• [1]

    G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu and B. Pfeiffer, Chin. Phys. C, 36: 1287 (2012)

  • [2]

    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu and B. Pfeiffer Chin. Phys. C, 36: 1603 (2012)

  • [3]

    A.H. Wapstra and K. Bos, At. Data Nucl. Data Tables, 20: 1 (1977)

  • [4]

    P.J. Mohr, D.B. Newell and B.N. Taylor, Rev. Mod. Phys. 88: 035009 (2016)

  • [5]

    T.P. Kohman, J.H.E. Mattauch and A.H. Wapstra, J. de Chimie Physique 55: 393 (1958)

  • [6]

    John Dalton, 1766-1844, who first speculated that elements combine in proportions following simple laws, and was the first to create a table of (very approximate) atomic weights.

  • [7]

    E.R. Cohen and A.H. Wapstra, Nucl. Instrum. Methods 211: 153 (1983)

  • [8]

    E.R. Cohen and B.N. Taylor, CODATA Bull. 63: (1986) Rev. Mod. Phys. 59: 1121 (1987)

  • [9]

    T.J. Quinn, Metrologia 26: 69 (1989) B.N. Taylor and T.J. Witt, Metrologia 26: 47 (1989)

  • [10]

    P.J. Mohr and B.N. Taylor, J. Phys. Chem. Ref. Data 28:1713 (1999)

  • [11]

    A. Rytz, At. Data Nucl. Data Tables 47: 205 (1991)

  • [12]

    A.H. Wapstra, Nucl. Instrum. Methods A, 292: 671 (1990)

  • [13]

    R.G. Helmer and C. van der Leun, Nucl. Instrum. Methods 422: 525 (1999)

  • [14]

    G. Audi, M. Epherre, C. Thibault, A.H. Wapstra and K. Bos, Nucl. Phys. A, 378: 443 (1982)

  • [15]

    Systematic errors are those due to instrumental drifts or instrumental fluctuations, that are beyond control and are not accounted for in the error budget. They might show up in the calibration process, or when the measurement is repeated under different experimental conditions. The experimentalist adds then quadratically a systematic error to the statistical and the calibration ones, in such a way as to have consistency of his data. If not completely accounted for or not seen in that experiment, they can still be observed by the mass evaluators when considering the mass adjustment as a whole.

  • [16]

    C.F. von Weizscker, Z. Phys. 96: 431 (1935) H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8: 82 (1936)

  • [17]

    A.H. Wapstra, G. Audi and R. Hoekstra, Nucl. Phys. A, 432: 185 (1985)

  • [18]

    D. Lunney, J.M. Pearson and C. Thibault, Rev. Mod. Phys. 75: 1021 (2003) D. Lunney, Proc. Conf. Advances in Radioactive Isotope Science (ARIS2014), JPS Conf. Proc. 6 010018 (2015).

  • [19]

    R.G. Thomas, Phys. Rev. 80: 136 (1950), 88: 1109 (1952) J.B. Ehrman, Phys. Rev. 81: 412 (1951)

  • [20]

    E. Comay, I. Kelson and A. Zidon, Phys. Lett. B, 210:31 (1988)

  • [21]

    M. MacCormick and G.Audi, Nucl. Phys. A, 925: 61 (2014)

  • [22]

    A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMCO9, Bernkastel-Kues 1992, Inst. Phys. Conf. Series, 132: 125 (1993)

  • [23]

    M.S. Antony, J. Britz, J.B. Bueb and A. Pape, At. Data Nucl. Data Tables 33: 447 (1985) M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34: 279 (1985) A. Pape and M.S. Antony, At. Data Nucl. Data Tables 39: 201 (1988) M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 40: 9 (1988)

  • [24]

    J. Jnecke, in D.H. Wilkinson, Isospin in Nuclear Physics, North Holland Publ. Cy. (1969) eq. 8.97; J. Jnecke, Nucl. Phys. 61: 326 (1965)

  • [25]

    L. Axelsson, J. yst, U.C. Bergmann, M.J.G. Borge, L.M. Fraile, H.O.U. Fynbo, A. Honkanen, P. Hornshj, A. Jonkinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M.H. Smedberg, O. Tengblad and Isolde, Nucl. Phys. A, 628: 345 (1998)

  • [26]

    Y.V. Linnik, Method of Least Squares (Pergamon, New York, 1961); Mthode des Moindres Carrs (Dunod, Paris, 1963).

