• [1]

    CDF Collaboration, T. Aaltonen et al., Science 376(6589), 170-176 (2022)

  • [2]

    J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, Eur. Phys. J. C 78(8), 675 (2018), arXiv:1803.01853[hep-ph

  • [3]

    P. A. Zyla et al. (Particle Data Group), PTEP 2020(8), 083C01 (2020)

  • [4]

    J. de Blas, M. Ciuchini, E. Franco et al., Phys. Rev. D 106, 033003 (2022)

  • [5]

    C.-T. Lu, L. Wu, Y. Wu et al., Phys. Rev. D 106, 035034 (2022)

  • [6]

    C.-R. Zhu, M.-Y. Cui, Z.-Q. Xia et al., GeV antiproton/gamma-ray excesses and the W-boson mass anomaly: three faces of ~ 60– 70 GeV dark matter particle? arXiv: 2204.03767

  • [7]

    Y.-Z. Fan, T.-P. Tang, Y.-L. S. Tsai et al., Inert Higgs Dark Matter for New CDF W-boson Mass and Detection Prospects, arXiv: 2204.03693.

  • [8]

    A. Strumia, J. High Energ. Phys. 2022, 248 (2022)

  • [9]

    J. M. Yang and Y. Zhang, Sci. Bull. 67, 1430 (2022)

  • [10]

    T.-P. Tang, M. Abdughani, L. Feng et al., NMSSM neutralino dark matter for W-boson mass and muon \begin{document}$ g-2 $\end{document} and the promising prospect of direct detection, arXiv:2204.04356

  • [11]

    X. K. Du, Z. Li, F. Wang et al., Explaining The Muon \begin{document}$g-2$\end{document} Anomaly and New CDF Ⅱ W-Boson Mass in the Framework of (Extra)Ordinary Gauge Mediation, arXiv: 2204.04286

  • [12]

    C. Campagnari and M. Mulders, Science 376(6589), abm0101 (2022)

  • [13]

    G. Cacciapaglia and F. Sannino, Phys. Lett. B 832, 137232 (2022)

  • [14]

    M. Blennow, P. Coloma, E. Fernández-Martínez et al., Right-handed neutrinos and the CDF Ⅱ anomaly, arXiv:2204.04559

  • [15]

    K. Sakurai, F. Takahashi, and W. Yin, Phys. Lett. B 833, 137324 (2022)

  • [16]

    B.-Y. Zhu, S. Li, J.-G. Cheng et al., Using gamma-ray observation of dwarf spheroidal galaxy to test a dark matter model that can interpret the W-boson mass anomaly, arXiv: 2204.04688

  • [17]

    F. Arias-Aragón, E. Fernández-Martínez, M. González-López et al., Dynamical Minimal Flavour Violating Inverse Seesaw, arXiv: 2204.04672

  • [18]

    X. Liu, S.-Y. Guo, B. Zhu et al., Sci. Bull. 67, 1437 (2022)

  • [19]

    A. Paul and M. Valli, Phys. Rev. D 106, 013008 (2022)

  • [20]

    K. S. Babu, S. Jana, and V.a P. K., Phys. Rev. Lett. 129, 121803 (2022)

  • [21]

    J. Gu, Z. Liu, T. Ma et al., Speculations on the W-Mass Measurement at CDF, arXiv: 2204.05296

  • [22]

    L. Di Luzio, R. Gröber, and P. Paradisi, Phys. Lett. B 832, 137250 (2022)

  • [23]

    J. J. Heckman, Phys. Lett. B 833, 137387 (2022)

  • [24]

    H. M. Lee and K. Yamashita, Eur. Phys. J. C 82, 661 (2022)

  • [25]

    Y. Cheng, X.-G. He, Z.-L. Huang et al., Phys. Lett. B 831, 137218 (2022)

  • [26]

    H. Bahl, J. Braathen, and G. Weiglein, Phys. Lett. B 833, 137295 (2022)

  • [27]

    H. Song, W. Su, and M. Zhang, Electroweak Phase Transition in 2HDM under Higgs, Z-pole, and W precision measurements, arXiv: 2204.05085

  • [28]

    P. Asadi, C. Cesarotti, K. Fraser et al., Oblique Lessons from the W Mass Measurement at CDF Ⅱ, arXiv: 2204.05283

  • [29]

    P. Athron, M. Bach, D. H. J. Jacob et al., Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY, arXiv: 2204.05285

  • [30]

    Y. Heo, D.-W. Jung, and J. S. Lee, Phys. Lett. B 833, 137274 (2022)

  • [31]

