Properties of bottomonium in a semi-relativistic model

  • Using a semi-relativistic potential model we investigate the spectra and decays of the bottomonium (bb) system. The Hamiltonian of our model consists of a relativistic kinetic energy term, a vector Coulomb-like potential and a scalar confining potential. Using this Hamiltonian, we obtain a spinless wave equation, which is then reduced to the form of a single particle Schrodinger equation. The spin dependent potentials are introduced as a perturbation. The three-dimensional harmonic oscillator wave function is employed as a trial wave function and the bbmass spectrum is obtained by the variational method. The model parameters and the wave function that reproduce the the bbspectrum are then used to investigate some of their decay properties. The results obtained are then compared with the experimental data and with the predictions of other theoretical models.
      PCAS:
  • 加载中
  • [1] The ATLAS collaboration. arXiv:1112.5154v4 [hep-ex][2] Buchmüller W, Tye S H. Phys. Rev. D, 1981, 24: 132[3] Quigg C, Rosner J L. Phys. Lett. B, 1977, 71: 153[4] Eichten E, Gottfried K, Kinoshita T, Lane K D, Yan T M. Phys. Rev. D, 1978, 17: 3090[5] Martin A. Phys. Lett. B, 1980, 93: 338[6] Richardson J L. Phys. Lett. B, 1979, 82: 272[7] Choe S et al. (QCD-TARO collaboration). J. High Energy Phys., 2003, 08: 022, arXiv:0307004v1 [hep-lat][8] Davies C T H, Hornbostel K, Lepage G P, Lidsey A J, Shigemitsu J, Sloan J. Phys. Lett. B, 1996, 382: 131, arXiv:9602020v1 [hep-lat][9] Dudek J J, Edwards R G, Mathur N, Richards D G. Phys. Rev. D, 2008, 77: 034501[10] Beane S R, Detmold W, Orginos K, Savage M J. Prog. Part. Nucl. Phys., 2011, 66: 1[11] Hashimoto S, Onogi T. Annu. Rev. Nucl. Part. Sci., 2004, 54: 451[12] Brambilla N, Pineda A, Soto J, Vairo A. Rev. Mod. Phys., 2005, 77: 1423, arXiv:0410047 [hep-ph][13] Brambilla N, Mereghetti E, Vairo A. Phys. Rev. D, 2009, 79: 074002; 2011, 83: 079904(E)[14] Bodwin G T, Braaten E, Lepage G P. Phys. Rev. D, 1995, 51: 1125; 1997, 55: 5853[15] GUO F K, Hanhart C, LI G, Meiβner U G, ZHAO Q. Phys. Rev. D, 2011, 83: 034013[16] Godfrey S, Isgur N. Phys. Rev. D, 1985, 32: 189[17] Gupta S N, Radford S F, Repko W W. Phys. Rev. D, 1985, 31: 160[18] Vijayakumar K B, Hanumaiah B, Pepin S. Eur. Phys. J. A, 2004, 19: 247[19] Vijaya Kumar K B, Bhavyashri, MA Yong-Liang, Monteiro A P. Int. J. Mod. Phys. A, 2009, 24: 4209[20] Radford S F, Repko W W. Phys. Rev. D, 2007, 75: 074031, arXiv:0701117v3 [hep-ph][21] Ebert D, Faustov R N, Galkin V O. Phys. Rev. D, 2003, 67: 014027[22] Jhung K S, Chung K H, Willey R S. Phys. Rev. D, 1975, 12: 1999[23] Fulcher L P, ZHENG Chen, Yeong K C. Phys. Rev. D, 1993, 47: 4122[24] Lucha W, Schberl F F. Phys. Rev. A, 1995, 51: 4419[25] ZENG J, Van Orden J W, Roberts W. Phys. Rev. D, 1995, 52: 5229[26] Badalian A M, Morgunov V L, Bakker B L G. Phys. At. Nucl., 2000, 63: 1635[27] Pandya J N, Rai A K, Vinodkumar P C. Frascati Phys. Ser., 2007, 46: 1519, arXiv:0808.1077v1 [hep-ph][28] LI Bai-Qing, CHAO Kuang-Ta. Phys. Rev. D, 2009, 79: 094004[29] Lakhina O, Swanson E S. Phys. Rev. D, 2006, 74: 014012[30] Bhavyashri, Vijaya Kumar K B, Hanumaiah B, Sarangi S, ZHOU S G. J. Phys. G: Nucl. Part. Phys., 2005, 31: 981[31] Quigg C, Rosner J L. Phys. Rep., 1979, 56: 167[32] Gershtein S S, Kiselev V V, Likhoded A K, Tkabladze A V. Phys. Rev. D, 1995, 51: 3613[33] Bhaghyesh, K. B. Vijaya Kumar, MA Yong-Liang. Int. J. Mod. Phys. A, 2009, 27: 1250011[34] LI Bai-Qing, CHAO Kuang-Ta. Commun. Theor. Phys., 2009, 52:653, arXiv:0909.1369v1 [hep-ph][35] Bhaghyesh, Vijaya Kumar K B. Int. J. Mod. Phys. A, 2012, 27: 1250127[36] Greiner W. Relativistic Quantum Mechanics: Wave Equations. New York: Springer, 2000[37] Jena S N, Rath D P. Phys. Rev. D, 1985, 32: 2366[38] Motyka L, Zalewski K. Eur. Phys. J. C, 1998, 4: 107[39] Rai A K, Pandya J N, Vinodkumar P C. Eur. Phys. J. A, 2008, 38: 77[40] Patel B, Vinodkumar P C. J. Phys. G: Nucl. Part. Phys., 2009, 36: 035003[41] Vinodkumar P C, Pandya J N, Bannur V M, Khadkikar S B. Eur. Phys. J. A, 1999, 4: 83[42] Lucha W, Franz F. Schberl. arXiv:9601263v1 [hep-ph][43] Voloshin M B. Prog. Part. Nucl. Phys., 2008, 61: 455, arXiv:0711.4556v3 [hep-ph][44] Van Royen R, Weisskopf V F. Nuovo Cim. A, 1967, 50: 617[45] Kwong W, Mackenzie P B, Rosenfeld R, Rosner J L. Phys. Rev. D, 1988, 37: 3210[46] Igi K, Ono S. Phys. Rev. D, 1985, 32: 232[47] Capstick S, Godfrey S. Phys. Rev. D, 1990, 41: 2856[48] Isgur N, Scora D, Grinstein B, Wise M B. Phys. ReV. D, 1989, 39: 799[49] Le Yaouanc A, Oliver L, Péne O, Raynal J C. Hadron Transitions in the Quark Model. New York: Gordon and Breach, 1988[50] Aubert B et al. (BABAR collaboration). Phys. Rev. Lett., 2008, 101: 071801[51] Nakamura K et al. (Particle Data Group). J. Phys. G: Nucl. Part. Phys., 2010, 37: 075021[52] Adachi I et al. (Belle collaboration). arXiv:1103.3419v2 [hep-ex][53] Laverty J T, Radford S F, Repko W W. arXiv:0901.3917v3 [hep-ph][54] Chien-Wen Hwang, Rurng-Sheng Guo. Phys. Rev. D, 2010, 82: 034021
  • 加载中

