-
[1]
ATLAS collaboration, G. Aad et al, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 716:1-29 (2012), 1207.7214
-
[2]
CMS Collaboration, S. Chatrchyan et al, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 716:30-61 (2012), 1207.7235
-
[3]
Planck collaboration, P. A. R. Ade et al, Planck 2015 results. XⅢ. Cosmological parameters, Astron. Astrophys., 594:A13 (2016), 1502.01589
-
[4]
V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B155 (1985) 36.
-
[5]
D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys., 14:125003 (2012), 1206.2942
-
[6]
A. D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz., 5:32-35 (1967)
-
[7]
J. E. Kim and H. P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett. B, 138:150-154 (1984)
-
[8]
Y. Nir, Gauge unification, Yukawa hierarchy and the mu problem, Phys. Lett. B, 354:107-110 (1995), hep-ph/9504312
-
[9]
M. Cvetic and P. Langacker, Implications of Abelian extended gauge structures from string models, Phys. Rev. D, 54:3570-3579 (1996), hep-ph/9511378
-
[10]
M. Carena, G. Nardini, M. Quiros, and C. E. M. Wagner, MSSM Electroweak Baryogenesis and LHC Data, JHEP, 02:001 (2013), 1207.6330
-
[11]
D. Curtin, P. Jaiswal, and P. Meade, Excluding Electroweak Baryogenesis in the MSSM, JHEP, 08:005 (2012), 1203.2932
-
[12]
T. Cohen and A. Pierce, Electroweak Baryogenesis and Colored Scalars, Phys. Rev. D, 85:033006 (2012), 1110.0482
-
[13]
T. Cohen, D. E. Morrissey, and A. Pierce, Electroweak Baryogenesis and Higgs Signatures, Phys. Rev. D, 86:013009 (2012), 1203.2924
-
[14]
U. Ellwanger, C. Hugonie, and A. M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept., 496:1-77 (2010), 0910.1785
-
[15]
M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A, 25:3505-3602 (2010), 0906.0777].
-
[16]
M. Pietroni, The Electroweak phase transition in a nonminimal supersymmetric model, Nucl. Phys. B, 402:27-45 (1993), hep-ph/9207227
-
[17]
A. T. Davies, C. D. Froggatt, and R. G. Moorhouse, Electroweak baryogenesis in the next-to-minimal supersymmetric model, Phys. Lett. B, 372:88-94 (1996), hep-ph/9603388
-
[18]
S. J. Huber and M. G. Schmidt, Electroweak baryogenesis:Concrete in a SUSY model with a gauge singlet, Nucl. Phys. B, 606:183-230 (2001), hep-ph/0003122
-
[19]
K. Funakubo, S. Tao, and F. Toyoda, Phase transitions in the NMSSM, Prog. Theor. Phys., 114:369-389 (2005), hep-ph/0501052
-
[20]
M. Carena, N. R. Shah, and C. E. M. Wagner, Light Dark Matter and the Electroweak Phase Transition in the NMSSM, Phys. Rev. D, 85:036003 (2012), 1110.4378
-
[21]
C. Bal醶s, A. Mazumdar, E. Pukartas, and G. White, Baryogenesis, dark matter and inflation in the Next-to-Minimal Supersymmetric Standard Model, JHEP, 01:073 (2014), 1309.5091
-
[22]
J. Kozaczuk, S. Profumo, L. S. Haskins, and C. L. Wainwright, Cosmological Phase Transitions and their Properties in the NMSSM, JHEP, 01:144 (2015), 1407.4134
-
[23]
W. Huang, Z. Kang, J. Shu, P. Wu, and J. M. Yang, New insights in the electroweak phase transition in the NMSSM, Phys. Rev. D, 91:025006 (2015), 1405.1152
-
[24]
X.-J. Bi, L. Bian, W. Huang, J. Shu, and P.-F. Yin, Interpretation of the Galactic Center excess and electroweak phase transition in the NMSSM, Phys. Rev. D, 92:023507 (2015), 1503.03749
-
[25]
S. J. Huber, T. Konstandin, G. Nardini, and I. Rues, Detectable Gravitational Waves from Very Strong Phase Transitions in the General NMSSM, JCAP, 1603:036 (2016), 1512.06357
-
[26]
J. Shu and Y. Zhang, Impact of a CP Violating Higgs Sector:From LHC to Baryogenesis, Phys. Rev. Lett., 111:091801 (2013), 1304.0773
