[1] |
Yuan Lin
, Jia-Xing Li
, Hong-Fei Zhang
. Transfer learning and neural networks in predicting quadrupole deformation. Chinese Physics C,
2024, 48(6): 064106.
doi: 10.1088/1674-1137/ad361d
|
[2] |
Xinyu Wang
, Ying Cui
, Yuan Tian
, Kai Zhao
, Yingxun Zhang
. Uncertainties of nuclear level density estimated using Bayesian neural networks. Chinese Physics C,
2024, 48(8): 084105.
doi: 10.1088/1674-1137/ad47a7
|
[3] |
Chun-Wang Ma
, Xiao-Bao Wei
, Xi-Xi Chen
, Dan Peng
, Yu-Ting Wang
, Jie Pu
, Kai-Xuan Cheng
, Ya-Fei Guo
, Hui-Ling Wei
. Precise machine learning models for fragment production in projectile fragmentation reactions using Bayesian neural networks. Chinese Physics C,
2022, 46(7): 074104.
doi: 10.1088/1674-1137/ac5efb
|
[4] |
Chun-Wang Ma
, Dan Peng
, Hui-Ling Wei
, Zhong-Ming Niu
, Yu-Ting Wang
, R. Wada
. Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method. Chinese Physics C,
2020, 44(1): 014104.
doi: 10.1088/1674-1137/44/1/014104
|
[5] |
Chun-Wang Ma
, Dan Peng
, Hui-Ling Wei
, Yu-Ting Wang
, Jie Pu
. A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction. Chinese Physics C,
2020, 44(12): 124107.
doi: 10.1088/1674-1137/abb657
|
[6] |
Yi Ling;Meng-He Wu;Yikang Xiao
. Entanglement in simple spin networks with a boundary. Chinese Physics C,
2019, df87c41e-622f-49a7-b081-5c584df157aa(11): 13106-. |
[7] |
V. I. Nazaruk
. New model of kaon regeneration. Chinese Physics C,
2018, 42(2): 023108.
doi: 10.1088/1674-1137/42/2/023108
|
[8] |
Ya-Hui Chen
, Fu-Hu Liu
, Edward K. Sarkisyan-Grinbaum
. Event patterns from negative pion spectra in proton-proton and nucleus-nucleus collisions at SPS. Chinese Physics C,
2018, 42(10): 104102.
doi: 10.1088/1674-1137/42/10/104102
|
[9] |
YANG Liu
, ZHU Kai
, ZHU Yong-Sheng
, CAI Hao
. Combining upper limits with a Bayesian approach. Chinese Physics C,
2015, 39(12): 123001.
doi: 10.1088/1674-1137/39/12/123001
|
[10] |
HAN Lei
, WANG Hai-Jun
. New method of applying conformal group to quantum fields. Chinese Physics C,
2015, 39(9): 093102.
doi: 10.1088/1674-1137/39/9/093102
|
[11] |
JIN Dan
, YANG Ya-Dong
. Space- and time-like kaon electromagnetic form factors in perturbative QCD. Chinese Physics C,
2012, 36(10): 941-946.
doi: 10.1088/1674-1137/36/10/004
|
[12] |
A. Gal
. K-nucleus dynamics: from quasibound states to kaon condensation. Chinese Physics C,
2010, 34(9): 1169-1174.
doi: 10.1088/1674-1137/34/9/004
|
[13] |
Henryk Czyz
, Agnieszka Grzelinska
. Strong and electromagnetic J/ψ and ψ(2S) decays into pion and kaon pairs. Chinese Physics C,
2010, 34(6): 855-859.
doi: 10.1088/1674-1137/34/6/039
|
[14] |
WANG Si-Guang
, MAO Ya-Jun
, YE Hong-Xue
. An artificial neural network for proton identification in HERMES data. Chinese Physics C,
2009, 33(3): 217-223.
doi: 10.1088/1674-1137/33/3/011
|
[15] |
,
,
. Particle Identification using Artificial Neural Networks at BESIII. Chinese Physics C,
2008, 32(1): 1-8.
doi: 10.1088/1674-1137/32/1/001
|
[16] |
ZHU Yong-Sheng
. Bayesian credible interval construction for Poisson statistics. Chinese Physics C,
2008, 32(5): 363-369.
doi: 10.1088/1674-1137/32/5/007
|
[17] |
Liang Hualou
, Xie Wei
, Ren Jingru
, Wang Taijie
, Dai Guiliang
. Distinguishing Primary Cosmic-Ray Composition with Artificial Neural Networks. Chinese Physics C,
1997, 21(3): 205-210. |
[18] |
Zhang Ziping
, Chen Hongfang
, Ye Shuwei
, Zhao Jiawei
. Identification of e,μ,π by Neural Network in BES. Chinese Physics C,
1997, 21(4): 297-303. |
[19] |
Chu Zhili
, Zheng Yuming
, Wang Fei
, Sa Benhao
, Lu Zhongdao
. Unified Dynamical Simulation of Kaon and Pion Production in Heavy Ion Collisions. Chinese Physics C,
1996, 20(S2): 155-164. |
[20] |
Bi Pinzhen
. Kaon Condensation at Finite Temperature. Chinese Physics C,
1989, 13(S1): 49-52. |