    A. Crivellin, M. Kirk, T. Kitahara et al., Phys. Rev. D 106, L031704 (2022)

  • [32]

    M. Endo and S. Mishima, New physics interpretation of W-boson mass anomaly, arXiv: 2204.05965

  • [33]

    X. K. Du, Z. Li, F. Wang et al., Explaining The New CDF Ⅱ W-Boson Mass Data In The Georgi-Machacek Extension Models, arXiv: 2204.05760

  • [34]

    K. Cheung, W.-Y. Keung, and P.-Y. Tseng, Phys. Rev. D 106, 015029 (2022)

  • [35]

    L. Di Luzio, M. Nardecchia, and C. Toni, Phys. Rev. D 105, 115042 (2022)

  • [36]

    T. Biekötter, S. Heinemeyer, and G. Weiglein, Excesses in the low-mass Higgs-boson search and the W-boson mass measurement, arXiv: 2204.05975

  • [37]

    N. V. Krasnikov, Nonlocal generalization of the SM as an explanation of recent CDF result, arXiv: 2204.06327

  • [38]

    M.-D. Zheng, F.-Z. Chen, and H.-H. Zhang, The \begin{document}$W\ell\nu$\end{document}-vertex corrections to W-boson mass in the R-parity violating MSSM, arXiv: 2204.06541

  • [39]

    Y. H. Ahn, S. K. Kang, and R. Ramos, Implications of New CDF-Ⅱ W Boson Mass on Two Higgs Doublet Model, arXiv: 2204.06485

  • [40]

    K.-S. Sun, W.-H. Zhang, J.-B. Chen et al., The lepton flavor violating decays of vector mesons in the MRSSM, arXiv: 2204.06234

  • [41]

    J. Kawamura, S. Okawa, and Y. Omura, Phys. Rev. D 106, 015005 (2022)

  • [42]

    Z. Péli and Z. Trócsányi, Vacuum stability and scalar masses in the superweak extension of the standard model, arXiv: 2204.07100

  • [43]

    A. Ghoshal, N. Okada, S. Okada et al., Type Ⅲ seesaw with R-parity violation in light of \begin{document}$m_W$\end{document} (CDF), arXiv: 2204.07138

  • [44]

    P. Fileviez Perez, H. H. Patel, and A. D. Plascencia, Phys. Lett. B 833, 137371 (2022)

  • [45]

    K. I. Nagao, T. Nomura, and H. Okada, A model explaining the new CDF Ⅱ W boson mass linking to muon \begin{document}$ g-2 $\end{document} and dark matter, arXiv: 2204.07411

  • [46]

    S. Kanemura and K. Yagyu, Phys. Lett. B 831, 137217 (2022)

  • [47]

    P. Mondal, Phys. Lett. B 833, 137357 (2022)

  • [48]

    R. A. Wilson, A toy model for the W/Z mass ratio, arXiv: 2204.07970

  • [49]

    K.-Y. Zhang and W.-Z. Feng, Explaining W boson mass anomaly and dark matter with a \begin{document}$U(1)$\end{document} dark sector, arXiv: 2204.08067

  • [50]

    V. Cirigliano, W. Dekens, J. de Vries et al., Beta-decay implications for the W-boson mass anomaly, arXiv: 2204.08440

  • [51]

    D. Borah, S. Mahapatra, D. Nanda et al., Phys. Lett. B 833, 137297 (2022)

  • [52]

    T. A. Chowdhury, J. Heeck, S. Saad et al., Phys. Rev. D 106, 035004 (2022)

  • [53]

    G. Arcadi and A. Djouadi, The 2HD+a model for a combined explanation of the possible excesses in the CDF \begin{document}${{\bf{M}}_{\bf{W}}}$\end{document} measurement and \begin{document}$\mathbf(g-2)_\mu$\end{document} with Dark Matter, arXiv: 2204.08406

  • [54]

    O. Popov and R. Srivastava, The Triplet Dirac Seesaw in the View of the Recent CDF-Ⅱ W Mass Anomaly, arXiv: 2204.08568

  • [55]

    L. M. Carpenter, T. Murphy, and M. J. Smylie, Phys. Rev. D 106, 055005 (2022)

  • [56]

    A. Bhaskar, A. A. Madathil, T. Mandal et al., Combined explanation of W-mass, muon \begin{document}$g-2$\end{document}, \begin{document}$R_{K^{(*)}}$\end{document} and \begin{document}$R_{D^{(*)}}$\end{document} anomalies in a singlet-triplet scalar leptoquark model, arXiv: 2204.09031