-
[27]
S. Inoue, M. J. Ramsey-Musolf, and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D, 89:115023 (2014), 1403.4257
-
[28]
S. F. King, M. Muhlleitner, R. Nevzorov, and K. Walz, Exploring the CP-violating NMSSM:EDM Constraints and Phenomenology, Nucl. Phys. B, 901:526-555 (2015), 1508.03255
-
[29]
L. Bian and N. Chen, The CP violation beyond the SM Higgs and theoretical predictions of electric dipole moment, 1608.07975
-
[30]
L. Bian, T. Liu, and J. Shu, Cancellations Between Two-Loop Contributions to the Electron Electric Dipole Moment with a CP-Violating Higgs Sector, Phys. Rev. Lett., 115:021801 (2015), 1411.6695
-
[31]
K. Cheung, T.-J. Hou, J. S. Lee, and E. Senaha, Singlino-driven Electroweak Baryogenesis in the Next-to-MSSM, Phys. Lett. B, 710:188-191 (2012), 1201.3781
-
[32]
J. Kozaczuk, S. Profumo, and C. L. Wainwright, Electroweak Baryogenesis and the Fermi Gamma-Ray Line, Phys. Rev. D, 87:075011 (2013), 1302.4781
-
[33]
Virgo, LIGO Scientific Collaboration, B. P. Abbott et al, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116:061102 (2016), 1602.03837
-
[34]
R.-G. Cai, Z. Cao, Z.-K. Guo, S.-J. Wang, and T. Yang, The Gravitational Wave Physics, 1703.00187
-
[35]
S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D, 7:1888-1910 (1973)
-
[36]
J. M. Cline, K. Kainulainen, and M. Trott, Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies, JHEP, 11:089 (2011), 1107.3559
-
[37]
M. Quiros, Finite temperature field theory and phase transitions, in Proceedings, Summer School in High-energy physics and cosmology:Trieste, Italy, June 29-July 17, 1998, pp. 187-259, 1999 hep-ph/9901312
-
[38]
R. R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D, 45:4695 (1992), hep-ph/9204216
-
[39]
D. J. Gross, R. D. Pisarski, and L. G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys., 53:43 (1981)
-
[40]
J. Bernon, L. Bian, and Y. Jiang, JHEP, 1805:151 (2018), doi:10.1007/JHEP05(2018)151[arXiv:1712.08430][hep-ph]
-
[41]
S. R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D, 15:2929-2936 (1977)
-
[42]
A. D. Linde, Fate of the False Vacuum at Finite Temperature:Theory and Applications, Phys. Lett. B, 100:37-40 (1981)
-
[43]
A. D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B, 216:421 (1983)
-
[44]
M. E. Shaposhnikov, Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory, JETP Lett., 44:465-468 (1986)
-
[45]
M. E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B, 287:757-775 (1987)
-
[46]
J. M. Cline, Baryogenesis, in Les Houches Summer School-Session 86:Particle Physics and Cosmology:The Fabric of Spacetime Les Houches, France, July 31-August 25, 2006, 2006 hep-ph/0609145
-
[47]
H. H. Patel and M. J. Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition, and Perturbation Theory, JHEP, 07:029 (2011), 1101.4665
-
[48]
C. Cheung and Y. Zhang, Electroweak Cogenesis, JHEP, 09:002 (2013), 1306.4321
-
[49]
H. H. Patel and M. J. Ramsey-Musolf, Stepping Into Electroweak Symmetry Breaking:Phase Transitions and Higgs Phenomenology, Phys. Rev. D, 88:035013 (2013), 1212.5652
-
[50]
M. Jiang, L. Bian, W. Huang, and J. Shu, Impact of a complex singlet:Electroweak baryogenesis and dark matter, Phys. Rev. D, 93:065032 (2016), 1502.07574
-
[51]
J. Shu, T. M. P. Tait, and C. E. M. Wagner, Baryogenesis from an Earlier Phase Transition, Phys. Rev. D, 75:063510 (2007), hep-ph/0610375
-
[52]
S. Inoue, G. Ovanesyan, and M. J. Ramsey-Musolf, Two-Step Electroweak Baryogenesis, Phys. Rev. D, 93:015013 (2016), 1508.05404
-
[53]
