Production and decay of the 125 GeV Higgs boson in thelittlest Higgs model with T-parity

  • Motivated by recent search results for the standard model (SM) Higgs boson at the Large Hadron Collider (LHC), we revisit the Higgs phenomenology in the littlest Higgs model with T-parity (LHT). We present the signal strength modifier μ, respectively, for the main search channels qq' → jjh→ jjγγ, qq'→ Vh→ Vγγ, qq'→ Vh → Vbb, gg→ h → γγ, and gg → h → VV in the LHT model. It is found that an enhancement factor of 1.09-1.56 in the qq' → jjh→ jjγγ channel can be obtained for this model in Case B with parameter f in the range 500-1000~GeV. However, the rates for bb, ττ are significantly suppressed relative to the SM predictions, which are still consistent with the current sensitivity. It is hoped that this will be further tested with larger integrated luminosity at the LHC.
      PCAS:
  • 加载中
  • [1] Barate R et al. (LEP Working Group for Higgs boson searches and ALEPH and DELPHI and L3 and OPAL Collaborations). Phys. Lett. B, 2003, 565: 61-75[2] Marciano W J, Willenbrock S. Phys. Rev. D, 1998, 37: 2509; Dawson S, Willenbrock S. Phys. Rev. Lett., 1989, 62: 1232[3] Aaltonen T et al. (CDF and D0 collaboration). Phys. Rev. Lett., 2010, 104: 061802; [TEVNPH (Tevatron New Phenomina and Higgs Working Group) and CDF and D0 collaborations]. arXiv:1107.5518[4] Gianotti F (the ATLAS collaboration). Talk given at CERN on July 4, 2012[5] Incandela J (the CMS collaboration). Talk given at CERN on July 4, 2012[6] Aad G et al. (ATLAS collaboration). Phys. Lett. B, 2012, 710: 49-66[7] Chatrchyan S et al. (CMS collaboration). Phys. Lett. B, 2012, 710: 26-48[8] Aad G et al. (ATLAS collaboration). Phys. Rev. Lett., 2010, 108: 111803[9] Chatrchyan S et al. (CMS collaboration). Phys. Lett. B, 2012, 710: 403-425[10] Azatov A, Contino R, Galloway J. JHEP, 2012, 1204: 127[11] Carmi D, Falkowski A, Kuflik E, Volansky T. JHEP, 2012, 1207: 136[12] Espinosa J R, Grojean C, Muhlleitner M, Trott M. JHEP, 2012, 1205: 097; Giardino P P, Kannike K, Raidal M, Strumia A. JHEP, 2012, 1206: 117; Carmi D, Falkowski A, Kuflik E, Volansky T, Zupan J. arXiv:1207.1718[13] Cheng H C, Low I. JHEP, 2003, 0309: 051; JHEP, 2004, 0408: 061; Low I. JHEP, 2004, 0410: 067; Hubisz J, Meade P. Phys. Rev. D, 2005, 71: 035016; Hubisz J, Meade P, Noble A, Perelstein M. JHEP, 2006, 0601: 135[14] CHEN C R, Tobe K, YUAN C P. Phys. Lett. B, 2006, 640: 263-271[15] WANG L, YANG J M. Phys. Rev. D, 2009, 79: 055013[16] WANG L, YANG J M. Phys. Rev. D, 2011, 84: 075024[17] Arkani-Hamed N, Cohen A G, Georgi H. Phys. Lett. B, 2001, 513: 232-240; Arkani-Hamed N, Cohen A G, Katz E, Nelson A E, Gregoire T, Wacker J G. JHEP, 2002, 0208: 021; Schmaltz M, Tucker-Smith D. Ann. ReV. Nucl. Part. Sci, 2005, 55: 229[18] Arkani-Hamed N, Cohen A G, Katz E, Nelson A E. JHEP, 2002, 0207: 034[19] Maltoni F, Stelzer T. JHEP, 2003, 0302: 027[20] Pumplin J et al. JHEP, 2006, 0602: 032[21] Djouadi A, Kalinowski J, Spira M. Comput. Phys. Commun, 1998, 108: 56-74[22] HAN T, Logan H E, McElrath B, WANG L T. Phys. Lett. B, 2003, 563: 191-202[23] Gunion J F, Haber H E, Kane J L, Dawson S. The Higgs Hunter's Guide, Addison-Wesley, Reading, MA (1990)[24] Dittmaier S et al. (LHC Higgs Cross Section Working Group collaboration). Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables. arXiv:1101.0593[25] Barger V, Philips R. Collider Physics, Redwood City: Addison-Wesley Publishing Company, 1988[26] LIU C, YANG S. Phys. Rev. D, 2010, 81: 093009[27] LI T J, WAN X, WANG Y K, ZHU S H. JHEP, 2012, 1209: 086. arxiv:1203.5083[28] CAO J J, HENG Z X, YANG J M, ZHU J Y. arXiv:1207.3698[29] Matsuzaki S, Yamawaki K. arXiv:1207.5911; Matsuzaki S, Yamawaki K. Phys. Rev. D, 2012, 86: 035025. arxiv:1206.6703[30] Belanger G, Belyaev A, Brown M, Kakizaki M, Pukhov A. EPJ Web Conf., 2012, 28: 12070[31] Arhrib A, Benbrik R, Chabab M, Moultaka G, Rahili L. JHEP, 2012, 1204: 136; Kanemura S, Yagyu K. Phys. Rev. D, 2012, 85: 115009; CAI Y, CHAO W, YANG S. arXiv:1208.3949[32] Blum K, D'Agnolo R. Phys. Lett. B, 2012, 714: 66-69
  • 加载中

Get Citation
ZENG Qing-Guo, YANG Shuo, YUE Chong-Xing and CHEN Lian-Song. Production and decay of the 125 GeV Higgs boson in thelittlest Higgs model with T-parity[J]. Chinese Physics C, 2013, 37(5): 054102. doi: 10.1088/1674-1137/37/5/054102
ZENG Qing-Guo, YANG Shuo, YUE Chong-Xing and CHEN Lian-Song. Production and decay of the 125 GeV Higgs boson in thelittlest Higgs model with T-parity[J]. Chinese Physics C, 2013, 37(5): 054102.  doi: 10.1088/1674-1137/37/5/054102 shu
Milestone
Received: 2012-08-08
Revised: 2012-10-18
Article Metric

Article Views(2217)
PDF Downloads(324)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Production and decay of the 125 GeV Higgs boson in thelittlest Higgs model with T-parity

    Corresponding author: YUE Chong-Xing,

Abstract: Motivated by recent search results for the standard model (SM) Higgs boson at the Large Hadron Collider (LHC), we revisit the Higgs phenomenology in the littlest Higgs model with T-parity (LHT). We present the signal strength modifier μ, respectively, for the main search channels qq' → jjh→ jjγγ, qq'→ Vh→ Vγγ, qq'→ Vh → Vbb, gg→ h → γγ, and gg → h → VV in the LHT model. It is found that an enhancement factor of 1.09-1.56 in the qq' → jjh→ jjγγ channel can be obtained for this model in Case B with parameter f in the range 500-1000~GeV. However, the rates for bb, ττ are significantly suppressed relative to the SM predictions, which are still consistent with the current sensitivity. It is hoped that this will be further tested with larger integrated luminosity at the LHC.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return