  • [57]

    K. Ghorbani and P. Ghorbani, W-Boson Mass Anomaly from Scale Invariant 2HDM, arXiv: 2204.09001

  • [58]

    M. Du, Z. Liu, and P. Nath, Phys. Lett. B 834, 137454 (2022)

  • [59]

    Y.-P. Zeng, C. Cai, Y.-H. Su et al., Extra boson mix with Z boson explaining the mass of W boson, arXiv: 2204.09487

  • [60]

    A. Batra, S. K. A., S. Mandal et al., W boson mass in Singlet-Triplet Scotogenic dark matter model, arXiv: 2204.09376

  • [61]

    D. Borah, S. Mahapatra, and N. Sahu, Phys. Lett. B 831, 137196 (2022)

  • [62]

    J. Cao, L. Meng, L. Shang et al., Interpreting the W mass anomaly in the vectorlike quark models, arXiv: 2204.09477

  • [63]

    S. Baek, Implications of CDF W-mass and \begin{document}$(g-2)_\mu$\end{document} on \begin{document}$U(1)_{L_\mu-L_\tau}$\end{document} model, arXiv: 2204.09585

  • [64]

    J. Heeck, W-boson mass in the triplet seesaw model, arXiv: 2204.10274

  • [65]

    A. Addazi, A. Marciano, A. P. Morais et al., CDF Ⅱ W-mass anomaly faces first-order electroweak phase transition, arXiv: 2204.10315

  • [66]

    Y. Cheng, X.-G. He, F. Huang et al., Phys. Rev. D 106, 055011 (2022)

  • [67]

    E. d. S. Almeida, A. Alves, O. J. P. Eboli et al., Impact of CDF-Ⅱ measurement of \begin{document}$M_W$\end{document} on the electroweak legacy of the LHC Run Ⅱ, arXiv: 2204.10130

  • [68]

    S. Lee, K. Cheung, J. Kim et al., Status of the two-Higgs-doublet model in light of the CDF \begin{document}$m_W$\end{document} measurement, arXiv: 2204.10338

  • [69]

    C. Cai, D. Qiu, Y.-L. Tang et al., Corrections to electroweak precision observables from mixings of an exotic vector boson in light of the CDF W-mass anomaly, arXiv: 2204.11570

  • [70]

    R. Benbrik, M. Boukidi, and B. Manaut, W-mass and 96 GeV excess in type-Ⅲ 2HDM, arXiv: 2204.11755

  • [71]

    T. Yang, S. Qian, S. Deng et al., The physics case for a neutrino lepton collider in light of the CDF W mass measurement, arXiv: 2204.11871

  • [72]

    A. Batra, S. K. A, S. Mandal et al., CDF-Ⅱ W Boson Mass Anomaly in the Canonical Scotogenic Neutrino-Dark Matter Model, arXiv: 2204.11945

  • [73]

    A. E. Faraggi and M. Guzzi, \begin{document}$Z'$\end{document}s and sterile neutrinos from heterotic string models: exploring \begin{document}$Z'$\end{document} mass exclusion limits, arXiv: 2204.11974

  • [74]

    H. B. T. Tan and A. Derevianko, Implications of W-boson mass anomaly for atomic parity violation, arXiv: 2204.11991

  • [75]

    H. Abouabid, A. Arhrib, R. Benbrik et al., Is the new CDF \begin{document}$M_W$\end{document} measurement consistent with the two higgs doublet model? arXiv: 2204.12018

  • [76]

    R. Rahaman, On two-body and three-body spin correlations in leptonic \begin{document}$t{\bar{t}}Z$\end{document} production and anomalous couplings at the LHC, arXiv: 2204.12152

  • [77]

    T.-K. Chen, C.-W. Chiang, and K. Yagyu, Phys. Rev. D 106, 055035 (2022)

  • [78]

    R. Dermisek, J. Kawamura, E. Lunghi et al., Leptonic cascade decays of a heavy Higgs boson through vectorlike leptons at the LHC, arXiv: 2204.13272

  • [79]

    R. S. Gupta, Running away from the T-parameter solution to the W mass anomaly, arXiv: 2204.13690

  • [80]

    V. Basiouris and G. K. Leontaris, Sterile neutrinos, \begin{document}$0\nu\beta\beta$\end{document} decay and the W-boson mass anomaly in a Flipped \begin{document}$SU(5)$\end{document} from F-theory, arXiv: 2205.00758

  • [81]

    J.-W. Wang, X.-J. Bi, P.-F. Yin et al., Phys. Rev. D 106, 055001 (2022), arXiv:2205.00783 [hep-ph