H. H. Patel, M. J. Ramsey-Musolf, and M. B. Wise, Color Breaking in the Early Universe, Phys. Rev. D, 88:015003 (2013), 1303.1140
-
[54]
M. Chala, G. Nardini, and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D, 94:055006 (2016), 1605.08663
-
[55]
V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, 1611.02073
-
[56]
W. Chao, H.-K. Guo, and J. Shu, Gravitational Wave Signals of Electroweak Phase Transition Triggered by Dark Matter, 1702.02698
-
[57]
Z. Kang, J. Li, T. Li, D. Liu, and J. Shu, Probing the CP-even Higgs sector via H3 H2H1 in the natural next-to-minimal supersymmetric standard model, Phys. Rev. D, 88:015006 (2013), 1301.0453
-
[58]
J. M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev. D, 89:095031 (2014), 1310.6035
-
[59]
T. Huang, J. M. No, L. Perni, M. Ramsey-Musolf, A. Safonov, M. Spannowsky et al, Resonant Di-Higgs Production in the bbWW Channel:Probing the Electroweak Phase Transition at the LHC, 1701.04442
-
[60]
C. L. Wainwright, CosmoTransitions:Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun., 183:2006-2013 (2012), 1109.4189
-
[61]
C. Caprini et al, Science with the space-based interferometer eLISA. Ⅱ:Gravitational waves from cosmological phase transitions, JCAP, 1604:001 (2016), 1512.06239
-
[62]
R. Apreda, M. Maggiore, A. Nicolis, and A. Riotto, Gravitational waves from electroweak phase transitions, Nucl. Phys. B, 631:342-368 (2002), gr-qc/0107033
-
[63]
A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D, 45:4514-4535 (1992)
-
[64]
A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett., 69:2026-2029 (1992)
-
[65]
A. Kosowsky and M. S. Turner, Gravitational radiation from colliding vacuum bubbles:envelope approximation to many bubble collisions, Phys. Rev. D, 47:4372-4391 (1993), astro-ph/9211004
-
[66]
S. J. Huber and T. Konstandin, Gravitational Wave Production by Collisions:More Bubbles, JCAP, 0809:022 (2008), 0806.1828
-
[67]
M. Kamionkowski, A. Kosowsky, and M. S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D, 49:2837-2851 (1994), astro-ph/9310044
-
[68]
H. Audley et al., Laser Interferometer Space Antenna, 1702.00786.
-
[69]
A. Klein et al, Science with the space-based interferometer eLISA:Supermassive black hole binaries, Phys. Rev. D, 93:024003 (2016), 1511.05581
-
[70]
H. Kudoh, A. Taruya, T. Hiramatsu, and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D, 73:064006 (2006), gr-qc/0511145
-
[71]
X. Gong et al, Descope of the ALIA mission, J. Phys. Conf. Ser., 610:012011 (2015), 1410.7296
-
[72]
C. Lee, V. Cirigliano, and M. J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D, 71:075010 (2005), hep-ph/0412354
-
[73]
D. J. H. Chung, B. Garbrecht, M. J. Ramsey-Musolf, and S. Tulin, Lepton-mediated electroweak baryogenesis, Phys. Rev. D, 81:063506 (2010), 0905.4509
-
[74]
D. J. H. Chung, B. Garbrecht, M. Ramsey-Musolf, and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP, 12:067 (2009), 0908.2187
-
[75]
J. M. No, Phys. Rev. D, 84:124025 (2011), doi:10.1103/PhysRevD.84.124025[arXiv:1103.2159] [hep-ph]
-
[76]
C. Caprini and J. M. No, JCAP, 1201:031 (2012), doi:10.1088/1475-7516/2012/01/031[arXiv:1111.1726][hep-ph]
-
[77]
D. J. H. Chung, B. Garbrecht, M. J. Ramsey-Musolf, and S. Tulin, Yukawa Interactions and Supersymmetric Electroweak Baryogenesis, Phys. Rev. Lett., 102:061301 (2009), 0808.1144
-
[78]
V. Cirigliano, M. J. Ramsey-Musolf, S. Tulin, and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D, 73:115009 (2006), hep-ph/0603058
-
[79]
P. Huet and A. E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D, 53:4578-4597 (1996), hep-ph/9506477
