

Fig. 7. (color online) Combined images of signal (left) and
background (right) events.

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-16

CPC
 A

cce
pte

d

epochs with a batch size of 128. In code example 39, we
illustrate the training process.

Code example 35: Load the set dataset for training cut-
and-count and decision tree approaches.

Code example 36: Train the cut-and-count approaches
with two different topologies.

Code example 37: Train the decision tree approach.

For the convolutional neural network, we employ two
different preprocessing methods. One scales each image
by its maximum value, while the other applies a logar-
ithmic transformation to each pixel value. Given the large
variations in pixel intensity in jet images, scaling directly
by the maximum value might result in excessively small

pixel values, whereas logarithmic transformation better
preserves information. In code example 40 and 42, we
load the image dataset and demonstrate these two distinct
preprocessing techniques.

Code example 38: Load the set dataset for training the
multilayer perceptron approach.

Code example 39: Train the multilayer perceptron ap-
proach.

Finally, we present a comparison of performance us-
ing code example 43. The results are shown in Table 3.

Table 3. Comparison of different approaches

Name ACC AUC Significance R50 R99

cnc_parallel 0.750323 0.728121 33.660892 4.005174 1.000000

cnc_sequential 0.787784 0.769440 36.557026 4.712174 1.000000

bdt 0.902011 0.955063 44.368549 117.804291 2.146139

mlp 0.900904 0.956274 44.205276 117.804291 2.124265

cnn_max 0.806827 0.867769 38.444225 17.089737 1.188322

cnn_log 0.809452 0.876692 38.732323 19.042860 1.276514

From the significance column, we observe that for the

cut-and-count method, the sequential topology, which
considers the impacts among cuts, performs better than
the parallel topology. For convolutional neural networks,
the performance of logarithmic scaling is roughly equi-
valent to that using maximum value scaling. The mul-
tilayer perceptron and decision trees, which utilize fea-
tures with clear distinctions, exhibit the best performance.

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-17

CPC
 A

cce
pte

d

For more practical problems, we can apply different ap-
proaches to the dataset and then select the most suitable
one based on various performance metrics.

Code example 40: Load the image dataset and normalize
the pixel values with the maximum value.

Code example 41: Train the convolutional neural net-
work approach with the maximum value normalization.

VI. SUMMARY

hml

In the current era where machine learning models are
rapidly evolving, it is worthwhile to explore how to use
them more conveniently in high-energy physics for
searching new physical signals. In this paper, we intro-
duce the Python package, which offers a streamlined

workflow from event generation to performance evalu-
ation. The simplified process and control over random
seeds significantly enhance the reproducibility of the fi-
nal analysis results.

"..."
Code example 42: Normalize the pixel values by taking
the logarithm. indicates the same code as in 40 and
41.

Code example 43: Compare the performance of different
approaches.

show

We propose a naming convention for observables,
which enables users to easily extract the required data
from events output by DELPHES. Additionally, we ex-
tend the cut expression syntax originally in UPROOT to
make it more user-friendly and compatible with DEL-
PHES output formats. This convention is also utilized in
our dataset construction process, helping users to quickly
and conveniently build datasets. Based on this naming
convention, we implement a transformation from the out-
put of event generators to datasets usable by various ana-
lysis approaches. Moreover, the method included in
datasets enables users to display data either as 1D distri-
butions or 2D images, facilitating the adjustment of ob-
servable selections based on observed differences.

We have adopted the interface style of KERAS to
standardize traditional methods such as the cut-and-count
technique and decision trees. Furthermore, the cut-and-
count approach supports automatic searching for the op-
timal cut positions, significantly reducing the workload
for users. Additionally, we have incorporated commonly

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-18

CPC
 A

cce
pte

d

used evaluation metrics in high-energy physics, such as
signal significance and background rejection rate at fixed
signal efficiency. These metrics help users better under-
stand the performance of the models.

We demonstrate the complete workflow through a

hml hml
practical example. It intuitively showcases the usage of

. Currently, is continuously being updated. We
plan to incorporate more existing deep learning models,
datasets, and extend to graph representations of data to
further enhance its capabilities.