  • [82]

    F. J. Botella, F. Cornet-Gomez, C. Miró et al., Muon and electron \begin{document}$g-2$\end{document} anomalies in a flavor conserving 2HDM with an oblique view on the CDF \begin{document}$M_W$\end{document} value, arXiv: 2205.01115

  • [83]

    J. Kim, Phys. Lett. B 832, 137220 (2022)

  • [84]

    J. Kim, S. Lee, P. Sanyal et al., Phys. Rev. D 106, 035002 (2022)

  • [85]

    B. Barman, A. Das, and S. Sengupta, New W-Boson mass in the light of doubly warped braneworld model, arXiv: 2205.01699

  • [86]

    S.-P. He, A leptoquark and vector-like quark extended model for the simultaneous explanation of the W boson mass and muon \begin{document}$g-2$\end{document} anomalies, arXiv: 2205.02088

  • [87]

    X.-Q. Li, Z.-J. Xie, Y.-D. Yang et al., Correlating the CDF W-boson mass shift with the \begin{document}$b \to s \ell^+ \ell^-$\end{document} anomalies, arXiv: 2205.02205

  • [88]

    R. Dcruz and A. Thapa, W boson mass, dark matter and \begin{document}$(g-2)_\ell$\end{document} in ScotoZee neutrino mass model, arXiv: 2205.02217

  • [89]

    A. W. Thomas and X. G. Wang, Phys. Rev. D 106, 056017 (2022)

  • [90]

    X.-F. Han, F. Wang, L. Wang et al., Chin. Phys. C 46, 103105 (2022)

  • [91]

    Q. Zhou and X.-F. Han, The CDF W-mass, muon g-2, and dark matter in a \begin{document}$U(1)_{L_\mu-L_\tau}$\end{document} model with vector-like leptons, " arXiv: 2204.13027

  • [92]

    J. de Blas, M. Pierini, L. Reina et al., Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits, arXiv: 2204.04204

  • [93]

    J. Fan, L. Li, T. Liu et al., W-Boson Mass, Electroweak Precision Tests and SMEFT, arXiv: 2201.06586

  • [94]

    E. Bagnaschi, J. Ellis, M. Madigan et al., SMEFT Analysis of \begin{document}$m_W$\end{document}, arXiv: 2204.05260

  • [95]

    R. Balkin, E. Madge, T. Menzo et al., On the implications of positive W mass shift, arXiv: 2204.05992

  • [96]

    P. Athron, A. Fowlie, C.-T. Lu et al., The W boson Mass and Muon \begin{document}$g-2$\end{document}: Hadronic Uncertainties or New Physics? arXiv: 2204.03996

  • [97]

    M. Pellen, R. Poncelet, A. Popescu et al., Angular coefficients in W+j production at the LHC with high precision, arXiv: 2204.12394

  • [98]

    L.-B. Chen, L. Dong, H. T. Li et al., One-loop squared amplitudes for hadronic \begin{document}$tW$\end{document} production at next-to-next-to-leading order in QCD, arXiv: 2204.13500

  • [99]

    Z. Liu and L.-T. Wang, Physics at Future Colliders: the Interplay Between Energy and Luminosity, in 2022 Snowmass Summer Study. 4, 2022. arXiv: 2205.00031

  • [100]

    J. Isaacson, Y. Fu, and C. P. Yuan, ResBos2 and the CDF W Mass Measurement, arXiv: 2205.02788

  • [101]

    M. Aaboud et al. (ATLAS Collaboration), Eur. Phys. J. C 78(2), 110 (2018), arXiv:1701.07240[hep-ex].[Erratum:Eur.Phys.J.C78,898(2018)

  • [102]

    R. Aaij et al. (LHCb Collaboration), JHEP 01, 036 (2022), arXiv:2109.01113[hep-ex

  • [103]

    T. A. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 88(5), 052018 (2013), arXiv:1307.7627[hep-ex

  • [104]

    S. Schael et al. (ALEPH, DELPHI, L3, OPAL Collaborations, and LEP Electroweak Working Group), Phys. Rept. 532, 119-244 (2013), arXiv:1302.3415[hep-ex

  • [105]

    R. D. Ball et al. (NNPDF Collaboration), Eur. Phys. J. C 77(10), 663 (2017), arXiv:1706.00428[hep-ph

  • [106]

    J. Gao, M. Guzzi, J. Huston et al., Phys. Rev. D 89(3), 033009 (2014), arXiv:1302.6246[hep-ph

  • [107]