-
[80]
ACME collaboration, J. Baron et al, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science, 343:269-272 (2014), 1310.7534
-
[81]
J. Ellis, J. S. Lee, and A. Pilaftsis, A Geometric Approach to CP Violation:Applications to the MCPMFV SUSY Model, JHEP, 10:049 (2010), 1006.3087
-
[82]
J. Baglio, R. Grer, M. Mlleitner, D. T. Nhung, H. Rzehak, M. Spira et al, NMSSMCALC:A Program Package for the Calculation of Loop-Corrected Higgs Boson Masses and Decay Widths in the (Complex) NMSSM, Comput. Phys. Commun., 185:3372-3391 (2014), 1312.4788
-
[83]
P. Bechtle, O. Brein, S. Heinemeyer, O. St, T. Stefaniak, G. Weiglein et al, HiggsBounds-4:Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C, 74:2693 (2014), 1311.0055
-
[84]
C. A. Baker et al, An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett., 97:131801 (2006), hep-ex/0602020
-
[85]
B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Reduced Limit on the Permanent Electric Dipole Moment of Hg199, Phys. Rev. Lett., 116:161601 (2016), 1601.04339
-
[86]
J. F. Gunion, B. Grzadkowski and X.-G. He, Determining the top-anti-top and Z Z couplings of a neutral Higgs boson of arbitrary CP nature at the NLC, Phys. Rev. Lett., 77:5172-5175 (1996), hep-ph/9605326
-
[87]
M. R. Buckley and D. Goncalves, Boosting the Direct CP Measurement of the Higgs-Top Coupling, Phys. Rev. Lett., 116:091801 (2016), 1507.07926
-
[88]
J. Ellis, D. S. Hwang, K. Sakurai, and M. Takeuchi, Disentangling Higgs-Top Couplings in Associated Production, JHEP, 04:004 (2014), 1312.5736
-
[89]
C. R. Schmidt and M. E. Peskin, A Probe of CP violation in top quark pair production at hadron supercolliders, Phys. Rev. Lett., 69:410-413 (1992)
-
[90]
W. Bernreuther and A. Brandenburg, Tracing CP violation in the production of top quark pairs by multiple TeV proton proton collisions, Phys. Rev. D, 49:4481-4492 (1994), hep-ph/9312210
-
[91]
W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B, 837:90-121 (2010), 1003.3926
-
[92]
M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in the tt channel at the LHC, JHEP, 11:159 (2016), 1608.07282
-
[93]
P. S. Bhupal Dev, A. Djouadi, R. M. Godbole, M. M. Muhlleitner, and S. D. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett., 100:051801 (2008), 0707.2878
-
[94]
R. Harnik, A. Martin, T. Okui, R. Primulando, and F. Yu, Measuring CP violation in h + - at colliders, Phys. Rev. D, 88:076009 (2013), 1308.1094
-
[95]
S. Berge, W. Bernreuther, and S. Kirchner, Prospects of constraining the Higgs boson?s CP nature in the tau decay channel at the LHC, Phys. Rev. D, 92:096012 (2015), 1510.03850
-
[96]
Y. Chen, A. Falkowski, I. Low, and R. Vega-Morales, New Observables for CP Violation in Higgs Decays, Phys. Rev. D, 90:113006 (2014), 1405.6723
-
[97]
Q.-H. Cao, C. B. Jackson, W.-Y. Keung, I. Low, and J. Shu, The Higgs Mechanism and Loop-induced Decays of a Scalar into Two Z Bosons, Phys. Rev. D, 81:015010 (2010), 0911.3398
-
[98]
W. Huang, J. Shu, and Y. Zhang, On the Higgs Fit and Electroweak Phase Transition, JHEP, 03:164 (2013), 1210.0906
-
[99]
D. J. H. Chung, A. J. Long, and L.-T. Wang, 125 eV Higgs boson and electroweak phase transition model classes, Phys. Rev. D, 87:023509 (2013), 1209.1819
-
[100]
H. Davoudiasl, I. Lewis and E. Ponton, Electroweak Phase Transition, Higgs Diphoton Rate, and New Heavy Fermions, Phys. Rev. D, 87:093001 (2013), 1211.3449
-
[101]
A. Menon, D. E. Morrissey, and C. E. M. Wagner, Phys. Rev. D, 70:035005 (2004) doi:10.1103/PhysRevD.70.035005[hep-ph/0404184]