References

 J. Cogan, M. Kagan, E. Strauss, A. Schwarztman, JHEP 02,
118 (2015)

[1]

 L.G. Almeida, M. Backović, M. Cliche, S.J. Lee, M.
Perelstein, JHEP 07, 086 (2015)

[2]

 L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, A.
Schwartzman, JHEP 07, 069 (2016)

[3]

 P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, D.
Whiteson, Eur. Phys. J. C 76(5), 235 (2016)

[4]

 P.T. Komiske, E.M. Metodiev, M.D. Schwartz, JHEP 01,
110 (2017)

[5]

 G. Kasieczka, T. Plehn, M. Russell, T. Schell, JHEP 05, 006
(2017)

[6]

 L.M. Dery, B. Nachman, F. Rubbo, A. Schwartzman, JHEP
05, 145 (2017)

[7]

 G. Louppe, K. Cho, C. Becot, K. Cranmer, JHEP 01, 057
(2019)

[8]

 A. Butter, G. Kasieczka, T. Plehn, M. Russell, SciPost Phys.
5(3), 028 (2018)

[9]

 E.M. Metodiev, B. Nachman, J. Thaler, JHEP 10, 174
(2017)

[10]

 J.A. Aguilar-Saavedra, J.H. Collins, R.K. Mishra, JHEP 11,
163 (2017)

[11]

 L. Moore, K. Nordström, S. Varma, M. Fairbairn, SciPost
Phys. 7(3), 036 (2019)

[12]

 T. Heimel, G. Kasieczka, T. Plehn, J.M. Thompson, SciPost
Phys. 6(3), 030 (2019)

[13]

 P.T. Komiske, E.M. Metodiev, J. Thaler, JHEP 01, 121
(2019)

[14]

 H. Qu, L. Gouskos, Phys. Rev. D 101(5), 056019 (2020)[15]
 A. Butter, et al., SciPost Phys. 7, 014 (2019)[16]
 E.A. Moreno, O. Cerri, J.M. Duarte, H.B. Newman, T.Q.
Nguyen, A. Periwal, M. Pierini, A. Serikova, M. Spiropulu,
J.R. Vlimant, Eur. Phys. J. C 80(1), 58 (2020)

[17]

 Y.C.J. Chen, C.W. Chiang, G. Cottin, D. Shih, Phys. Rev. D
101(5), 053001 (2020)

[18]

 V. Mikuni, F. Canelli, Eur. Phys. J. Plus 135(6), 463 (2020)[19]
 J.S.H. Lee, I. Park, I.J. Watson, S. Yang, (2020)[20]
 F.A. Dreyer, H. Qu, JHEP 03, 052 (2021)[21]
 L. Anzalone, T. Diotalevi, D. Bonacorsi, (2022). DOI
10.1088/2632-2153/ac917c

[22]

 S.K. Choi, J. Li, C. Zhang, R. Zhang, Phys. Rev. D 108(11),
116002 (2023)

[23]

 A. Elwood, D. Krücker, M. Shchedrolosiev, J. Phys. Conf.
Ser. 1525, 012110 (2020)

[24]

 P. Baldi, P. Sadowski, D. Whiteson, Nature Commun. 5,
4308 (2014)

[25]

 A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M.D.
Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P.
Vahle, JINST 11(09), P09001 (2016)

[26]

 W. Bhimji, S.A. Farrell, T. Kurth, M. Paganini, Prabhat, E.
Racah, J. Phys. Conf. Ser. 1085(4), 042034 (2018)

[27]

 P. Abratenko, et al., Phys. Rev. D 103(9), 092003 (2021)[28]

 J. Li, T. Li, F.Z. Xu, JHEP 04, 156 (2021)[29]
 Y. Zhu, H. Liang, Y. Wang, H. Qu, C. Zhou, M. Ruan, Eur.
Phys. J. C 84(2), 152 (2024)

[30]

