• [1]

    J. D. Bekenste, Physical Review D 7(8), 2333-2346 (1973)

  • [2]

    S. W. Hawking, Nature 248(5443), 30-31 (1974)

  • [3]

    J. Wang. Black hole as topological insulator (I): the BTZ black hole case. 2017

  • [4]

    J. Wang. Black hole as topological insulator (II): the boundary modes. 2017

  • [5]

    J. Wang, Classification of black holes in three dimensional spacetime by the W1+∞ symmetry. 2018

  • [6]

    J. Wang, Chin. Phys. C 43(9), 095104 (2019)

  • [7]

    J. Wang, Phys. Lett. B 792, 56-59 (2019)

  • [8]

    G. Y. Cho and J. E. Moore, Annals Phys. 326, 1515-1535 (2011)

  • [9]

    S. W. Hawking, Phys. Rev. D 14, 2460-2473 (1976)

  • [10]

    S. Chakraborty and K. Lochan, Universe 3(3), 55 (2018)

  • [11]

    D. Marolf, Rept. Prog. Phys. 80(9), 092001 (2017)

  • [12]

    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

  • [13]

    X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83(4), 1057-1110 (2011)

  • [14]

    X. Chen, A. Tiwari, and S. Ryu. Bulk-boundary correspondence in (3+1)-dimensional topological phases. Phys. Rev., B 94(4), 045113(2016). [Addendum: Phys. Rev.B 94(7), 079903(2016)]

  • [15]

    A. Cappelli, E. Randellini, and J. Sisti, JHEP 05, 135 (2017)

  • [16]

    J. Wang, Y. Ma, and X.-A. Zhao, Phys. Rev. D 89, 084065 (2014)

  • [17]

    C.-G. Huang and J. Wang, Gen. Rel. Grav. 48(8), 115 (2016)

  • [18]

    A. Ashtekar, J. Baez, A. Corichi et al., Phys. Rev. Lett. 80, 904-907 (1998)

  • [19]

    A. Ashtekar, John C. Baez, and Kirill Krasnov, Adv. Theor. Math. Phys. 4, 1-94 (2000)

  • [20]

    C. Rovelli. Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2004

  • [21]

    T. Thiemann. Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2008

  • [22]

    A. Ashtekar and J. Lewandowski, Classical Quantum Gravity 21(15), R53-R152 (2004)

  • [23]

    M. Han, Y. Ma, and W. Huang, Int. J. Mod. Phys. D 16(9), 1397-1474 (2007)

  • [24]

    J. Wang. The Entropy of BTZ Black Hole from Loop Quantum Gravity. 2014

  • [25]

    J. Wang and C.-G. Huang, Class. Quant. Grav. 32, 035026 (2015)

  • [26]

    J. Wang and C.-G. Huang, Int. J. Mod. Phys. D 25(14), 1650100 (2016)

  • [27]

    J. Wang, C.-G. Huang, and L. Li, Chin. Phys. C 40(8), 083102 (2016)

  • [28]

    M. Guica, T. Hartman, W. Song et al., Phys. Rev. D 80, 124008 (2009)

  • [29]

    A. Castro, A. Maloney, and A. Strominger, Phys. Rev. D 82, 024008 (2010)

  • [30]

    G. CompYre. The Kerr/CFT correspondence and its extensions. Living Rev. Rel., 15,11(2012). [Living Rev. Rel. 20(1), 1(2017)]

  • [31]

    H. Afshar, D. Grumiller, M. M. Sheikh-Jabbari et al., JHEP 08, 087 (2017)

  • [32]

    B. Krishnan. Quasi-local black hole horizons. In A. Ashtekar and V. Petkov, editors, Springer Handbook of Spacetime, pages 527-555. 2014

  • [33]

    J. D. Bekenstein, Lett. Nuovo Cim. 11, 467 (1974)

  • [34]

    M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008)

  • [35]

    J. Wang. Central charges for Kerr and Kerr-AdS black holes in diverse dimensions. 2019

  • [36]

    T. Padmanabhan, Mod. Phys. Lett. A 30(03n04), 1540007 (2015)

  • [37]

    G. W. Gibbons, M. J. Perry, and C. N. Pope, Class. Quant. Grav. 22, 1503-1526 (2005)

  • [38]

    K. Hajian, M. M. Sheikh-Jabbari, and H. Yavartanoo, Phys. Rev. D 98(2), 026025 (2018)

  • [39]

    D. Kothawala, T. Padmanabhan, and S. Sarkar, Phys. Rev. D 78, 104018 (2008)