×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Pressure-induced isostructural phase transition in Bi2Sr2CaCu2O8+δ

  • The high-pressure structures of an underdoped cuprate superconductor Bi2Sr2CaCu2O8+δ have been studied by synchrotron X-ray diffraction at pressures up to 36.5 GPa. We find that this superconductor retains its orthogonal structure with the space group Amaa in the pressure range studied. Upon compression, both the a and b axes first shrink monotonically up to 17.4 GPa from their ambient pressure values and keep these behaviors with positive compressibilities up to 36.5 GPa after experiencing expansion with negative compressibilities in the pressure regime between 17.4 and 23.7 GPa. However, the c axis decreases continuously with increasing pressure with a slow change at about 23.7 GPa. The results indicate an isostructural phase transition starting at 17.4 GPa and a structural collapse at around 23.7 GPa.
      PCAS:
  • 加载中
  • [1] Robert Schrieffer J. Handbook of High-Temperature Superconductivity: Theory and Experiment. Springer Science+Business Media, LLC, 2007. 427-461[2] WU M K, Ashburgn J R, Torng C J, Hor P H, Meng R L, GAO L, HUANG Z J, WANG Y Q, CHU C W. Phys. Rev. Lett., 1987, 58: 908[3] GAO L,XUE Y Y, CHEN F, XIONG Q, MENG R L, Ramirez D, CHU C W, Eggert J H, MAO H K. Phys. Rev. B, 1994, 50: 4260[4] Torikachvili M S, Bud ko S L, NI N, Canfield P C. Phys. Rev. Lett., 2008, 101: 057006[5] Alireza P L, Chris Ko Y T, Gillett J, Petrone C M, Cole J M, Lonzarich G G, Sebastian S E. J. Phys. Condens. Matter, 2009, 21: 012208[6] Okada H, Igawa K, Takahashi H, Kamihara Y, Hirano M, Hosono H, Matsubayashi K, Uwatoko Y. J. Phys. Soc. Jpn, 2008, 77: 113712[7] Klotz S, Schilling J S. Physica C, 1993, 209: 499[8] CHEN X J, Struzhkin V V, Hemley R J, MAO H K, Kendziora C. Phys. Rev. B, 2004, 70: 214502[9] CHEN X J, LIN H Q, GONG C D. Phys. Rev. Lett., 2000, 85: 2180-2183[10] Maisuradze A, Shengelaya A, Amato A, Pomjakushina E, Keller H. Phys. Rev. B, 2011, 84: 184523[11] CHEN X J, Struzhkin V V, YU Y, Goncharov A F, LIN C T, MAO H K, Hemley R J. Nature, 2010, 466: 950-953[12] Cuk T, Zocco D A, Eisaki H, Struzhkin V, Grosche F M, Maple M B, SHEN Z X. Phys. Rev. B, 2010, 81: 184509[13] GU G D, Takamuku K, Koshizuka N, Tanaka S. Journal of Crystal Growth, 1993, 130: 325-329[14] Hammersley A P. Fit 2d, ESRF, Grenoble, France. 1998[15] Larson A C, Von-Dreele R B. GSAS-General Structure Analysis System. Report LAUR 86-748. Los Alamos National Laboratory, USA. 1994[16] GAO Y, Coppens P, Cox D E, Moodenbaugh A R. Acta Cryst. A, 1993, 49: 141-148[17] Birch F. Phys. Rev., 1947, 71: 809[18] Dagotto E. Science, 2005, 309: 257[19] Orenstein J, Millis A J. Science, 2000, 288: 468[20] Lampakis D, Liarokapis E, Panagopoulos C. Phys. Rev. B, 2006, 73: 174518[21] Gantis A, Calamiotou M, Palles D, Lampakis D, Liarokapis E. Phys. Rev. B, 2003, 68: 064502[22] Calamiotou M, Gantis A, Margiolaki I, Palles D, Siranidi E, Liarokapis E. J. Phys. Condens. Matter, 2008, 20: 395224[23] Calamiotou M, Gantis A, Lampakis D, Siranidi E, Liarokapis E, Margiolaki I, Conder K. EPL, 2009, 85: 26004[24] Calamiotou M, Gantis A, Siranidi E, Lampakis D, Karpinski J, Liarokapis E. Phys. Rev. B, 2009, 80: 214517[25] Mittal R, Mishra S K, Chaplot S L, Ovsyannikov S V, Greenberg E, Trots D M, Dubronvinsky L, Su Y, Brueckel T, Matsuishi S, Hosono H, Garbarino G. Phys. Rev. B, 2011, 83: 054503[26] Uhoya W, Tsoi G, Vohra Y K, McGuire M A, Sefat A S, Sales B C, Mandrus D, Weir S T. J. Phys. Condens. Matter, 2010, 22: 292202[27] ZHAO J G, WANG L H, DONG D W,LIU Z G, LIU H Z, CHEN G F, WU D, LUO J L, WANG N L, YU Y, JIN C Q, GUO Q Z. J. Am. Chem. Soc., 2008, 130: 13828[28] JIA F J, YANG W G, LI L J, XU Z A, CHEN X J. Physica C, 2012, 474: 1-4[29] Sefat A S. Rep. Prog. Phys., 2011, 74: 124502
  • 加载中

Get Citation
ZHANG Jian-Bo, TANG Ling-Yun, ZHANG Jiang, QIN Zhen-Xing, ZENG Xiao-Jing, LIU Jing, WEN Jin-Sheng, XU Zhi-Jun, GU Genda and CHEN Xiao-Jia. Pressure-induced isostructural phase transition in Bi2Sr2CaCu2O8+δ[J]. Chinese Physics C, 2013, 37(8): 088003. doi: 10.1088/1674-1137/37/8/088003
ZHANG Jian-Bo, TANG Ling-Yun, ZHANG Jiang, QIN Zhen-Xing, ZENG Xiao-Jing, LIU Jing, WEN Jin-Sheng, XU Zhi-Jun, GU Genda and CHEN Xiao-Jia. Pressure-induced isostructural phase transition in Bi2Sr2CaCu2O8+δ[J]. Chinese Physics C, 2013, 37(8): 088003.  doi: 10.1088/1674-1137/37/8/088003 shu
Milestone
Received: 2012-10-24
Revised: 2012-11-19
Article Metric

Article Views(2019)
PDF Downloads(162)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Pressure-induced isostructural phase transition in Bi2Sr2CaCu2O8+δ

Abstract: The high-pressure structures of an underdoped cuprate superconductor Bi2Sr2CaCu2O8+δ have been studied by synchrotron X-ray diffraction at pressures up to 36.5 GPa. We find that this superconductor retains its orthogonal structure with the space group Amaa in the pressure range studied. Upon compression, both the a and b axes first shrink monotonically up to 17.4 GPa from their ambient pressure values and keep these behaviors with positive compressibilities up to 36.5 GPa after experiencing expansion with negative compressibilities in the pressure regime between 17.4 and 23.7 GPa. However, the c axis decreases continuously with increasing pressure with a slow change at about 23.7 GPa. The results indicate an isostructural phase transition starting at 17.4 GPa and a structural collapse at around 23.7 GPa.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return