 E. Buhmann, C. Ewen, G. Kasieczka, V. Mikuni, B.
Nachman, D. Shih, Phys. Rev. D 109(5), 055015 (2024)

[31]

 S. Song, J. Chen, J. Liu, Y. Liu, B. Qi, Y. Shi, J. Wang, Z.
Wang, H. Yang, JINST 19(04), P04033 (2024)

[32]

 C.L. Cheng, G. Singh, B. Nachman, (2024)[33]
 C. Li, et al., (2024)[34]
 L. de Oliveira, M. Paganini, B. Nachman, Comput. Softw.
Big Sci. 1(1), 4 (2017)

[35]

 M. Paganini, L. de Oliveira, B. Nachman, Phys. Rev. Lett.
120(4), 042003 (2018)

[36]

 M. Paganini, L. de Oliveira, B. Nachman, Phys. Rev. D
97(1), 014021 (2018)

[37]

 P. Baldi, L. Blecher, A. Butter, J. Collado, J.N. Howard, F.
Keilbach, T. Plehn, G. Kasieczka, D. Whiteson, SciPost
Phys. 13(3), 064 (2022)

[38]

 C. Jiang, S. Qian, H. Qu, (2024)[39]
 D. Kobylianskii, N. Soybelman, E. Dreyer, E. Gross, (2024)[40]
 M. Feickert, B. Nachman, (2021)[41]
 J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,
O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro,
JHEP 07, 079 (2014)

[42]

 T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z.
Skands, Comput. Phys. Commun. 191, 159 (2015)

[43]

 J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V.
Lemaître, A. Mertens, M. Selvaggi, JHEP 02, 057 (2014)

[44]

 R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet,
L. Moneta, V. Vassilev, S. Linev, D. Piparo, G. GANIS, B.
Bellenot, E. Guiraud, G. Amadio, wverkerke, P. Mato,
TimurP, M. Tadel, wlav, E. Tejedor, J. Blomer, A. Gheata,
S. Hageboeck, S. Roiser, marsupial, S. Wunsch, O.
Shadura, A. Bose, CristinaCristescu, X. Valls, R. Isemann.
root-project/root: v6.18/02 (2020). DOI
10.5281/zenodo.3895860. URL
https://doi.org/10.5281/zenodo.3895860

[45]

 J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M.
Voznesensky, B. Bao, P. Bell, D. Berard, E. Burovski, G.
Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z.
DeVito, E. Ellison, W. Feng, J. Gong, M. Gschwind, B.
Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M.
Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher, Y.
Pan, C. Puhrsch, M. Reso, M. Saroufim, M.Y. Siraichi, H.
Suk, M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S.
Zhang, X. Zhao, K. Zhou, R. Zou, A. Mathews, G. Chanan,
P. Wu, S. Chintala, in 29th ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24) (ACM, 2024).
DOI 10.1145/3620665.3640366. URL
https://pytorch.org/assets/pytorch2-2.pdf

[46]

 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.
Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S.

[47]

HEP ML LAB: An end-to-end framework for applying machine learning into... Chin. Phys. C 49, (2025)

-19

CPC
 A

cce
pte

d

https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2015)086
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP05(2017)145
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.7.3.036
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1103/PhysRevD.101.053001
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
http://dx.doi.org/10.1088/2632-2153/ac917c
http://dx.doi.org/10.1088/2632-2153/ac917c
http://dx.doi.org/10.1088/2632-2153/ac917c
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1103/PhysRevD.108.116002
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1088/1742-6596/1525/1/012110
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1088/1742-6596/1085/4/042034
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1103/PhysRevD.103.092003
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1007/JHEP04(2021)156
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1088/1748-0221/19/04/P04033
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.21468/SciPostPhys.13.3.064
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
http://dx.doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
http://dx.doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf

Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.
Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D.
Mané, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P.
Tucker, V. Vanhoucke, V. Vasudevan, F. Vié- gas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X.
Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems (2015). URL
https://www.tensorflow.org/. Software available from
tensorflow.org
 L. Benato, et al., Comput. Softw. Big Sci. 6(1), 9 (2022)[48]
 Y.C. Guo, F. Feng, A. Di, S.Q. Lu, J.C. Yang, Comput.
Phys. Commun. 294, 108957 (2024)