    T.-J. Hou et al., Phys. Rev. D 103(1), 014013 (2021), arXiv:1912.10053[hep-ph

  • [108]

    S. Bailey, T. Cridge, L. A. Harland-Lang et al., Eur. Phys. J. C 81(4), 341 (2021), arXiv:2012.04684[hep-ph

  • [109]

    P. M. Nadolsky, AIP Conf. Proc. 753(1), 158-170 (2005), arXiv:hep-ph/0412146

  • [110]

    G. Bozzi, L. Citelli, and A. Vicini, Phys. Rev. D 91(11), 113005 (2015), arXiv:1501.05587[hep-ph

  • [111]

    S. Farry, O. Lupton, M. Pili et al., Eur. Phys. J. C 79(6), 497 (2019), arXiv:1902.04323[hep-ex

  • [112]

    E. Bagnaschi and A. Vicini, Phys. Rev. Lett. 126(4), 041801 (2021), arXiv:1910.04726[hep-ph

  • [113]

    M. Hussein, J. Isaacson, and J. Huston, J. Phys. G 46(9), 095002 (2019), arXiv:1905.00110[hep-ph

  • [114]

    J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999), arXiv:hep-ph/9905386

  • [115]

    J. M. Campbell, R. K. Ellis, and C. Williams, JHEP 07, 018 (2011), arXiv:1105.0020[hep-ph

  • [116]

    T. Carli, D. Clements, A. Cooper-Sarkar et al., Eur. Phys. J. C 66, 503-524 (2010), arXiv:0911.2985[hep-ph

  • [117]

    D. Stump, J. Huston, J. Pumplin et al., JHEP 10, 046 (2003), arXiv:hep-ph/0303013

  • [118]

    L. A. Harland-Lang, A. D. Martin, P. Motylinski et al., Eur. Phys. J. C 75(5), 204 (2015), arXiv:1412.3989[hep-ph

  • [119]

    R. D. Ball et al., The Path to Proton Structure at One-Percent Accuracy, arXiv: 2109.02653

  • [120]

    J. Gao, L. Harland-Lang, and J. Rojo, Phys. Rept. 742, 1-121 (2018), arXiv:1709.04922[hep-ph

  • [121]

    W.-K. Tung, S. Kretzer, and C. Schmidt, J. Phys. G 28, 983-996 (2002), arXiv:hep-ph/0110247

  • [122]

    Kotwal, Ashutosh V, Phys. Rev. D 98(3), 033008 (2018)

  • [123]

    S. Dulat, T.-J. Hou, J. Gao, et al., Phys. Rev. D 93(3), 033006 (2016), arXiv:1506.07443[hep-ph

  • [124]

    A. D. Martin, W. J. Stirling, R. S. Thorne et al., Eur. Phys. J. C 63, 189-285 (2009), arXiv:0901.0002[hep-ph

  • [125]

    R. D. Ball et al., Nucl. Phys. B 867, 244-289 (2013), arXiv:1207.1303[hep-ph

  • [126]

    S. Alekhin, J. Blümlein, S. Moch et al., Phys. Rev. D 96(1), 014011 (2017), arXiv:1701.05838[hep-ph

  • [127]

    H. Abramowicz et al. (H1and ZEUS Collaborations), Eur. Phys. J. C 75(12), 580 (2015), arXiv:1506.06042[hep-ex

  • [128]

    G. Aad et al. (ATLAS Collaboration), JHEP 07, 223 (2021), arXiv:2101.05095[hep-ex

  • [129]

    A. Accardi, L. T. Brady, W. Melnitchouk et al., Phys. Rev. D 93(11), 114017 (2016), arXiv:1602.03154[hep-ph

  • [130]

    Tevatron Electroweak Working Group, Combination of CDF and D0 Results on the Width of the W boson, arXiv: 1003.2826

  • [131]

    J. Gao and P. Nadolsky, JHEP 07, 035 (2014), arXiv:1401.0013[hep-ph

  • [132]

    J. Pumplin, D. R. Stump, and W. K. Tung, Phys. Rev. D 65, 014011 (2001), arXiv:hep-ph/0008191

  • [133]

    D. Stump, J. Pumplin, R. Brock et al., Phys. Rev. D 65, 014012 (2001), arXiv:hep-ph/0101051

  • [134]

    D. Liu, C. Sun, and J. Gao, Machine learning of log-likelihood functions in global analysis of parton distributions, arXiv: 2201.06586

  • [135]

    J. Pumplin, D. Stump, R. Brock et al., Phys. Rev. D 65, 014013 (2001), arXiv:hep-ph/0101032