×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Alignment of the photoelectron spectroscopy beamline at NSRL

Get Citation
LI Chao-Yang, PAN Hai-Bin, WEI Shen, PAN Cong-Yuan, AN Ning, DU Xue-Wei, ZHU Jun-Fa and WANG Qiu-Ping. Alignment of the photoelectron spectroscopy beamline at NSRL[J]. Chinese Physics C, 2013, 37(11): 118002. doi: 10.1088/1674-1137/37/11/118002
LI Chao-Yang, PAN Hai-Bin, WEI Shen, PAN Cong-Yuan, AN Ning, DU Xue-Wei, ZHU Jun-Fa and WANG Qiu-Ping. Alignment of the photoelectron spectroscopy beamline at NSRL[J]. Chinese Physics C, 2013, 37(11): 118002.  doi: 10.1088/1674-1137/37/11/118002 shu
Milestone
Received: 2013-01-30
Revised: 2013-02-28
Article Metric

Article Views(1863)
PDF Downloads(197)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Alignment of the photoelectron spectroscopy beamline at NSRL

    Corresponding author: WANG Qiu-Ping,

Abstract: The photoelectron spectroscopy beamline at National Synchrotron Radiation Laboratory (NSRL) is equipped with a spherical grating monochromator with the included angle of 174°. Three gratings with line density of 200,700 and 1200 lines/mm are used to cover the energy region from 60 eV to 1000 eV. After several years' operation,the spectral resolution and flux throughput were deteriorated,and realignment was necessary to improve the performance. First,the wavelength scanning mechanism,the optical components position and the exit slit guide direction are aligned according to the design value. Second,the gratings are checked by Atomic Force Microscopy (AFM) and then the gas absorption spectrum is measured to optimize the focusing condition of the monochromator. The spectral resolving power E/ΔE is recovered to the designed value of 1000@244 eV. The flux at the end station for the 200 lines/mm grating is about 1010 photons/sec/200 mA,which is in accordance with the design. The photon flux for the 700 lines/mm grating is about 5×108 photons/sec/200mA,which is lower than expected. This poor flux throughput may be caused by carbon contamination on the optical components. The 1200 lines/mm grating has roughness much higher than expected so the diffraction efficiency is too low to detect any signal. A new grating would be ordered. After the alignment,the beamline has significant performance improvements in both the resolving power and the flux throughput for 200 and 700 lines/mm gratings and is provided to users.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return