[49]

 J. Brehmer, F. Kling, I. Espejo, K. Cranmer, Comput.
Softw. Big Sci. 4(1), 3 (2020)

[50]

 J. Brehmer, K. Cranmer, I. Espejo, F. Kling, G. Louppe, J.
Pavez, J. Phys. Conf. Ser. 1525(1), 012022 (2020)

[51]

 J. Pivarski, P. Das, C. Burr, D. Smirnov, M. Feickert, T.
Gal, L. Kreczko, N. Smith, N. Biederbeck, O. Shadura, M.
Proffitt, benkrikler, H. Dembinski, H. Schreiner, J.
Rembser, M. R., C. Gu, J. Rübenach, M. Peresano, R.
Turra. scikit-hep/uproot: 3.12.0 (2020). DOI
10.5281/zenodo.3952728. URL
https://doi.org/10.5281/zenodo.3952728

[52]

 F. Chollet, et al. Keras. https://keras.io (2015)[53]
 J. Pivarski, I. Osborne, I. Ifrim, H. Schreiner, A. Hollands,
A. Biswas, P. Das, S. Roy Choudhury, N. Smith, M. Goyal.
Awkward Array (2018). DOI 10.5281/zenodo.4341376

[54]

 A.J. Larkoski, I. Moult, B. Nachman, Phys. Rept. 841, 1[55]

(2020)
 A. Das, P. Konar, A. Thalapillil, JHEP 02, 083 (2018)[56]
 A. Bhardwaj, A. Das, P. Konar, A. Thalapillil, J. Phys. G
47(7), 075002 (2020)

[57]

 S. Chakraborty, M. Mitra, S. Shil, Phys. Rev. D 100(1),
015012 (2019)

[58]

 L. Buonocore, U. Haisch, P. Nason, F. Tramontano, G.
Zanderighi, Phys. Rev. Lett. 125(23), 231804 (2020)

[59]

 V.S. Ngairangbam, A. Bhardwaj, P. Konar, A.K. Nayak,
Eur. Phys. J. C 80(11), 1055 (2020)

[60]

 L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A.
Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A.
Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B.
Holt, G. Varoquaux, in ECML PKDD Workshop:
Languages for Data Mining and Machine Learning (2013),
pp. 108–122

[61]

 A. Hocker, et al., (2007)[62]
 T. Chen, C. Guestrin, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM, New York, NY, USA,
2016), KDD ’16, pp. 785–794. DOI
10.1145/2939672.2939785. URL
http://doi.acm.org/10.1145/2939672.2939785

[63]

 M. Guillame-Bert, S. Bruch, R. Stotz, J. Pfeifer, in
Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD 2023, Long
Beach, CA, USA, August 6-10, 2023 (2023), pp. 4068–4077.
DOI 10.1145/3580305.3599933. URL
https://doi.org/10.1145/3580305.3599933

[64]

Jing Li, Hao Sun Chin. Phys. C 49, (2025)

-20

CPC
 A

cce
pte

d

https://www.tensorflow.org/
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1007/s41781-022-00082-6
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1016/j.cpc.2023.108957
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.1088/1742-6596/1525/1/012022
https://doi.org/10.5281/zenodo.3952728
https://keras.io
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1007/JHEP02(2018)083
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1088/1361-6471/ab7769
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevD.100.015012
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
https://doi.org/10.1140/epjc/s10052-020-08629-w
http://dx.doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/3580305.3599933
https://doi.org/10.1145/3580305.3599933

	I INTRODUCTION
	II GENERATE EVENTS
	III CREATE DATASETS
	A Physics objects
	B Observable
	C Representation
	D Dataset

	IV APPLY APPROACHES
	A CutAndCount
	B Trees and Neural Networks
	C Metrics

	V EXAMPLE: W BOSON TAGGING
	A Step 1: generate events
	B Step 3: apply approaches

	VI SUMMARY
	REFERENCES