  • [27]

    G. Audi, W.G. Davies and G.E. Lee-Whiting, Nucl. Instrum. Methods A, 249: 443 (1986)

  • [28]

    C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40(10): 100001 (2016)

  • [29]

    M.U. Rajput and T.D. Mac Mahon, Nucl. Instrum. Methods A, 312: 289 (1992)

  • [30]

    M.J. Woods and A.S. Munster, NPL Report RS(EXT)95 (1988)

  • [31]

    G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A, 565: 193 (1993)

  • [32]

    G. Bollen, H.-J. Kluge, M. Knig, T. Otto, G. Savard, H. Stolzenberg, R.B. Moore, G. Rouleau and G. Audi Phys. Rev. C, 46: R2140 (1992)

  • [33]

    Each group of mass-spectrometric data is assigned a factor F according to its partial consistency factor np, due to the fact that its statistical uncertainties and its internal systematic error alone do not reflect the real experimental situation. From comparison to all other data and more specially to combination of reaction and decay energy measurements, we have assigned factors F of 1.5, 2.5 or 4.0 to the different labs. Only Penning trap data have almost all been assigned a factor F=1:0. Example: the group of data H25 has been assigned F=2:5, this means that the total uncertainty assigned to 155Gd 35Cl-153Eu 37Cl is 2:4u2:5. The weight of this piece of data is then very low, compared to 0:79u derived from all other data. This is why it is labeled U.

  • [34]

    A. Gillibert, L. Bianchi, A. Cunsolo, A. Foti, J. Gastebois, Ch. Grgoire, W. Mittig, A. Peghaire, Y. Schutz and C. Stphan, Phys. Lett. B, 176: 317 (1986)

  • [35]

    D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra, Phys. Rev. Lett. 57: 3253 (1986)

  • [36]

    W. Heisenberg, Z. Phys. 77: 1 (1932)

  • [37]

    E. P. Wigner, Phys. Rev. 51: 106 (1937)

  • [38]

    E.P. Wigner, in Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, edited by W.0. Milligan (Houston: Welch Foundation, 1958), Vol. 1, p. 88.

  • [39]

    J. Lindhard, V. Nielsen, M. Schar, and P.V. Thomsen, Mat. Fys. Medd. Vid. Selsk, 33: 10 (1963)

  • [40]

    A. Ratkowski, Nuclear Instruments and Methods, 130(2): 533 (1975)

  • [41]

    S. Hofmann, G. Munzenberg, K. Valli, F. Hessberger, J.R.H. Schneider, P. Armbruster, B. Thuma, and Y. Eyal, GSI-Report, page 241, 1982.

  • [42]

    W. Bambynek, H. Behrens, M.H. Chen, B. Crasemann, M.L. Fitzpatrick, K.W.D. Ledingham, H. Genz, M. Mutterrer and R.L. Intemann, Rev. Mod. Phys. 49: 77 (1977)

  • [43]

    J.C. Hardy, L.C. Carraz, B. Jonson and P.G. Hansen, Phys. Lett. B, 71: 307 (1977)

  • [44]

    G. Audi, M. Wang, A.H. Wapstra, B. Pfeiffer and F.G. Kondev, J. Korean Phys. Soc. 59: 1318 (2011)

  • [45]

    L. hrstrm and J. Reedijk, Pure Appl. Chem. 88(12):1225 (2016)

  • [46]

    P.J. Karol, R.C. Barber, B.M. Sherrill, E. Vardaci and T. Yamazaki, Pure Appl. Chem. 88(12): 139 (2016)

  • [47]

    S. Cwiok, S. Hofmann and W. Nazarewicz, Nucl. Phys. A, 573: 356 (1994) S. Cwiok, W. Nazarewicz and P.H. Heenen, Phys. Rev. Lett. 63: 1108 (1999)

  • [48]

    S. Aoyama, Phys. Rev. Lett. 89: 052501 (2002)

  • [49]

    L.V. Grigorenko and M.V. Zhukov, Phys. Rev. C, 77:034611 (2008)

  • [50]

    H.T. Fortune, Chinese Physics Lett. 33: 092101 (2016)

  • [51]

    J.C. Hardy and I.S. Towner, Physical Review C 91:025501 (2015).

  • [52]

    B.D. Darwent, NSRDS-NBS 31: 48 (1970)

  • [53]

    Y.R. Luo and J.A. Kerr, Bond dissociation energies. CRC Handbook of Chemistry and Physics. 89, 2012.

  • [54]

    D. Sprecher, J. Liu, C. Jungen, W. Ubachs and F. Merkt, J. Chem. Phys. 133: 111102 (2010)