Molecular dynamics simulation of latent track formation in α-quartz

  • The latent ion track in α -quartz is studied by molecular dynamics simulations. The latent track is created by depositing electron energies into a cylindrical region with a radius of 3 nm. In this study, the electron stopping power varies from 3.0 keV/nm to 12.0 keV/nm, and a continuous latent track is observed for all the simulated values of electron stopping power except 3.0 keV/nm. The simulation results indicate that the threshold electron stopping power for a continous latent track lies between 3.0 keV/nm and 3.7 keV/nm. In addition, the coordination defects produced in the latent track are analyzed for all the simulation conditions, and the results show that the latent track in α -quartz consists of an O-rich amorphous phase and Si-rich point defects. At the end of this paper, the influence of the energy deposition model on the latent track in α -quartz is investigated. The results indicate that different energy deposition models reveal similar latent track properties. However, the values of the threshold electron stopping power and the ion track radius are dependent on the choice of energy deposition model.
      PCAS:
  • 加载中
  • [1] Fleische R L, Price P B, Walker R M. J. Appl. Phys., 1965, 36: 3645-3652[2] Lesueur D, Dunlop A. Radiat. Eff. Defects. S, 1993, 126: 163-172[3] WANG Z G, Dufour C, Paumier E et al. J. Phys-Condens. Mat., 1994, 6: 6733-6750[4] Volkov A E, Borodin V A. Nucl. Instrum. Methods B, 1998, 146: 137-141[5] Toulemonde M, Dufour C, Meftah A et al. Nucl. Instrum. Methods B, 2000, 166: 903-912[6] Meftah A, Brisard F, Costantini J M et al. Phys. Rev. B: Condens. Matter, 1994, 49: 12457-12463[7] Toulemonde M, Constantini J M, Dufour C et al. Nucl. Instrum. Methods B, 1996, 116: 37-42[8] Toulemonde M, Assmann W, Dufour C et al. Ion Beam Science: Solved and Unsolved Problems, Pts 1 and 2, 2006, 52: 263-292[9] Abromeit C, Kuznetsov A R. Nucl. Instrum. Methods B, 2004, 225: 97-104[10] Bringa E M, Johnson R E. Nucl. Instrum. Methods B, 1998, 143: 513-535[11] Bringa E M, Johnson R E, Dutkiewicz L. Nucl. Instrum. Methods B, 1999, 152: 267-290[12] Kluth P, Schnohr C S, Pakarinen O H et al. Phys. Rev. Lett., 2008, 101: 175503[13] Moreira P A F P, Devanathan R, Weber W J. J. Phys-Condens. Mat., 2010, 22: 395008[14] Pakarinen O H, Djurabekova F, Nordlund K. Nucl. Instrum. Methods B, 2010, 268: 3163-3166[15] Pakarinen O H, Djurabekova F, Nordlund K et al. Nucl. Instrum. Methods B, 2009, 267: 1456-1459[16] Phillips C L, Magyar R J, Crozier P S. J. Chem. Phys., 2010, 133: 144711[17] Schwen D, Bringa E M. Nucl. Instrum. Methods B, 2007, 256: 187-192[18] ZHANG J M, LANG M, Ewing R C et al. J. Mater. Res., 2010, 25: 1344-1351[19] Plimpton S. J. Comput. Phys., 1995, 117: 1-19[20] Humphrey W, Dalke A, Schulten K. J. Mol. Graph. Model., 1996, 14: 33-38[21] Watanabe T, Fujiwara H, Noguchi H et al. Jpn. J. Appl. Phys., Part 2-Letters, 1999, 38: L366-L369[22] Watanabe T, Yamasaki D, Tatsumura K et al. Appl. Surf. Sci., 2004, 234: 207-213[23] Ohta H, Hamaguchi S. J. Vac. Sci. Technol. A, 2001, 19: 2373-2381[24] Berendsen H J C, Postma J P M, Vangunsteren W F et al. J. Chem. Phys., 1984, 81: 3684-3690[25] Szenes G. Phys. Rev. B: Condens. Matter, 1995, 52: 6154-6157[26] Mota F, Caturla M J, Perlado J M et al. Fusion. Eng. Des., 2005, 75-79: 1027-1030[27] Waligorski M P R, Hamm R N, Katz R. Nucl. Tracks. Rad. Meas., 1986, 11: 309-319
  • 加载中

Get Citation
LAN Chun-E, XUE Jian-Ming, WANG Yu-Gang and ZHANG Yan-Wen. Molecular dynamics simulation of latent track formation in α-quartz[J]. Chinese Physics C, 2013, 37(3): 038201. doi: 10.1088/1674-1137/37/3/038201
LAN Chun-E, XUE Jian-Ming, WANG Yu-Gang and ZHANG Yan-Wen. Molecular dynamics simulation of latent track formation in α-quartz[J]. Chinese Physics C, 2013, 37(3): 038201.  doi: 10.1088/1674-1137/37/3/038201 shu
Milestone
Received: 2012-04-19
Revised: 1900-01-01
Article Metric

Article Views(2028)
PDF Downloads(267)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Molecular dynamics simulation of latent track formation in α-quartz

    Corresponding author: XUE Jian-Ming,

Abstract: The latent ion track in α -quartz is studied by molecular dynamics simulations. The latent track is created by depositing electron energies into a cylindrical region with a radius of 3 nm. In this study, the electron stopping power varies from 3.0 keV/nm to 12.0 keV/nm, and a continuous latent track is observed for all the simulated values of electron stopping power except 3.0 keV/nm. The simulation results indicate that the threshold electron stopping power for a continous latent track lies between 3.0 keV/nm and 3.7 keV/nm. In addition, the coordination defects produced in the latent track are analyzed for all the simulation conditions, and the results show that the latent track in α -quartz consists of an O-rich amorphous phase and Si-rich point defects. At the end of this paper, the influence of the energy deposition model on the latent track in α -quartz is investigated. The results indicate that different energy deposition models reveal similar latent track properties. However, the values of the threshold electron stopping power and the ion track radius are dependent on the choice of energy deposition model.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return