Get Citation
Bhaghyesh and K. B. Vijaya Kumar. Properties of bottomonium in a semi-relativistic model[J]. Chinese Physics C, 2013, 37(2): 023103. doi: 10.1088/1674-1137/37/2/023103
Bhaghyesh and K. B. Vijaya Kumar. Properties of bottomonium in a semi-relativistic model[J]. Chinese Physics C, 2013, 37(2): 023103.  doi: 10.1088/1674-1137/37/2/023103 shu
Milestone
Received: 2012-04-25
Revised: 2012-05-31
Article Metric

Article Views(2294)
PDF Downloads(755)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Properties of bottomonium in a semi-relativistic model

    Corresponding author: K. B. Vijaya Kumar,

Abstract: Using a semi-relativistic potential model we investigate the spectra and decays of the bottomonium (bb) system. The Hamiltonian of our model consists of a relativistic kinetic energy term, a vector Coulomb-like potential and a scalar confining potential. Using this Hamiltonian, we obtain a spinless wave equation, which is then reduced to the form of a single particle Schrodinger equation. The spin dependent potentials are introduced as a perturbation. The three-dimensional harmonic oscillator wave function is employed as a trial wave function and the bbmass spectrum is obtained by the variational method. The model parameters and the wave function that reproduce the the bbspectrum are then used to investigate some of their decay properties. The results obtained are then compared with the experimental data and with the predictions of other theoretical models.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return